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By analogy with the Ginzburg—Landau theory of multi-band supercon-
ductors with inner (interband) Josephson couplings, we formulate the three-
band Glashow—Weinberg—Salam model with weak Josephson couplings be-
tween strongly asymmetrical condensates of scalar (Higgs) fields. Unlike the
usual single-band model, we found three Higgs bosons corresponding to the
three generations of particles. Moreover, the heaviest of these bosons corre-
sponds to the already discovered H-boson and decays into fermions of only
the third generation through the Yukawa interaction. The other two decay
into fermions of the first and second generations, but they are difficult to
observe due to very poor production conditions. We found two sterile ultra-
light Leggett bosons, the Bose condensates of which form the dark halos of
galaxies and their clusters (i.e. so-called Dark Matter). The masses of the
Leggett bosons are determined by the coefficient of the interband coupling
and can be arbitrarily small (~ 10720 eV) due to non-perturbativeness of
the interband coupling. Since propagation of the Leggett bosons is not
accompanied by a current, these bosons are not absorbed by gauge fields,
unlike the common-mode Goldstone bosons. Three coupled condensates
of the scalar fields are related to the existence of three generations of lep-
tons, where each generation interacts with the corresponding condensate
getting mass. The interflavor mixing between the generations of active neu-
trinos and sterile right-handed neutrinos in the three-band system causes
the existence of mass states of neutrino without interaction with the Higgs
condensates.
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1. Introduction

The Standard Model (SM) is an SU(3), ® SU(2); ® U(1)y gauge the-
ory. Here, SU(3). is the symmetry of the strong color interaction of quarks
and gluons. The group of the weak isospin I and the weak hypercharge Y,
SU(2); ®U(1)y, describes the electroweak interaction of quarks and leptons

(8-A2.1)
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mediated by the corresponding gauge bosons ffu, B,,. Due to the coefficient
a < 0 in the potential for the scalar field ap™p + %(cp+g0)2, the complex
scalar field ¢ = |p|e? acquires a nonzero vacuum expectation value, which

can be supposed as [(0]p|0)| = \/@ = ¢, and the SU(2); ® U(1)y elec-
troweak symmetry is spontaneously broken down to the U(1)g gauge sym-
metry of electromagnetism with the electrical charge @ = I, + % Here,
the Higgs mechanism takes place: the phase 6 is absorbed by the gauge
fields, and while three linear combinations of the gauge fields interact with
the condensate ¢y and become massive (i.e. W+, W=, Z bosons), the pho-
ton v, = A.,sina + By, cos a remains massless %@%(AWAg + Ay AY) +
%gog (gQAZMA’; + fQBuB“) = %@%WMW*“ + %@%ZMZ“ (here, sina = 0.47
is the Weinberg angle, e = 1/1/137 is an elementary charge in the Gaussian
system of units, g = 5=, f = 5=, G2 = ¢>+ f?). In addition, the Dirac
fields ¢ (spinor) interact with the condensate by the Yukawa interaction
X (Vreyr +Yret L), and, as the result, leptons obtain masses mp; = Xio
(where i = e, u, 7 — electron, muon, tauon); it is analogously for quarks,
however neutrino remains strictly massless, and it is supposed that the right-
handed neutrino vg and the left-handed antineutrino v are absent |1, 2],
but in various extensions of SM, the existence of additional neutrinos with
different parameters is allowed, for example, the neutrino minimal Standard
Model (vMSM) supposes the existence of three sterile right-handed neutri-
nos v |3]. It should be noted that the lepton mixing and the quark mixing
occur in such a way that some elements of the mixing matrices, i.e. the
PMNS matrix for neutrino mixing and the CKM matrix for quark mixing,
are complex (presence of phase multipliers e*c?), which results in the CP
violation [4-9].

SM with its minimal Higgs structure successfully describes the nature
of fundamental particles. Especially, the Glashow—Weinberg-Salam (GWS)
model of the electroweak interaction provides an extremely successful de-
scription of the observed electroweak phenomena. However, SM in its present
form is unable to describe a number of extremely important phenomena. In
the present work, we would like to discuss some of them.

1.1. Dark Matter

At present time, it is well known that the total mass—energy of the ob-
servable universe consists of 5% ordinary matter (baryonic, leptonic, pho-
tonic), 26% Dark Matter (DM), and 69% in the form of energy known as
the dark energy [10]. Thus, DM constitutes 81% of the total mass. Thus,
the total mass of the Milky Way taking into account DM is estimated as
M ~ 0.8...1.2 x 10"2M, and the radius of the DM halo is estimated as
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ro ~ 120 kpc [11]. On the contrary, the mass of baryonic matter in the
Milky Way is estimated as Mg ~ 5...7 x 10!°M, and radius of the disk is
estimated as rg ~ 25kpc. Thus, DM constitutes 94% of the total mass of the
Milky Way and the region occupied by the relatively dense baryonic matter
is a very small region in a central part of the DM halo. Thus, the Milky
Way (in the same way as other galaxies and galaxy clusters) is immersed
in an almost homogeneous cloud of DM as illustrated in Fig. 1. Moreover,
density perturbations in the baryon—electron—photon plasma before recom-
bination do not grow due to high light pressure. Instead, the perturbations
produce sound waves that propagate in the plasma. Since DM particles do
not interact with photons, there is nothing to prevent them from forming
self-gravitating clusters. After recombination, baryons fall into potential
wells formed by DM. Galaxies form in those regions where DM originally
formed self-gravitating clusters [12]. Thus, without DM, no structures would
have been formed, no galaxies, no life.

y ~ dark matter halo \

R~ Galaxy \

V.

spherical stellar halo

Fig.1. Top figure: the region of the DM halo compared with the size of the
galaxy and its stellar halo. Lower figure: corresponding profiles p(r) of DM density
(dark line) and baryonic matter density (blue line). The dashed line is the result
of numerical simulations of the distribution of DM density, where we can see a
singularity — “cusp”.
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Thus, we have a situation, when SM does not describe 81% of matter
in the universe. Attempts have been made repeatedly to expand the SM
so that it would include particles of DM. Since such particles do not man-
ifest themselves in any way except through gravity (do not absorb, radiate
or scatter electromagnetic waves and do not cause any significant nuclear
reactions), they must be almost sterile: they do not interact with photons
and do not participate in strong interactions, only the weak interactions are
allowed. Therefore, they have been proposed as candidates for DM particles,
for example, sterile (right-chiral) neutrinos [13—-16] with a mass of ~ 1 keV,
neutralinos (as WIMP) with a mass of > 10?2 GeV [17, 18], axions with a
mass of ~ 1072 eV [17, 19|, light scalaron of f(R) gravity with a mass of
~ 1073 eV [20], and many others [17, 21]. At present, no DM candidate
particles have been detected.

In order to form potential wells, the DM particles must be nonrelativis-
tic, because relativistic particles travel through gravitational wells instead
of being trapped there. On the other hand, according to numerical simu-
lations, a DM halo should tend to produce densities in galactic centers as
p ~ r* with o & —1: the so-called cusp in density profile [22-25]. At the
same time, the observed distributions of the DM halo is almost flat in the
centre of a DM cloud p ~ r%. For example, distributions of mass in a DM
halo profile and in ordinary baryonic matter are schematic shown in Fig. 1.
The cuspy halo problem is proposed to be solve by heating the DM gas in
the central region as, for example, is proposed in [26]. Another solution to
this problem is, instead of proposing a complicated mechanism for heating
the DM gas, to assume a property of the DM particles, which makes im-
possible formation of a cusp. If DM is composed of some kind of ultra-light
bosons (10724 <m < 1 eV), then such a Bose gas can form a Bose-Einstein
condensate 25, 27-29]. The latest state of development of this hypothesis
is presented in the review [30]. Due to the uncertainty principle, the central
cusp is washed out to the flat profile, moreover, the formation of small struc-
tures (galaxy satellites) is suppressed, many of which are predicted by the
cold DM theory. Such a model has different names in the literature, such as
Fuzzy Dark Matter (FDM), ultra-light DM, BEC Dark Matter, wave DM,
scalar field DM, and others. Estimation of the ultra-light boson masses lies
within a wide range — from ~ 10724 eV, which was obtained by comparing
the de-Broglie wave length of DM to the typical size of the DM halo in galax-
ies (~ 100 kpc) [27]. If we suppose that the DM halo has some structure: a
core of size ~ 1 kpc from BEC and a Bose gas behaving as the cold DM, then
a mass of ~ 10722 eV [28-32] is assumed. At the same time, observations of
stellar kinematics in dwarf galaxies give a mass of ~ 10722...10720 eV [33
35]. Obviously, in these models, the ultra-light bosons are assumed to be
noninteracting or to interact very weakly with each other. If we suppose
a strong interaction between bosons, then they can form a superfluid Bose
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liquid (as Hell). In this case, the mass of the boson can be ~ 1 eV [30].
However, obviously, in such a model, in addition to unknown particles, there
is also an interaction of unknown nature. Thus, we can see that this hypoth-
esis about FDM adequately describes the dark halo, despite some backlash
in boson masses. However, the nature of the ultra-light weakly interacting
(or even sterile) bosons remains unknown: these bosons do not fit into the
framework of SM.

1.2. Neutrino masses

Observation of the neutrino oscillations in vacuum means the presence
of mass of neutrinos [36—41], but only the differences in the squares of
the masses can be measured: |Am2;| = |m2 — m3| = 2.51 x 1072 eV?,
|Am2,| ~ 7.41 x 107° eV? [42, 43|, and the upper limits of the masses

VMZe, \/m?Z,, \/m2. can be determined experimentally from the B-decay

of tritium, pion decay, T-decays into multi-pion final states, respectively [44,
45]. Cosmological data (anisotropy of cosmic microwave background radia-
tion, formation of structures, etc.) impose restrictions on masses: »_ m, <
0.19 eV [46], >, m, < 0.28 eV [47]. We can formally write the Dirac mass
term (Yukawa interaction) for both the charged lepton and the neutrino

Up = xi (Dol + ) + X0 (Dufvn + P

= mp (ILlr + [rlL) +mpy (VLR + Vr1L) (1)

where the isospinor v, = YL ) is a left-handed dublet, g are vy right-

l,
handed singlets (here, vy, is a spinor of the active neutrino, vy is a spinor
of the hypothetical sterile neutrino, /i, g are spinors of charged lepton), ¥ =
< g >, v = 1TV = ( (g > are isospinors, where ¢ is scalar field with
condensate (p) = ¢g # 0, 7, is a Pauli matrix. mp; = x;p0 and mp, =
Xvpo are Dirac masses of the charged lepton and the neutrino, respectively.
However, the problem is the unnatural difference in the Yukawa constants

Xo ~ 1071 < xg ~ 1070, (2)

unlike, for example, top and bottom rows of quarks, where their masses are
not very different.

In SM, the right-handed neutrinos vy are absent, hence mp, = 0. There
are several opportunities for the extension of SM, where the small neutrino
mass appears. For example, following review in [38], it should be noted
that in the Gelmini-Roncadelli model, where an extension of the model
with the single-scalar field to the scalar doublet has been proposed, the
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additional vacuum condensate ¢ appears, so that o1 < g ~ 250 GeV. In
this model, the neutrino interacts only with the last XDLCgoluL (where “C” is
a charge conjugation), so the neutrino mass can be much smaller than the
electron mass. Another example is the well-known “see-saw” mechanism,

in which there are two scales of mass mp < my ~ 10 GeV, so that
2

my ~ :—ﬁ < mp as a result of diagonalization of the mass matrix. However,
these models assume that the neutrino is a Majorana neutrino which results
in the neutrinoless double 5-decay, but this has not been yet observed. Thus,
origin of the neutrino mass remains unknown.

1.3. The absence of experimentally detected decays of the Higgs boson
into fermions of the second and first generations

There are many types of H-boson decay channels [48-50]. Due to the
Yukawa coupling, the H-boson can decay into quark—antiquark pairs (all
quarks except t-quarks, because m; > my) and into lepton—antilepton pairs
as illustrated in Fig. 2. According to SM, the H-boson should decay as
follows: H — bb with a probability of 57.5%, H — 77 with a probabil-
ity of 6.30%, H — c¢ with a probability of 2.90%, and H — uj with a
probability of < 0.022% [50]. At the same time, there has been no quite
reliable experimental evidence found in direct searches by the ATLAS and
CMS collaborations [51, 52| for an H-boson decaying into a charm quark—
antiquark pair, a strange quark—antiquark, an electron—positron pair, and a
muon—antimuon pair. This fact is usually associated with the small Yukawa
constant for the first and second generations of fermions. However, the decay
rate into a pair of c-quarks is not much smaller than the decay rate into a
pair of 7-leptons (the decay probabilities are 2.9% and 6.4%, respectively).
On the other hand, such very rare decays as two-photon decay H — 7y
with a probability of ~ 0.2% have been detected. Thus, in our opinion, the
absence of experimentally detected decays of the H-boson into fermions of
the second and first generations can point to New Physics, in the sense that
several Higgs fields can exist, so that the mass of each generation is caused
by the corresponding Higgs field.

,G,5,d,u

Fig. 2. Theoretical decays of Higgs boson into quark—antiquark pairs and lepton—
antilepton pairs due to the Yukawa coupling. The green font denotes experimentally
observed decays with a significance grater than 5.



Three-band Extension for the Glashow—Weinberg—Salam Model 8-A2.7

It should be noted that the CMS Collaboration reported on the H —
pi decay with a significance of 30 [53]. At the same time, the ATLAS
Collaboration reported on H — yuji, yeé decays, which occur through many
intermediate channels due to various interactions (via virtual photons, Z-,
W-bosons, quarks) with a significance of 3.20 [54]. Thus, H — pji and
H — ~ypp decays still need to be securely separated. Unlike H — 77, it
is difficult to discover the signal of H — c¢, because the background from
QCD is several orders of magnitude larger than the signal. Thus, LHC is
not well suited to these problems, but multi-TeV lepton—antilepton colliders
would be more suitable.

1.4. Why are three generations of fermions needed, the problem
of the hierarchy of their masses and lepton oscillations

As is well known, all fundamental fermions are divided into three genera-
tions, that is, three sets of particles with identical interactions but with very

different masses (except neutrinos): the first — w, d-quarks, e, ve-leptons
(electron and electron neutrino), the second — ¢, s-quarks, u,v,-leptons
(muon and muon neutrino), the third — ¢, b-quarks, 7, v, -leptons (tauon

and tau neutrino). However, the first generation is sufficient for the sub-
stance and it is unclear why the other two are needed. Thus, in Ref. [55],
the model with two heavy right-handed neutrinos is proposed in order to
provide a generation of baryon asymmetry in the early universe and one
sterile right-handed neutrino which makes up DM. However, this model re-
quires the “see-saw” mechanism. The origin of the mass hierarchy is un-
known at this time. Indeed, for instance, the electron (m. = 0.511 MeV),
the muon (m, = 105.7 MeV), and the tauon (m, = 1777 MeV) carry iden-
tical gauge quantum numbers, but their masses differ by orders of magni-
tude (this means that their Yukawa constants x., xu, x- differ by orders of
magnitude, because mp; = x;p0). As stated in the review [56], an expla-
nation of the hierarchy requires extra spatial dimensions. Moreover, the
neutrino oscillations take place with large mixing angles (~ 7/4), however
for charged leptons (electron—muon—tauon), the mixing is absent. It should
be noted that purely quantum-mechanical reasons for the absence of oscil-
lations of charged leptons associated with the processes of their detection
were expressed [57, 58]. When the production of more than one type of
mass-eigen-state charged leptons is kinematically allowed, the charged lep-
ton states are either produced as incoherent mixtures of e, u, and 7, or they
lose their coherence over microscopic distances due to the large difference in
the masses of the basis states m(7) — m(e) > m(v,) — m(v.), except at ex-
tremely high energies, not accessible to present experiments. However, this
does not exclude others fundamental reasons for the absence of the mixing
of charged leptons.
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To solve these and other problems of SM, a two-Higgs-doublet model
(2HDM) as a simple extension of SM is used [59-63]. This model supposes
a two-doublet scalar potential

Vorpm = mi W W + m3, 05 Wy — miy (070 + W5 )

Fh (I70)” 4 Do ()7 4 X (8700) (#500)

g (T (050 + %)\5 ((rrw)* + (757w)?)

6 (U0 (B0 + 050 + Ar (05 0) (05700 + W50 . (3)
2
real, at least one of mfl < 0 and A2 > 0. For illustration and simpliciéjy, an

exact Zg discrete symmetry can be imposed, i.e. ¥7 — —Wy, ¥y — Wy, Then
miz = 0, ¢ 7 = 0. The fields ¥ 5 are SU(2) isospinors

Here, we restrict to the CP-conserving models in which all A\; and m?; are

+
Uip = < 12 > ;
’ (v12+ pr2+im2)/V?2
Uy = (12, (vig+pi2 —im2)/V2), (4)

where scalar vacuum condensates vy 2 are such that \/v% + ’U% = 246 GeV,
(p1,2) = (m2) = (¢1,2) = 0. There are 8 fields

H cosa sina p1 _
h = — two neutral scalars (neutral Higgs bosons) , (5)

sina cosa 02

G  [cosB sinB\ (m
( A > = <Sil’l,8 COS,B) <772 — two neutral pseudoscalars , (6)

G*\ [cosp sinp 5
<Hi> = <Sinﬁ COSﬁ) <¢ét> — two charged scalars , (7)

where GY and GF are Goldstone bosons which are absorbed as longitudinal
components of the W+, Z, tan 8 = %7 « is an angle.

Masses of fermions (quarks and leptons) are the result of Yukawa inter-

action: coupling of left-handed Dirac fields ¢qr, = < ZL , L = ( V;L >

L L

with right-handed Dirac fields ur, dr, er via isospinor fields ¥ = ¥y, ¥,

Up = V2xu (CYL@UR + aR@+QL) +v2x4 (L¥dg + dr¥tqr)
+v2xe (ILWer + er¥ L) | (8)
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where 1) = 1) is Dirac conjugated spinor, ¥ = im,¥; Xu, Xd, Xe are Yukawa
constants for u-quark, d-quark, and electron, respectively. The neutrino v,
remains massless. Since there are two fields ¥, W, four options of interaction
with fermions (u, d quarks and electron e) are possible, which is illustrated
in Table 1. It is analogously for the second c,s, u,v, and third t,b,7,v;
generations.

Table 1. The four independent types of the Yukawa interaction for 2HDM scalar
doublets.

u | d | e
Type 1 U | |
Type 11 Uy | Wy | Uy
Lepton-specific | ¥, | ¥, | ¥y
Flipped U | W | Y

Let m?, < 0,m3, > 0, then we should choose the vacuum as v = vy =
246 GeV, vy = 0 [60, 65], and the expressions for the boson masses take the
simple form [60]

mi = \v? = —2my; = (126 GeV)?, m3; =m? + \sv?,

A Ag—A
2, = iy 4 2

50 v?, (9)

2
M+ =Moo +

where the h-boson is associated with the observed Higgs boson. Due to
the exact Zs symmetry, the lightest neutral component H or A is stable
and may be considered as a DM candidate. If taking H as DM, it requires
A5 < 0,\; — |Xs5] < 0. If taking A as DM, it requires A5 > 0,y — A5 < 0.
However, the model requires [60]

ma+myg > myg, 2mpg+ > myg, ma +myg+ > my,
myg +myg+ > My = maya, mpg ~ 10...100 GeV . (10)

As we can see, particles that are candidates for the ultra-light DM should
have a mass of mpy ~ 10724...1 V. Obviously, that H-, A-bosons are not
suitable for this role.

We can go another way. In Ref. [64], a model containing two scalar
doublets, ¥ and ¥, and a real scalar singlet Wy with a specific discrete
symmetry ¥ — ¥, Wy — —Wy WUy — —Wg has been constructed
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%mw“s::m%?fﬂr+m%W;@y+%m@@44%(AQﬁ%%uﬁW;%)
+%M(wfwgz+-%&4w;wg2+n@(ijg(w;wg
P () (5500) + s (#70)° + (55701)°)
+i&@§+%&@f%¢§+%&@j%m§ (11)

All fermion fields are considered to be neutral under this symmetry. As
such, only the doublet ¥; couples to fermions. Thus, DM can be attached
to 2HDM Lagrangian as excitations of the neutral ¥g field (which does not
interact with either fermions or gauge bosons). Thus, we can obtain the
desired mass of DM by choosing the appropriate values for the coefficients
m%, >\67 )\7, )\8.

As a further generalization, the three-Higgs-doublet model (3HDM) can
be formulated [65, 66]. The maximal symmetry for such a model is U(1) ®
U(1). The corresponding potential Vj is invariant under any phase rotation

3
Vo = Z [mMW;"W + 5 (Wz‘JF%)Q}
i=1

.+i[mww(ﬁ@+%@mﬂﬁ@y (12)
i=1,i#j

This potential gives three massive neutral scalars H o 3, two massive charged
scalars Hf%z, and one massless charged scalar Hzf, two massive neutral
pseudo-scalars A; 2 and one massless neutral pseudo-scalar As. In the gen-
eral case, the SHDM potential symmetric under a group G can be written
as

Vo=W+Vg, (13)

where Vi is a collection of extra terms ensuring the symmetry group G,
which can be both continuous and discrete symmetries, both Abelian and
non-Abelian symmetries. The classification of symmetric 3HDM potentials
and the corresponding Higgs and Goldstone particles is presented in [65].
For clarity, in Appendix A, we present some invariant potentials under
the simplest transformations. Finally, an n-Higgs-doublet model (nHDM,
n > 3) can be formulated [67], where the number of scalar, pseudoscalar,
and charged bosons will be even larger. The lightest of the neutral massive
bosons (H-, A- or S-types) can be a candidate for the role of DM.
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Despite the fact that in the nHDM or nHDM+S (n > 2) models and
in many others, the particle candidates for the role of DM appear (the
lightest of massive neutral H-, A- or S-bosons), these models generate a
lot of other particles (which can be numbered in tens in multiplets). These
particles can be both electrically neutral and charged, both massless and
massive, and have not yet been detected in collider experiments or in cosmic
rays. In addition, even the proposed DM particles are weakly interacting
(as WIMPs), that is, they are not completely sterile, hence could have been
detected as well. In the future, with more in-depth research, the discovery
of these particles, of course, cannot be ruled out.

Historically, the GWS theory arose as a field-theoretic, dynamic, rela-
tivistic, group (from the U(1) symmetry to the SU(2) ® U(1) symmetry)
generalization of the Ginzburg-Landau (GL) theory for superconductors.
Attractive forces act between electrons with opposite spins due to the ex-
change of phonons, overpowering Coulomb repulsion. As a result, electrons
bind into effective pairs (so-called Cooper pairs), which at low temperatures
condense into the same quantum state (similar to a Bose—Einstein conden-
sate). The resulting coherent state of a collective of Cooper pairs can be
described with the many-particles wave function

p(r) = lp(r)[e), (14)

where both the module |¢| and the phase 6 are functions of spatial coor-
dinates r, moreover, the module determines the density of superconducting
electrons ns = 2|p|?, and the gradient of the phase determines the current
J = %WJ\QVG. The density of free energy is

h? i2e i2e n s b 4 (VxA)?
.7-"—4m(V hCA)go(V—i-hcA)go +alop| +2!cp\ to
(15)
where a < 0, b > 0, A is a vector potential of magnetic field, 2m and 2e are
the mass and charge of a Cooper pair, respectively. Then the current is

eh 2e
J=—p(Ve——=A 16
e (vo-a). (16)

where
—a

Po=\ (17)

is an equilibrium magnitude of the module of the field ¢. Free energy (15)
and current (16) are invariants under the U(1) gauge transformation, i.e.
when the phase is rotated by a certain angle 60: 6 — 0 + 66, which is
a function of a point §6(r) in the general case
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F (go — @eiae,gfr — ot e A 5 A4 ZCVM) = F (go, g0+,A) , (18)
e
J<9—>9+59,A—>A+ZZV59> = J(@,A). (19)

This means that any phase rotations do not change either the energy of the
system or the current flowing through the superconductor. This symmetry
is illustrated schematically in Fig. 3 (a). Moreover, the equation for the
magnetic field has the form (in the gauge V- A = 0)

oOF OF 87re2g0%A_ 1
2 ~ 2

Vx—— 2 0= AA=

AxmiA 2
a(VxA) 0A cmad,  (20)

where the value reciprocal of the magnetic penetration depth A plays the
role of a photon mass m 4. The dynamics generalization of the GL theory
has been done in Ref. [68], where it has been demonstrated that the Higgs
mass in such a system is

1
5 )
where k = A\/€ is a GL parameter, £ is a coherence length. Then for type-I
superconductors, my < m4, and for type-II superconductors, mg > m4.

Now, let us cut our superconductor into two parts and place them far
apart. We obtain two independent condensates

mu = V2kma (21)

p1=lerle™, 2= |pale. (22)
Then, let us bring them closer to a distance of the order of the coherence
length & ~ 1/mp. The remaining slit can be filled, for example, with an
insulator as demonstrated in Fig. 3 (b) and (c). A Copper pair from bank 1
with condensate ¢; can tunnel to bank 2 with condensate 2, which is
described by nondiagonal matrix elements [69]

Hyy = @fﬁ%dva Hy = Wgﬁ%dva K = |Hy2| = |H2|.

(23)
The value K is determined by the properties of the junction. Such a device
is called the Josephson junction and matrix elements (23) are the Josephson
coupling. Then the current through the junction is

J— 4K p3

SiH(GQ — 91) . (24)

It is not difficult to see that the Josephson coupling breaks the U(1) gauge
invariance, because the current (24) depends on the phase differences 6 —6;.
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single superconductor

0

0+50

(@) J(0)=J(6+50) S
J—>
Josephson junction
Oy 0,+30, 9
891%562
®) S I S
J(91—92)+J(91+891—92—662)
0,+30,
J—>
9 0,
80,=060 6,+36 0,+30,
(C) 1 2 S 1 1 I S
J(6 1—62)=J(9]+861—62—892)
J—>

Fig.3. (a) U(1) symmetry of a one-piece superconducting sample: any phase rota-
tions do not change the current J. (b) Independent phase rotations in supercon-
ductors separated by a thin insulator with a thickness of the order of the coherence
length (S-I-S Josephson junction) change the current through the junction. (c)
Synchronous phase rotations (so that 62 — 67 = const.) do not change the current.

Thus, if we rotate phases 61 and 65 in each bank independently, then the
current J changes. In order to keep the current constant, we must rotate
the phases synchronously, i.e. so that #o — 6; = const.

The Josephson junction can also be realized in the momentum space: if in
some material two conduction bands take place (for example, in magnesium
diboride MgB,, nonmagnetic borocarbides LuNisBoC, YNiyBoC, and some
oxypnictide compounds), then in each band the condensate of Cooper pairs
1 and @9 can exist. In a bulk isotropic s-wave superconductor, the GL free
energy functional can be written as [70-75]
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K2 h2
P = /d%« Vel + 2 V)
4m1 47712
b1 by
+a1 |p1]* + ag |@a|* + 5 lor|* + 5 la|* + € (e w2 +v1903) |, (25)

where my 2 denotes the effective mass of carriers in the corresponding band,
the coefficients a; 2 are given as a; = v;(T — T¢;), where 7; are some con-
stants, the coefficients by 2 are independent of temperature, the quantity e
describes the interband mixing of the two condensates: the proximity effect
or the internal Josephson effect. If we switch off the interband interaction
e = 0, then we will have two independent superconductors with different
critical temperatures T.; and T¢o, because the intraband interactions can
be different. Thus, a two-band superconductor is understood as two single-
band superconductors with the corresponding condensates of Cooper pairs
¢1 and @y (so that densities of superconducting electrons are ng; = 2|¢1|?
and ng = 2|p2|?, respectively), but these two condensates are coupled by
the internal proximity effect e (cpfgpg + 103 )

Minimization of the free energy functional with respect to the amplitudes
of condensates, if V12 = 0, gives

{ a1p1 + epa + bt =0 } (26)
aspa +ep1 +baps =0 |7
where the equilibrium values @12 are assumed to be real (i.e. the phases
012 are 0 or m) in the absence of a current and magnetic field. Near the
critical temperature T., we have @?72 — 0, hence we can find the critical
temperature by equating to zero the determinant of the linearized system
(26)

aras — € = y179(Te — Ter)(Te — Ten) — € = 0. (27)

By solving this equation, we find T, > T, Tc2, moreover, the solution does
not depend on the sign of €. The sign determines the equilibrium phase
difference of the condensates |p1]e®®t and |po|e?®

cos(f1 —62) =1 if e<O,
cos(fy —62) = —1 if e>0, (28)

that follows from Eq. (26). The e < 0 case corresponds to an attractive inter-
band interaction (for example, in MgB,, where s™F wave symmetry occurs),
the € > 0 case corresponds to a repulsive interband interaction (for example,
in iron-based superconductors, where s~ wave symmetry occurs) [71]. The
solutions of Eq. (26) ¢o1, o2 are illustrated in Fig. 4 for the case of strongly
asymmetrical bands T,; < T.o. We can see that the effect of interband
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coupling € # 0, even if the coupling is weak |e| < |a1(0)], is nonperturba-
tive: applying the interband coupling drags the smaller parameter pg; up
to the new critical temperature T, > T¢1. At the same time, the effect on
the larger parameter s is less significant — applying the interband coupling
only slightly increases the critical temperature compared with Teo: Te 2 Teo.

Fig.4. The amplitudes of the condensates ¢g1(T) and @p2(T") as solutions of
Eq. (26), if the interband coupling is absent, i.e. ¢ = 0 (dashed lines), and if
the interband coupling is weak, i.e. € # 0, |e| < |a1(0)| (solid lines). Applying
the weak interband coupling drags the smaller parameter g, up to a new critical
temperature T, > T1. The effect on the larger parameter ¢gs is less significant.

In the module-phase representation (22), the interband mixing takes the
form

e (o @2+ p103 ) = 2€|ip1||ip2| cos(b1 — b2) . (29)

Thus, the Josephson term describes interference between Cooper pairs con-
densates ¢ and 2. As in the Josephson junction, the Josephson term
breaks the U(1) gauge invariance, because this term depends on the phase
differences 6; —6,. In Ref. [74], the normal oscillations of the internal degrees
of freedom (the Higgs and Goldstone modes) of two-band superconductors
using the dynamical generalization of GL theory have been investigated,
which was formulated in Ref. [68]. It is demonstrated that, due to the in-
ternal proximity effect, the Goldstone modes from each band transform to
normal oscillations for all bands: common mode oscillations with an acous-
tic spectrum, which are absorbed by the gauge field because propagation
of these collective excitations is accompanied by a current; and anti-phase
oscillations with an energy gap in the spectrum (mass) determined by the
interband coupling my, ~ \m , which can be associated with the Leggett
mode. Propagation of the Leggett mode is not accompanied by the cur-
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rent, hence this mode “survives”. Analogously, for three-band superconduc-
tors [75], it has been demonstrated that the Goldstone modes from each
band transform to normal oscillations for all bands: common mode oscil-
lations with an acoustic spectrum, which are absorbed by the gauge field,
and two massive modes for anti-phase oscillations which are analogous to
the Leggett mode and are determined by the coefficients of the interband
coupling €19, €13, €23.

The free energy functional F = [d3rF can be written in a general
n-band system, where the potential has the form

n
V=Vo+ Y e (of or + i) (30)
i<k
and the potential n .
Vo :Z;ai’90i|2+21|§0i‘4 (31)
=

is a sum of independent potentials of each condensate. The potential
is invariant under any phase rotation. Since the condensates in a three-
band system are coupled by the Josephson terms e ((pj_(pk —i—cpigo,":) =
€ik|pil|ox| cos(8; — Ox), the spontaneously broken U(1) symmetry of the
ground state is shared throughout the system: the presence of the conden-
sate (p;) # 0 in a band induces the condensation in other bands () # 0,
that is the internal proximity effect takes place. At the same time, the
global gauge symmetry U(1)"~! of the potential Vo with n > 1 is broken
down by the Josephson terms [65], because these terms depend on the phase
differences 6; — 6. In the n-band case, we have n — 1 phase-difference
(Leggett) modes. These modes acquire masses because the phase differences
are fixed near the minimums of the potential V. In Ref. [76], the total rule
has been formulated: in the n-band system, the global symmetry U(1)?~!
is broken down by the Josephson terms to the U(1)"~3 symmetry. Thus,
in n > 3-band system, n — 3 massless Leggett modes must be present. Ul-
timately, the system with potential (30) is invariant under the synchronic
U(1) gauge transformation, i.e. when each scalar field is turned by the same
phase 0: ¢ — ¢re®. Hence, as demonstrated for two- and three-band
superconductors in Refs. [74, 75|, the common mode phase oscillations are
absorbed by the gauge field, however, oscillations of the phase differences
0; — 0. occur.

Proceeding from aforesaid, we can use the analogy with multi-band su-
perconductors to formulate the appropriate extension of SM, formalizing the
superconducting order parameter ¢ as a scalar field. Such a model allows
us to obtain particle candidates for the role of DM — an analog of Leggett
modes, because (i) masses of these bosons can be arbitrarily small due to

the nonperturbativness of interband coupling my, ~ +/|€|; (i) since propa-
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gation of the Leggett mode is not accompanied by a current, then they can
be “sterile” in the field theory. However, the symmetry of the GL free energy
is U(1)g, but the symmetry of GWS Lagrangian is SU(2); ® U(1)y. Accord-
ingly, instead of the scalar field ¢, we have the isospinor ¥ similar to Eq. (4).
Hence, we must try to represent the interband coupling e (Wf‘ Uy + %W; ) in
the form of interference between the fields ¥ and W, similar to Eq. (29).
Then, we can assume that the coefficients A\,~2 = 0 in Lagrangians (3),
(11) or that the coefficients \;2; = 0 in Lagrangian (12). This approach
relieves us of a large number of other particles (for example, charged Higgs
bosons H¥) which could be easily detected experimentally. However, the
purpose of formulation of the model that differs from SM is not so much
in solving the DM problem, but in solving a whole complex of problems.
Thus, except for the DM problem, we propose the nature of oscillations and
masses of neutrinos, leaving them as Dirac fermions. At the same time, we
demonstrate why oscillations of charged leptons (electron—muon—tauon) are
absent, why masses of such leptons differ by orders, and why three gener-
ations of fermion are needed. The model proposes three neutral H-bosons
that explain the absence of experimentally detected decays of the already
discovered H-boson into fermions of the second and first generations, but
these two additional H-bosons interact very weekly with gauge and Dirac
fields which makes their detection difficult, but still possible. This could be
an experimental test.

Our paper is organized in the following way. In Section 2, we formulate
a model with three scalar fields (bands) with spontaneous breaking of the
U(1) gauge symmetry in each field and with the Josephson couplings between
them. In such a system, we obtain both the Higgs and Goldstone modes, and
introduce the concept of band states and flavor states of the scalar fields. In
Section 3, the Higgs effect on the Abelian (electromagnetic) field in the three-
band system is considered. In Section 4, we connect the three-bandness with
three generations of fermions, and we consider the band states and flavor
states of the Dirac fields. In Section 5 and Section 6, we consider the three-
band system with spontaneous breaking of the SU(2); and SU(2); ® U(1)y
gauge symmetries, respectively, and with the Josephson couplings between
the bands. The Higgs effect on both the Abelian and Yang—Mills gauge fields
is considered. In Section 7, the lepton mixing is described and the mechanism
of origin of neutrino “masses” is proposed. In Section 8, we summarize the
results of the three-band GWS model as the system of elementary particles,
where the particles that make up DM are present. Moreover, we propose
two additional neutral H-bosons, estimate their masses, and analyze their
production and decays. The mechanism of the fermions mass hierarchy is
proposed. In Section 9, we estimate the masses of L-bosons as DM particles
and demonstrate that such ultra-light bosons solve the central cusp problem.
In Section 10, we consider the masses of H-bosons at critical temperature.
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2. Spontaneous breaking of the U(1) gauge symmetry in
the three-band system with the Josephson couplings

2.1. The three-band Lagrangian with the Josephson terms

Let us have three complex scalar fields, which are equivalent to two real
scalar fields each: the modulus |¢(x)| and the phase 0(x) (the modulus—
phase representation)

p1(z) = |1 (@) 1) () = [pa(w)[ €2, py(w) = |pa(x)] ™).
(32)
Here, 2 = (¢, ), and we will use the system of units, where ¢ = h = 1. These
fields should minimize some action S in the Minkowski space

SZ/E(%wz,wsmT,@}s&;) d'z, (33)

where the Lagrangian £ is a sum of three gauge-invariant Lagrangians (or-
dinary single-band Lagrangians) and Josephson terms (the interband two-
by-two coupling of the scalar fields goigo;r + ¢ ;)

L= 8M<p16“90f + 8Mg028“<p§“ + 8Mg038“cp§f
2 2 9 b 4 b2 4 b3 4
—a1 |p1]” — a2 |pa|” — a3 [ps] —§|601| —5|<P2| —51903|
—e (e o2+ 0193) — € (o o3+ 01903) — € (03 03 + w2003 ) , (34)

where 0, = 8% = (%,V), o+ = % = (%,—V) are covariant and con-
travariant differential operators, respectively. The a123 <0 and b123 > 0
coefficients belong to the corresponding band. The € < 0 case corresponds
to the attractive interband interaction, the ¢ > 0 case corresponds to the
repulsive interband interaction. If we switch off the interband interaction
e = 0, then we will have three independent scalar fields ¢;. It should be
noted that the considered model is similar to 3HDM [65], but without any
specific symmetry in the sense of Appendix A, except for symmetry under
the synchronic U(1)-transformation

C (901 — 016 02 — 2% 3 — 3 ei‘”) =L(p1,02,03),  (35)

i.e. all phases 61,605,603 must be rotated equally, so that #o — 8, = const.,
03 — 61 = const., 83 — 81 = const.
The Lagrange equations for functional (33) are
0"0up1 + arp1 + €2 + €3 + by ’@1’2 p1 =0,
0"0,p2 + a2z + €p1 + €p3 + by |<P2|2 w2 =0,
0" 0ups + asps + ep1 + epa + by s g3 =0, (36)
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where 010, = 0,,0" = 88—:2 — A. The current for such a Lagrangian is

> oL oL 3
"= gia 0y i) Ty (i) =i Torp; — pidfpt
J ;a(awj)( Z%Ha(ampj) (%0]) z;(% ©j — ©; %)
3
= =2) lojP?0"0;, 37
j=1

where we have used the modulus-phase representation (32). Using equations
of motion (36), it can be shown that 0, J* = 0.

Let us consider stationary and spatially homogeneous case, i.e. dyp = 0,
Vi = 0. Then from Egs. (36), we obtain

arp1 + epa + epz + bilp1 201 =0
azps + €p1 + €p3 + bapa|?p2 =0 o, (38)
azps + €p1 + epa + blps|*p3 =0

which can be rewritten in the form

a1]er] + €lpa]el®2700) 4 €|pg]ei@=01) + by 2 = 0

ag|pa| + €lpr|e"1702) 4 e p3]ei®302) 4 bo|p* =0 & | (39)
az| 3| + €lo1]e'O170) 4 €] po|e®2705) 4 by 33 = 0
or in an expanded form
atlp1| + €|pa2| cos(fa — 01) + €|ps| cos(f3 — O1) + bifer]* = 0
az|pa| + €|p1| cos(01 — 02) + €|psz| cos(f3 — O2) + ba|ws|®> = 0
aslipa] + elipr] cos(61 = o) + elial cos(9 = 6) + baleal® =0 |

2| sin(f2 — 61) + |ps]sin(f3 — 61) =0
\gol\ Sin(91 — (92) + |(,03| Sin(@g — 92) =0
lo1|sin(6y — 03) + |p2|sin(fy — 03) =0

In the € > 0 case for absolutely symmetrical bands a1 = as = ag, by = by =bs,
we obtain cos(f; — 0;) = —3. In the € < 0 case, we obtain cos(6; — 0)) = 0
for any bands. Possible configurations corresponding to some limit cases
are illustrated in Fig. 5. As an approximation in the case of weak coupling

€ < l|ail,|az|, |ag|, we can assume |@;| = |Z—?‘| and then substitute them
into Eq. (40) to find the angles 6; — 0.
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e<0

>0

|9,/ =[0,] = fo5| |04]> 0,]>> fos |04 >2[0,| V20|

Fig.5. The possible configurations of the mutual arrangement of the scalar fields
©1, P2, 3 corresponding to some limit cases as solutions of Eq. (40).

Substituting representation (32) into Lagrangian (34), we obtain

L = 0ule1]0"]p1] + Oulp2|0" 2| + Oulips]0F|ps]
+|g01|28u916“91 + |902|23#923'u92 + |<,03|23“933“93

9 b 4 9 b2 4 9 b3 4
—ay |¢1] —51%1 — az [p2| —5@2! — as |3 —5!@3!
—2¢|p1||p2| cos b1a — 2¢€|p1]|@3] cos O13 — 2€¢|pal|ps| cosbag . (41)

Let us consider small variations of the modules from their equilibrium values:
l1,23] = @o1,02,03 + ¢1, 23, where [¢123] < @o1,02,03. Then, [p]* ~ ©f +

2000+0%, [o|! = pi+4pdd+6030°, e1llval & vo10atpodatpozdrHide,
and Lagrangian (41) takes the form
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L = 0u|¢1|0"|d1] + Ol d2|0" 2| + 0, 030" |ds| + @51 0,,610"61
+0520,020"02 + ©530,030"05 — @7 (a1 + 3b1631) — @3 (a2 + 3baiply)
— 3 (a3 + 3b3pls) — 2€¢1¢2 cos 12 — 2€¢1 3 cos 13 — 263 cos fag
—2¢1 (epp2 cos 012 + epos cos O13 + arpor + brgy)
—2¢5 (€01 cos B2 + €po3 cos B + aspos + baiply)

—2¢3 (€po1 cos 13 + €po2 cos Bz + azpos + b3pas)

—2€p01p02 cos B12 — 2epp1¢p03 €os 013 — 2203 cos Ba3

b1 bo bs
—a1<p(2)1 - 5@611 - a2¢32 - 5@32 - a390(2)3 - 5%13- (42)

We can consider small variations of the phase differences from their equilib-
rium values: cos 0, = cos(0;, — G?k + O?k) = cos(0;, — O?k) cos H?k —sin(0;, —
69,) sin 09, ~ (1 - W) cos 09 — (0ix — 09) sin 6. Then the potential
energy in Lagrangian (42) takes the form

b1 ba b3
2 2 2
+2€ cos 895001002 + 2€ cos 895001003 + 2€ cos 893024003 (43)

U = Us+ Uy +Upp + ar198) + =901 + a2085 + — G + asels + — P03

where the last nine terms determine global potential (as the “Mexican hat”),
Uy determines a potential for the module excitations ¢1 23

Uy = &1 (a1 +301951) + 65 (a2 + 3bawis) + 03 (a2 + 3bapds)
+1p22€ cos 0 + P1p32€ cos 05 + Papz2e cos O3y
+2¢1 (e cos 9?2@)2 + € cos 9(1]3@03 + a1p01 + blgpgl)
+2¢9 (e cos 9(1)2g001 + €cos 9339003 + a2p02 + bQSD%Z)
+2¢3 (e cos 9?3(,001 + € cos 9834;702 + azpo3 + bgcpgg) ) (44)

The terms at ¢1 23 have to be zero, then

€ COS 0(1)29002 + €cos 9(1)39003 + ar1po1 + blcpgl =0
€cos 0501 + € cos 095003 + a2z + bapdy = 0 (45)
€COS 9?3¢01 + €cos 083%2 + aspos + b3<p83 =0

corresponds to the first three equations in Eq. (40). Uy determines a poten-
tial for the phase excitations 61 23
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(912 - 9(1)2)2

2
2
—26@01§003 (913 — 9(1]3) sin 0(1)3 — 26@02@03 (023 — 933) sin 933 . (46)

(613 — 9?3)2

0
cosf
5 13

Uy = —2ep0102 cos 05 — 2e00103

—26@02@03 COS 933 — 26@01@02 (912 — 9(1]2) sin 9?2

In order for the linear terms (6;; — 9%-) do not affect the equations of motion,
the following condition must be satisfied:

©02 sin (9?2 + ©o3 sin 9?3 =0
001 8in 8% + o3 sin 69y = 0 (47)
©o1 510 095 + poasin 63 =0

that corresponds to the second three equations in Eq. (40). Uyp determines
interaction between the module excitations and the phase excitations

Z/[¢9 = —@109€ ((912 — 9?2)2 Ccos 9(1)2 + 2 (912 — 9?2) sin 0(1)2>
1 dae ((913 — 0%,)° cos 0% + 2 (613 — 6%) sin 9%)

—$odse ((923 — 633)° cos 633 + 2 (623 — 63;) sin 033>

— 1€ ((912 - 9(1)2)2 cos 05002 + (013 — 9?3)2 cos 9?3@03)
— e (612 — 095)” cos Rpor + (625 — 035)” cos Bcp0s
— ¢3¢ ((913 - 9(1)3)2 cos 05001 + (B3 — 9(2)3)2 cos 9839002)
—2¢1€ ((012 — 075) sin 6005002 + (613 — 0Y3) sin 675¢003)
—2¢0¢ (612 — 055) sin 00001 + (B23 — 033) sin 893003)

*2§[)36 ((013 — (9(1)3) sin 9?38001 + (923 - 0(2)3) sin 983@02) . (48)

We can see that the first six terms are of the third ¢,~¢k(9ik—92k), @(9%—0&)2
and the forth ¢;¢r (0, — 69.)% order, hence they can be neglected. At the
same time, the last three terms are of the second order ¢;(6;; — H?k,). In the
€ < 0 case, we have all Q?k = 0, that is sin G?k = 0, hence the oscillations
of modules and phases are not hybridized. Additionally, if 6;. — Q?k, =0,
that takes place for the common mode oscillations (the Goldstone mode
with an acoustic spectrum), therefore in this case, the hybridization is also
absent. Thus, the Leggett and Higgs modes are hybridized only in the € > 0
case, that is the phase-amplitude modes can take place. However, as it will
be demonstrated in Section 4, only the ¢ < 0 case has a physical sense,
hence, we will consider the normal oscillations without the phase-amplitude
hybridization further.
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2.2. Goldstone modes

Let us consider the movement of the phases ¢ 23. The corresponding
Lagrange equations for Lagrangian (42) are

go%ﬁ,ﬁ“& — P01¥P02€ sin(01 — 92) — ©01¥L03€ sin(91 — 93) = 0,
@%28M8“02 + ©01P02€ sin(¢91 — 92) — P02¥P03€ sin(92 — 93) = 0,
@83%8“93 + wo1posesin(0; — 02) + po2pozesin(fy — 03) = 0. (49)

The phases can be written in the form of harmonic oscillations
b1 = 0 + AT = g0 4 Aol
0y = 09+ Bellam=t) =90 4 Be~iant"
05 = 69+ Ce'amw) = g9 4 ¢ " (50)
49)
can be linearized assuming cos ;. ~ cos G?k, sin 0;; = sin(0;, — H?k + H?k) R
(i — 09) cos 09, + sin 6, , and using Eq. (47)

where ¢, = (w, —q), 2 = (t,7), 9(1)7273 are equilibrium phases. Equation (4

©610,0"01 — 0100026 cos By (012 — 075) — po1page cos B3 (613 — 6Y3) =0,
<p328,ﬁ“92 + »01P02€ COS 9?2 (912 - 9(1)2) — Y02¥P03€ COS 983 (923 - 933) = 0,

(pggaua“ﬁg —+ ©0103€ COS 0(1)3 (013 — 9?3) + ©02p03€ COS 083 (023 — 933) =0.
(51)

Substituting Eq. (50) into Eq. (51), we obtain equations for the amplitudes
A,B,C

A (_‘PO2€ cos 09, — P03 ¢ cos 19(1)3—quq“) —l—B@e oS 9?2—{—0@6 cos#d; =0,
o1 o1 $o1 $o1

P cos 07,4+ B <—me cos 0?2—@6 cos 9(2)3_%9”) +C’@e cos#9; =0,
%0

©02 ©02 ©02 2

A% ¢ cos (9?34‘3@6 cos 095 +C (—%e cos 09 — 202 ¢ cos 69, —q”q“> =0.
%03 %03 %03 %03

(52)

Setting the determinant of the system (52) equal to zero, we find a dispersion
equation ; )
(9u4")" + (quq")" b+ (qug") ¢ = 0, (53)
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where
b = e[ <¢01 cos 013 + poz cos 923) + (9001 cos b1 + o3 cos 923)
©o3 ©02 ¥02
+ < cos 1o + 03 cos 913> }
®o1
c = € [ < cos i + #03 cos 923> <(’001 cos b3 + P02 cos 923>
©02 ©02 ©o3 ©03
+ ( cos f19 + $03 cos 613 ) (%001 cos 613 + P02 cos 923)
®o1 ®o1 ©03 %03
+ ( cos 19 + $03 cos 013> <('001 cos 012 + $03 cos 923) ] . (54)
®o1 ®o1 ©02 ¥02

From Eq. (53) we can see that one of dispersion relations is
g =0=w?=¢", (55)

wherein A = B = (|, thus this mode is common mode oscillations as the
Goldstone mode in the single-band GWS model. There are other oscillation
modes with such spectra that

miy = qua = 5 (b ViR~ dc) (56)
miy = gug = 5 (<04 VI~ dec) | (57)

i.e. two massive modes, wherein
Apfy + By + Cps = 0. (58)

These modes are analogous to the Leggett modes in multi-band supercon-
ductors [68, 74, 75]. It should be noted that if we assume that e = 0, then
b = ¢ = 0 and the dispersion equation will be (quq“)?’ = 0, that is we obtain
independent common mode oscillations in each band. From Egs. (54), (56),
and (57), we can see that the squared masses of the L-bosons are propor-
tional to the interband coupling m?2, , ~ |e|.

For example, let us consider a syrﬁmetrical three-band system, i.e. g1 =
©02 = po3. Then masses of both L-bosons are equal (b? = 4c)

/3 1
mr1 = Mo = 56, when e>0:>60891226059132605923:—5,

my1 = mra = /3le], when €< 0= cosfia=cosbtis=cosby3=1.
(59)
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rys.6 Amplitudes of the modes (56), (57) relate as A = —C, B = 0, and
A =C, B=—(A+ C), respectively. These three Goldstone modes (the
acoustic mode (55) and the Leggett modes (56), (57)) are shown in Fig. 6.
If we have the case of strongly asymmetrical bands g1 < g2 < @o3, then
the masses of L-bosons are

)

. 03 03 02
m%l ~ min {_cpe cos 013, _9076 cos 3, —gp—e cos 019
$o1 $02 ¥o1

m%Q ~ max {—mecos 013, —@ecos o3, —@e cos 912} , (60)
®o1 ©02 ®o1

where we suppose that all —ecosf;; > 0.

(@) (b) (c)

6 686

0
91 2 0, 61 0,
ez
e<0

A

Vo, Vo, Ve,

AR

voov oy %I vl

J#0 J=0 J=0

Fig.6. Normal oscillations of the phases 61,605,603 in the symmetrical three-band
system g1 = o2 = o3, with the attractive interband interactions ¢ < 0 and
the repulsive interband interactions ¢ > 0. (a) Common phase oscillations with
the acoustic spectrum (55) accompanied by the nonzero current J = ¢, V6, +
02, Vs + ©3;V03 # 0. (b), (c) Anti-phase oscillations with the massive spectrum
(56) and (57), not accompanied by the current, i.e. J = 0.
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The phase oscillations (50) are accompanied by the current (37)

JH = 2ighe" " (Apd; + Byly + Cpls) =

2iAghe™ ' m" (03, + p%, + ¢33)  for the acoustic mode
, (61)
0 for the Leggett modes

where we have used Eq. (58). Thus, due to the internal proximity effect, the
Goldstone modes from each band transform to common mode oscillations,
where V60, = V6, = V63, with the acoustic spectrum, see Eq. (55), and the
oscillations of the relative phases 0; —6; between condensates with the energy
gap in spectrum determined by the interband coupling €, see Eqs. (56),
(57), and (59), which can be identified as the Leggett mode by analogy with
multi-band superconductors. Propagation of the acoustic Goldstone mode
is accompanied by the current J* # 0, propagation of the Leggett modes
(the massive Goldstone modes) is not accompanied by the current J* = 0.
If we turn off the interband coupling € = 0, then we will have an ordinary
Goldstone mode with an acoustic spectrum for each band. Transformation
of Goldstone modes from each band into one common mode for all bands
and two Leggett modes takes place even at the infinitely small coefficient e:
le|] < |a1,2,3(0)|. Thus, the effect of interband coupling is nonperturbative.

2.8. Higgs modes

Let us consider movement of the modules |¢123(¢,7)] = @o1,02,03 +
¢1,2,3(t, 7). The corresponding Lagrange equations for Lagrangian (42) with
accounting Eq. (45) are

00" 1 + 191 + €cos B12¢2 + ecosBi3¢3 = 0,
0,,0" $2 + a2 + € cos 1201 + € cos b3z =0,
6ﬂ6“¢3 + agp3z + € cosB13¢1 + €cos bz = 0, (62)

where we have introduced the following notes:
ol =ay + 3blcp%1 , g =ag + 3b2g032 , o3 = asz + 3bgg0%3 . (63)

Then, in the case of weak coupling |e| < |a1], |az|, |as|, where corresponding

amplitudes of the condensates can be assumed as ¢g; = 1/ ‘Z?‘, we have

o = —2ai == 2’0,1‘ . (64)

The fields ¢123 can be written in a form of harmonic oscillations: ¢; =
Ae™n™  ho = BeTMnt"  ps = Ce"?" | where qurt = wt — qr. Substitut-
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ing them into Eq. (62), we obtain equations for the amplitudes A, B,C

A (a1 — quq") + Becos o + Cecos i3 =0,
Aecosbia + B (o — quq") + Cecosblag =0,
Aecos 013 + Becos bz + C (a3 — quq") = 0. (65)

Setting the determinant of the system (65) equal to zero, we find the dis-
persion equation

(4.9")® + (qua")? b+ (gqug") c+d =0, (66)
where

b= —a;—az—asz,
_ 2 2 2 2
cC = oiog + aias + asog — € (COS 019 + cos” 813 + cos 923) ,
d = —ajagas — 263 cos 019 cos B3 cos Has
+é2 (a1 cos? a3 + g cos® 013 + s cos’ 912) ) (67)

In real physical cases |e| < |a1,23|, hence b < 0,¢ > 0,d < 0. This cu-
bic equation has three real positive roots g,¢" = m%{ (squared masses of
H-bosons). In the symmetrical case ay = ag = a3 = «, cosfiy = cosbi3 =
cos fo3 = cos ), and we obtain

m% = o+ 2ecos b, a —ecosb, a —€cosf. (68)

It should be noted that these three frequencies are normal modes, but not
the frequencies of oscillations of each band separately. The amplitudes of
these modes relate as, for example, A= B =C; A=C, B=—(A+ (),
and A = —C, B = 0, respectively. We can see that in the case of weak
interband coupling |¢| < |aj 23|, the masses of H-bosons are almost equal
mp ~ a = y/2|a|. These three Higgs modes are shown in Fig. 7 (a).

Let us consider the case of weakly coupled |e| < a 23 and strongly asym-
metrical bands, because, as we will see below, exactly this case corresponds
to the real physical situation. Let us suppose

o1 K ¢o2 K Yo3 , ap <o <oz, (69)

where we assume that small changes in the Higgs mass my = /a correspond
to large changes in the amplitude of the condensate ¢y. Similar behavior
takes place in superconductor: |a| oc A, where N is the density of elec-
tron states on the Fermi surface, then in the case of weak electron—phonon
coupling, we have ¢y ~ 2exp(—1/gN). In the asymmetrical case, we can
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H_
quq“ =a+26C0S0 a4 =0~£C0SO
A
Lol
(a) H . H [ . [ : ¢
Voo v V
quq“=0Le'.u0L1 qpq“=a“za2 quq”=oc1 0,
A I )
CIREE R P
v Lo
; 9 e
¢1 ¢2 ¢3 ¢1 ¢2 ¢3 ¢1 ¢2 ¢3

Fig. 7. Normal oscillations of the small variations of the modules of the scalar fields
@1, P2, ¢3 Iin a symmetrical case a3 = @y = az = «, cosfia = cosbi3 = cosfayz =
cosf (a), and in the case of strongly asymmetrical bands a; < aa < a3 (b).

obtain masses of H-bosons mpge, mpyu, my-, i.e. frequencies of each normal
mode

9 €2 cos? iy €2 cos? B3
Mpe =~ Q1 — -
Qg — (1 a3 — 1
9 €?cos? iy €2 cos? fas
mHM ~ OéQ - -
Q] — Q9 a3 — Q9
9 €2cos? 03 €2 cos? fag
Mg, = 03 — - ) (70)
a1 — Q3 Qo — Q3

and the relations between the amplitudes of these modes
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ecosf ecosf
" =01 = B=—-A—"2 = _A—15
g — O a3 — o1
ecosf €cos b
Gug" =0y = A=-B——=>,  (C=-B—2>
a1 — Q9 a3 — 09
ecosf €cos b
Qi =ay = A= —o——=8 B=-C—"723 (71)
o] — O3 Qg — a3

We have written the index e for the lightest boson, the index 7 for the
heaviest boson, and the index u for the boson of medium mass. These three
Higgs modes are shown in Fig. 7 (b) for the case, where ecos#;; < 0 (as the
rule).

Due to the weakness of interband coupling |e| < 2,3, we can write the
following effective diagonalization of the potential energy in the sense that
each normal mode ¢, ¢, ¢, is an oscillation of the corresponding effective
band:

|[Pe| & e + e(t,T) [oul = o + dpu(t,T), lr| ~ 8007+¢r(t7("°))
72
so, that these effective bands are not coupled

by 4, b3 4
U = ar|p1]* +az|e2]” + as |ps)? + \901\ *l@zl +*|<P3|
+2€ cos 0951 || 2| + 2€ cos 3|€01|\903! + 266039231802!\903\

2
~ ae el +a;¢|‘:0u| —{—a7.|g07.| +5|‘Pe‘ |90u| + “PT|

€]
vo[—19 ), (73)
(mHl_m%{]

where the strong band asymmetry (69) is assumed, and we have noted

Mmyge = vV —20e , M, =/ —20,, myg, = v —2ar, (74)

that can be named as the flavor masses (i.e. eigen-frequencies — the masses
of H-bosons), and

mle\/Tal, mHQZ\/T(IQ, mHQZ\/TaQ7 (75)

that can be named as the band masses (i.e. frequencies if there was no
interband coupling € = 0). Accordingly, the states ( v1, P2, ©3 ) with
equilibrium condensate amplitudes

_ |l |az| |as|

Vo1 = {[ —— , po2 =17 003 = (| 57— (76)
2
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can be named as the band states, and the states ( Gey, Pur  Pr ) with
equalibrium condensate amplitudes

[ lac] || |ar|
Poe A2 ) Vou , Yor & 77
0 by Op by 0 bs ( )

can be named as the flavor states, i.e. they give normal oscillations of the
multi-band system. For strongly asymmetrical bands with the weak in-
terband coupling, the band masses and flavor masses are almost equal:
MHe = ML, MHE, ~ My2, M, ~ mpygs. Moreover, the equilibrium am-
plitudes of the condensates of band states and flavor states are also almost
equal: @oe = P01, Pou ~ P02, Por = @o3. Indeed, we could see that due to the
strong band asymmetry (69) and the weak interband coupling |e| < aq 23,
each collective mode in Eq. (70) is approximately an oscillation of a single
band according to the following correspondence ¢. ~ ¢1, ¢, ~ ¢2, ¢ = ¢3,
see Fig. 7 (b).

Thus, the above transition from the coupled scalar fields ¢1, ¢1, ¢1 to the
normal oscillations ¢, ¢, ¢ with frequencies mge, mp,, mp, (the masses
of H-bosons), see Eq. (70), can be considered as diagonalization of the “po-
tential” energy (44)

Uy = qb%al + (;5%042 + ¢>§a3 + p1¢22¢€ cos 0(1]2 + ¢1¢32¢€ cos (9(1]3 + pop32€ cos 083
= ac || + ool + ar |6- |

o1 ecos®)y ecosBy 1
= ( b1, P2, @3 ) € cos 09, o2 € cos 03, 103
ecosf)y ecosb, ag ¢3
o 0 0 De
= ( ¢8) ¢Ma ¢T ) O au 0 QZSM
0 0 oar or
= <¢123|M123|¢123> = <¢€/LT|M€MT|¢EMT> . (78)

Obviously, ae, oy, o are eigen-values of the matrix Mya3: M- = diag(Mi23),
in addition, the band H-bosons and the flavor H-bosons are connected by
the unitary transformation: |eur) = Ulpi2s), |¢123) = UL |pepr), where U
is a unitary matrix U~! = UT, which can be written via the mixing angles
Q12, 013, Q23

1 0 0 C13 0 513 C12 S12 0
U= 0 C23 5923 0 1 0 —S12 C12 0 , (79)
0 —S823 (€23 —S813 0 C13 0 0 1
C192 —S12 0 C13 0 —S813 1 0 0
UT = S12 C12 0 0 1 0 0 C23 —S893 s (80)

0 0 1 S13 0 C13 0 5923 C23
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where ¢;. = cosayp, Sir = sincq;,. Then, we obtain an equation for the
mixing angles a;i,

Me/“' = UM123UT or M123 = UTMelm—U . (81)

Assuming the independent mixing for each pair of bands 1 < 2, 1 < 3,
2 <> 3, we obtain (for example, for 1 <+ 2, besides, a2 < 0, |¢| < |a1| < |az|)

2¢ cos 69 ) 2¢ cos 6
tan 2ai9 = 712, sin 219 = 712,
a1 — Q2 ae—au
2 _ 2 2 200 2 . ..200
(e — ) = (0q — ap)® + 4€” cos” 07, S o4 S cos” 07y
S - iz
Qe + 0y = 01 + g a1 — Q9
2 . ..200
€“ cos” 0
04#%042—712, (82)
a1 — Q2

which is approximately consistent with Eq. (70). In the case of weak inter-
band coupling |e| < a1, @, a3 and asymmetrical bands o < ag < ag, the
mixing angles are very small |tan ;| < 1. This means that the flavor
states almost coincide with the band states (as we can see in Fig. 7 (b)).
Let us estimate the mixing angle «;i. In Section 9, it will be demonstrated
that € ~ 10740 ¢V2. Since o = m%“, then ag — a1 = m%{Q — m%ﬂ ~ m% ~
10* GeV?2. Hence
iy ~ 1072 (83)
Thus, oscillations of H-bosons (unlike the neutrino oscillations) are negligi-
ble. On the contrary, in the symmetrical case (68), we have
T

o = 1 Qe gy — G~ E. (84)
Thus, in the symmetrical case, each flavor state is the complete mixing of
all band states (as we can see in Fig. 7 (a)).

3. The Higgs effect for the Abelian gauge field

Let us consider the interaction of the scalar fields ¢1 23, spontaneously
breaking the gauge U(1) symmetry, with the gauge field A, in its simplest
Abelian (Maxwell) form. The corresponding gauge-invariant Lagrangian has
the form

L = (0, +ieAy)p1 (0" —ieA") ol + (0, +ieA,)pa (0 — ieAM) gy
+(0u +ieAy)ps3(0F — ieA")pd
2 2 2 b 4 b2 4 b3, 4
—ay [p1|” — a2 [p2|” — as |ps]” — 5 lo1]™ — B la|™ — 0y |3
—e (T2 +@193) — € (0F w3+ p107) — € (03 03 + v2007)
1

——F, ", 85
167 2 ( )
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where A, = (p, —A), A" = (¢, A) are covariant and contravariant potentials
of the electro-magnetic field, F},, = 9,4, —0, A, is the Faraday tensor. The
corresponding Lagrange equation

oL oL
0 — =0 86
V@(@,,Au) 0A, (86)
and the Maxwell equation 9, F* = —4nJ# give the current
JH = =2e [|p1]? (0"01 + eAM) + || (002 + eA") + | 3| (005 + eAM)] .
(87)
The potential can be transformed as
1
A’L = Aﬂ + g (a8u91 + 58u92 + ’73u93) ) (88)
where
o e f? 5 af?
o112 + l2]? + 3] 012 + lpal* + [3]?
|03
[p1]* + 2] + [ 3]
so that
a+B+y=1, |pollesl’a = o138 = 1] |2l - (90)
Then Eq. (87) is reduced to the “London law”
1
p= _92¢? 2 2 Har=— AF 1
o= =2 (o1 + ol + ol?) AP = - A, (91)
where )
(92)

A=
V8me? (|12 + 2 + [3?)
is the “penetration depth” — the length of interaction mediated by the
gauge bosons A,,. Thus, screening of the electro-magnetic field by the scalar
fields ¢1 23, spontaneously breaking the gauge U(1) symmetry, is analo-
gous to the response of the single-band system, but with a contribution
from each band |¢;]?. It should be noted that in Eqs. (89)—(92), the field
modules |¢1]?, |p2]?, |p3]* should be replaced with their equilibrium values
(pgl, ©G2s Ph3, Tespectively.
The modulus-phase representations (32) can be considered as the local
gauge U(1) transformations. Then, the covariant derivative is transformed
by the follows:

(8, +ieA,)p; = €Y (D, +i0,0; +ieA,)|pjl . (93)

Applying the transformation (88), we can transform Lagrangian (85) to the
following form:
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L= 0y|p1|0" 1] + 0l 20" pa| + Oplps] 0" ]3|

+e (Jo1]? + lo2l* + [ 3]?) A A¥

—2¢lip1||p2| cos(61 —02) —2¢|p1||ps| cos(61 —03) —2¢|p2||ps| cos(b2 — b3)

+ (|o1|*B% + [2*a®) 0, (61 — 02) 0" (61 — 62)

+ (|01*7? + lps*a®) 0, (61 — 03) 0" (61 — 03)

+ (J2*7? + |3]*8%) 0, (62 — 03) 0" (02 — 03)

—lp1|*2vB0, (61 — 02) 0" (61 — b3) — [02]*207D,, (61 — 62) O (62 — O3)
—|p3*2080,, (61 — 03) 9" (62 — 63)

Oy (
Oy (

—ay |¢1]?
1 w
— o Fw . (94)

b1 bo b3
— az |pa|® — az s — 5} lor|* = B lpa|* — B o3 [*

We can see that the phases 01, 02, 03 have been excluded from the Lagrangian
individually leaving only their differences: 61 — 6,607 — 03,602 — 63. Thus,
the gauge field A, absorbs the Goldstone boson (i.e. the common mode
oscillations, where V60, = V6y = V63) with an acoustic spectrum (55). At
the same time, the L-bosons (i.e. the oscillations of the phases differences
0; — 6;) with massive spectra (56), (57) “survive”. This “survival” can be
explained as follows. KEach phase oscillation 6; is absorbed by the gauge
field, but such mutual oscillations of 6; and 0, exist that the gauge fields
from each oscillation cancel each other out due to interference, so that the
Leggett modes “survive”. The phase differences are not normal coordinates,
because, firstly, they are not independent: we can assume, for example,
O —03 = 01 — 03— (61 —02); secondly, we can see from Eq. (94), that there are
off-diagonal kinetic terms, as 0, (61 — 62) 0" (61 — 63). Thus, diagonalizing
Lagrangian (94) and noticing that 623 = 613 — (f12), we can obtain the
Leggett modes (56), (57) again.

Substituting the calibrated Lagrangian (94) into the Eq. (86), we obtain
the equation for the field A,

1
O, F" + S5 A" =0, (95)

where

1
= 8me? (51 + o2 + ©o3) = M4 (96)

is the squared mass of the gauge boson A*, which is the squared reciprocal
“penetration depth” (92) in the “London law” (91). The scalar field ¢ can

be written in a dimensionless form: ¢ = @@, where pg = (/5" is the
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equilibrium value. Then the Lagrangian takes the form
w o+ o by Ao o a2 1
L= 0up0"0" —alpl” = S lol" = 4 (£0,00"07 —|oI" = S [el| , (97)

where the length £ = ﬁ determines the spatial scale of variations of the
a

scalar field ¢ — the “coherence length”. On the other hand, we could see
that the mass of H-boson is my = y/2|a|. Then we have

V2

mg = —. (98)
3
It is noteworthy that the mass of the Higgs boson and the mass of the gauge
boson are related as my
—= =2k, (99)
ma
where k = A/ is the Ginzburg—Landau parameter. Accordingly, the three-
band system is characterized with the three coherence lengths & = m\fl’
& V2 , €3 = mijs, hence with three Ginzburg-Landau parameters k1 =

mp2
_ _mm — A M2 — A MH3

A = Q = = =
G Vama 2T 6 T Vama M T & T Vama
Let us consider the term of interaction of modulus of the scalar fields

|1, [p2], | o3| with the gauge field A, in Lagrangian (94). Using the small
deviations |¢;| < g; from the corresponding equilibrium values |p;]? &
©2; + 200i0i(t, ), we obtain
Upn = € (lo1]* + 02l + lsl?) A A"
~ € (901 + Yoo + Po3) AuA*
+e2 (20161 (t, ) + 2002¢2(t, 7) + 200303(t, 7)) A, AH

2
m
877":14#14” + e? (2(,001¢1 (t, ’I“) + 24)002¢2(t, ’I") + 28003¢3(t, ’I")) AHAH'

2
m
%ANA“ + € (200106 (t,T) + 20028 (L, T) + 20030 (t, 7)) A A*

8
(100)

Q

where we have used Eq. (96) and we have taken advantage of the strong
band asymmetry and the weakness of interband coupling discussed in Sub-
section 2.3, where we could see that each collective mode is approximately
oscillations of a single band according to the following correspondence ¢, ~
1,0 = ¢2,¢r = ¢3. As will be demonstrated below o1 : @o2 : Qo3 =
me : my, : my = 0.00028 : 0.059 : 1. Thus, the gauge boson A, interacts
with 7-Higgs boson ¢, predominantly, at the same time, the interaction with
i, e-Higgs bosons ¢, ¢, is very weak.
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4. The band states and the flavor states of Dirac fields

We can consider three Dirac spinor fields 1, 12, 13 as we have considered
three scalar fields (32). The fields are massless, but each field interacts with
the corresponding scalar field (i.e. in own band). Then, the Lagrangian will
have the form

_ <> _ <> _ _
L =iy 0 b1 + ibr1v" 0 ubr1 — X (YrLi1¥m1 + Yr1eT Y1)
_ <> _ <> _ _
iy 0 uthre + bRy O utr2 — X (Yr292¥r2 + YR29S YL2)
_ > _ <> _ _
+ithr3y" 0 b3 + R3O uibrs — X (YL3strs + Yraps Yrs) 5 (101)

A d

where y# are Dirac matrices, y* 9 ,1) = %[1/_17”((%1&) —(8,0)y*)] is a differ-
ential operator, ¥ = 174 is the Dirac conjugated bispinor; ¥ = %(1+’y5)¢
and Y, = %(1 — 7)1 are the right-handed and the left-handed fields, re-
spectively, so that ¥ = ¥, + ¢¥Rr; x is the dimensionless coupling constant
between the corresponding Dirac field 1; and scalar field ¢; (Yukawa con-
stant). Thus, by analogy with the Higgs modes, we will call the states 1,
o, Y3 as the band states.

Due to the presence of the scalar fieldcondensate (0|¢]0) = @g e’ the
Dirac fermion takes mass as follows. Let us consider a single-band case, then
the term of the interaction of the scalar field ¢ with the Dirac field 1) has
the following form:

Up = x (Yrevr + vre vr) = x| (YrLyr + YreL) cos 0
+ix|e| (Yryr — YrYL) sind . (102)

Here, ¥1,0r + YR, is a scalar, but R — YRy is a pseudoscalar. Hence,
in order to obtain the Dirac mass of a fermion, we must choose the vacuum
so that 8% = 0, that is mp = y@ocos#° = xpo. It should be noted that, in
the single-band system, this choice of phase is not principal, because, due
to the U(1)-symmetry, the phase 6 can always be set as § = 0. Then, the
Dirac term takes the form

Up = x|¢| (Yrvrn + YrvL) = mp (Yrvr + YreL) + xé (YribL + @R?Z}(L) -)

103
Thus, the initially massless fermion obtains the mass mp = xpg, due to
interaction with the condensate wg = (/5" of the scalar field ¢. The cou-
pling x¢ is the interaction of the Dirac field 1) with small variations of the
modulus of the scalar field from its equilibrium value: |p| = g + ¢, where
|¢| < o, i.e. the interaction with the H-boson.
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However, in the three-band system (multi-band system), there are many
scalar fields: |@1]e®1, |pa| e, |p3] e, where the equilibrium phase dif-
ferences 0Y,, 095,09, are determined by Eq. (40). In the case of repulsive
interband coupling € > 0, we can have different phases: 69 # 09 # 69,
see Fig. 5, for example, 09, = 09, = 2{,9?3 = %” for symmetrical bands
©01 = ©02 = @3- This means that even if we set #9 = 0, the other phases
will be 69 = 69, # 0, 6 = 695 # 0. Hence, the coupling terms (101) cannot
be reduced to the Dirac mass term (103) due to the pseudoscalar contribu-
tion. On the contrary, in the case of attractive interband coupling € < 0,
we have the same phases: ) = 09 = Gg, see Fig. 5. This means that we
should assume 69 = 09 = 63 = 0, then the coupling terms in Eq. (101) can
be reduced to the Dirac mass term (103)

_ > _ <> _ _
L =iy 01 + Wriy" 0 utbr1 — xle1| (Yravr1 + Yrivnr)
_ <> _ <> _ _
iy 0 e + iWray 0 ubre — X|@2| (Yro¥re + Yr2V12)
_ <> _ < _ _
i3y 0 ubLs + PR3 0 ubrs — X|es| (YLsvrs + Yrstrs) - (104)

Therefore, the masses of the Dirac fields 91, %9, 93 are determined by cou-
pling with the equilibrium module of the corresponding scalar fields g1, ©o2,
$03

mp1 = XPo1,  MD2 = XP02,  MD3 = X$03 - (105)

Thus, only the attractive interband coupling
e<0 (106)

has a physical sense, unlike multi-band superconductivity, where the analog
of the interaction of Dirac spinors and scalar field (the superconducting order
parameter) is absent, therefore any interband couplings €;;, are allowed [74,
75]. From Fig. 5 we can see that at ¢o1,02 < @3 and € > 0, and we can
assume that 69 = 0, §9 = 69 = 7 (then we should change signs of two
Yukawa constants y; = x2 = —x3). However, such a system will have larger
ground-state energy compared to the € < 0 case.

Let us consider the Dirac terms in Eq. (104)

Up = xeor (YLivr1 + Yrive1) + xé1 (Yravri + YrivL1)
x©02 (VL2vre + Yrotr2) + Xé2 (Yrovr2 + Yratne)
x%03 (Yr3yrs + Ursvrs) + x¢3 (Yrsrs + Yrstrs) - (107)
However, as we could see in Section 2, the fields ¢1, ¢2, @3 are not normal

oscillations of the coupled scalar fields |p1], |¢2], |¢3]. Eigen-frequencies (the
masses of H-bosons) have been found in Eq. (70), each normal oscillation

+
_|_
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mode involves all three scalar fields, see Eq. (71) and Fig. 7. Thus, we can
introduce the flavor states: each flavor state of the Dirac fields interacts only
with the corresponding normal mode ¢, ¢,,, ¢~ of the scalar fields. At the
same time, in Section 2.3, we have seen that due to the weakness of interband
coupling |e] < a123 and the strong band asymmetry (69), the effective
diagonalization (73) can be realized. As a result, we obtain the flavor states
of condensates (77), in the sense that each normal mode ¢, ¢, ¢, is an
oscillation of the corresponding effective band (flavor) ¢, ¢, ¢r. Then we
can write

uDe,uT = X¥0e (@LewRe + 7wERewLe) + X¢e (TZJLewRe + zZ]RewLe)
+Xpop (JJL/ﬂ/’Ru + @ZR;WLM) + X%u (@LM/’R/L + JJRM/’LH)
+x¢0r (VLrYrr + VrrYLr) + XOr (VrrUre + YReVL,) - (108)

Thus, the masses of the Dirac fields ., 1,1 are determined by coupling
with the equilibrium modules of the corresponding scalar fields o, ou, @or

MDe = X%¥0e » MDy = X¥Pou » mpr = X¥0r - (109)

Since @oe & o1, Pou R P02, Por ~ o3 and e X P1,y X P2, r X @3,
we can present the Yukawa couplings in Table 2, similarly to Table 1, for
2HDM or 3HDM models. Thus, unlike in 2HDM or 3HDM models, in the
three-band model, the Yukawa interactions with scalar fields are distributed
over generations of fermions, not over leptons and quarks apart.

Table 2. Yukawa interactions for three generations of fermions (charged leptons,
upper and bottom quarks).

e,u,d | p,c,s | T,t,b

®1 ®2 ®3

However, unlike the exact diagonalization (78) for potential energy of
the excitations ¢123 — ¢e - of the coupled condensates (because it is a
quadratic form), the diagonalization (73) is approximate. Hence, the flavor
states must enter into the Lagrangian with some interflavor mixings, which
compensate the inaccuracy of diagonalization (73). Then, the potential en-
ergy term for the flavor states 1,1, 1) takes the following form:

_ 3 3 MpDe Ceu Cer YRe
Z/{Deu‘r + Unmix = ( YLe, wLpn YL, ) Ceu mppy CMT ¢R,u
Cer C/Jfr mpr YRy

thee. = (Yepr | Mepr [thepr) (110)
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where (;;, are the mixing parameters analogous to the interband coupling e.
Thus, the coupling of “L” and “R” components ¥r;¥r; + ¥Rr;¥L; gives the
Dirac masses mpe, Mpy, Mpr, at the same time, the “L” and “R” components
are mixed with the corresponding “R” and “L” components of the other
flavors 91;¢rk + YREYL:- As a result of diagonalization of the matrix M,
Moz = diag(Me,r), we obtain the potential energy term in Lagrangian
(107) for the band states

_ _ B mp1 0 0 YR1
Ubepr + Unix = Up = (Yr1, Yr2, ¢r3) | 0  mpy 0 YR2
0 0  mps PR3

+h.C. = <1D123’M123|1/)123> . (111)

Thus, we have the system of equations for the mixing parameters (e, Cer, Cur

MDe — MD; Ce,u Cer
Cep MDy — MD; Cur =0, where 1=1,2,3.
Cer C,ur mpr — MpD;

(112)
ObViOllSlYa MDe — MD1 ~ MDy, — MD2 ~ MDr — MD3 ~~ Ce;u Ceru C,Uﬁ" Using
Eq. (70), we obtain

62

Caﬁ ~ TND; s (113)

2 2
M DMy
where Am%ﬂj = m%h — m%,j. Thus, the mixing parameters (,g are de-
termined by the interband coupling e. If the interband coupling is weak
le| << m?%;, m%, then the mixing parameter |(| << mp.

It should be noted that in SM, we can write the mass matrix M5M as

eutT
M MDe Ce,u Cer Xee Xep  Xer
Me,n = Ceu Mby C,ltT = ¥o Xep  Xpp  Xpr . (114)
CET C,U/T mpr Xer  Xpr X771

That is, both diagonal elements and off-diagonal elements are just Yukawa
constants x;; due to the presence of the single-scalar field 9. However, in
the three-band model, we have three scalar fields oe, Yo, por and Eq. (109),
hence we cannot write the mass matrix Mc, in the form of Eq. (114). This
means that the mixing coefficients (;; are not off-diagonal Yukawa interac-
tion. The mixing coefficients (;; are the fermionic analog of the interband
Josephson coupling. This mixing takes place due to the interband Joseph-
son coupling of the scalar fields ¢1, @2, @3; from Eq. (113), we can see that

Cap X 2.
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The band states and the flavor states are connected by an unitary trans-
formation |tYeur) = Ulth123), |123) = UTW@W), where U is an unitary
matrix U~! = UT, which can be written via the mixing angles a12, 13, o3,
see Egs. (79) and (80). The mixing angles can be found from Eq. (81). As-
suming the independent mixing for each pair of bands e <> p,e <> 7, <> 7,
we obtain (for example, for e <+ p via the mixing of the band states 1 and 2)

2Ceu

)
Mpe — MDp

tan 29 = (115)

and moreover, the band masses mpi, mp2 and the flavor masses mpe, mp,
are connected by the following way:

(le - mD2)2 = (mDe - WLD/L)2 + 4C€2M >
MDe + MDDy = MD1 + MD2 . (116)

In the case of weak interband coupling |e| < |a1],|az],|as| (hence, || <
mp1, Mp2, mp3) and strongly asymmetrical bands @1 < o2 < @o3 (hence,
mp1 < mp2 < mp3), the mixing angles are very small | tan a;;| << 1, hence
the oscillations charged leptons (i.e. electron-muon—tauon) are negligible
and experimentally unobservable, unlike the neutrino oscillations.

Now, let us return to Eq. (102) again. Despite the fact that equilibrium
phases are 60 = 63 = 63 = 0, phase oscillations (50) can take place. The full
interaction term has the form

Up = xle1] (Yravrr + Yriver) + xlez] (Yrovre + Yrotbre)
+xles| (Yrstrs + Yr3tLs)
+ixeor (Yrivr1 — Yri¥1) 01 + ixepoz (Yratre — YrotL2) 02
+ixeos (Yrsrs — Yr3Ls) 03, (117)

where 6 = 6(t,r) is small phase oscillations |#| < 1. Unlike the interac-
tion with the amplitudes of the scalar fields |p;|, the interaction with the
phase oscillations would have to violate the P-invariance. However, we can
see that the Dirac field ¥; = i1; + Yr; of each band interacts with the
corresponding phase of the scalar field ;. As have been demonstrated in
Section 3, the phase oscillations 6;(¢, r) are absorbed by the gauge fields A,
due to the Higgs mechanism, hence in Eq. (117), the phases are equal to
their equilibrium value 6; = 69 = 0.
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5. Spontaneous breaking of the SU(2); gauge symmetry in
the three-band system with the Josephson couplings

Let the fields ¥y, W,, W3 be isospinors, each of which has two complex
(four real) scalar components

90(1) + (1)* (2)*
U= 80(2) , v :( e, P ) (118)

being transformed during the rotation in the isospace as

=28y S= ei5? = (7’0 Cosg + (77 ) sin 129> , (119)

where 7 = (75, 7y, 7;) is a vector consisting of Pauli matrices, 7 is an identity

matrix, J = 7Y, where 77 is an unit vector in the direction of the axis
around which the rotation is made in the isospace. Thus, the isospinor
fields, corresponding to each band, can be represented in the following form:

Uy(z) = o' 3<x>< @3(295) ) , (120)

where @1, p2, 3 are real and 1, 2,3 > 0. Thus, we assign the third
projection of the isospin as I, = —% to the scalar fields ¢;, then hypercharge

Y = 1 and the electrical charge Q = I, + % = 0. At the same time,
the phases 1§; are characterized with zero charges I, = Y = @ = 0. The
corresponding Lagrangian £ is a sum of the gauge-invariant part (relative
to the SU(2) gauge symmetry) and the Josephson terms
L =0,00"U + 0,W0" U + 0,030
*(Illpl!pfr — CLQQ/QWQJF — (Ig!pg!p;

b b
) = ) - ()

(BT + ) — (U0 ) — e (T 1 Tl ) . (121)
The Josephson terms ¥, ¥; + W, ¥;" are not invariant relatively to the SU(2)
gauge symmetry, however, these terms should depend on the phase differ-
ences 1; — v; only: WilI/jJr + W;rlllj = 2¢;p; cos @, in order to have a
physical sense as interference between condensates Wp,¥s,W3. To ensure
such a property, it is necessary

7y = fls = N3, (122)

that is the isospinors (120) must rotate around a common axis. Moreover,
it is not difficult to see that
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I A -
%) pCos 5 — in.psin 5
then
QIij‘*‘ + W;r%; = ( [—ipjng + @jny]sin %, ©j cos % + in.pj sin % )
o liprng + @rny) sin %
Pk COS F — in pp sin ¢
+ ( [—iprng + prny]sin 192—’“, P) COS %’“ + in, g sin %’“ )

. .9
X( [ipina + pmylsin g )

4 COS 5 Mmze;sin 3

= 200k [cos ?] cos 5 + nz sin ?J sin 2]
o Ik
+2pi0 [n2 +n ] sin ?j sin 5 - (124)
Therefore, it must be
Ng =ny =0=n, ==x1. (125)

Then, substituting representation (120) into Lagrangian (121), we obtain

L = 010" 01 + 020" 02 + 030" 03

91 ,,N Po 0 U3 .,V
+30), —aﬂ wgaﬂgaﬂg + 30, i’a i’
b ba b3
—a1¢f — 51%‘ — axl — 9y — sl — 5s0§
91 —9 91 -9 o —1
—2€ep1pg COS 2 _ 2€p1 3 cos 5 _ 2€pap3 COS 3 (126)

Let us consider stationary and spatially homogeneous case, i.e. dyp = 0,
Ve =0, 09 =0, Vi = 0. Then we obtain equations for the equilibrium
values of the fields ¢g; and 19? — 199-

( 99— 799 ﬂg 0 b 0
a1po1 + €pp2 COs + €pp3 cos + 19001 =
190 190
azpo2 + €po1 cos 93 + €pp3 cos —25—2 93 + b1g002 =0
0

0
azwos + €po1 COs 9 193 + €pp2 COS 192 5 + 61(’003 =0 197
9920 99— 190 . (127)
o2 sin =2 1+<pogsln 32 =0

190 99—199
01 Sin 1 %3 + 3 sin 252 =0
¥ ¥ 2
99— 190 99—199
©o1 Sin —15—2 + g2 sin 22 3 =0

If the interband coupling is weak, i.e. le] < lail,|az|, |as|, then we can assume

a;

Poi =1/, -
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On the other hand, let us consider three Dirac spinor fields 1, %9, 13 as
we have considered them in Section 4. However, now Lagrangian (101) has
the form

3 _ < _ < _ _
L= Z |:i¢Li’Y“8qui + iRV 0 bR — X (VLR + YriY; VL)
i=1
(128)
For the terms of interaction of Dirac fields with isospinor fields Up =
X (VLR + Yr¥ L) to take the form of the mass term of the Dirac type
Up = mp (YLYR + YrYL), the following conditions must be satisfied:

1. Since £ must be a scalar and ¥ is a doublet (118), then the spinor 91,
must be a dublet (singlet) and ¥r must be a singlet (dublet). That

is, for example, ¥, = ZI: and Y = lg. This means the violation

of the spatial parity symmetry. Here, l1, g are electrically charged
leptons: Q1 = Qr = —1, L1, = —%,YL =—-1,I,Lg = 0,Yg = =2, at
the same time, v, are electrically neutral leptons (neutrinos): @ = 0,
Liy=1%1v=-1L

2. As in Section 4, the coupling terms Up in Eq. (128) can be reduced
to the Dirac mass terms, only when three condensates (118) have the
same equilibrium phases, which are assumed to be 99 = 93 = 9¥$ = 0.
This is possible only in the case of the attractive interband coupling
e < 0.

(1) _
3. If we use an isospinor ¥ = <¢(2)> , the coupling terms Up = x (YL YR +
‘4

Yr¥ 1) take the form of Up = x(FLeMWIr+lreM 1) +x (L@ IR+
ZRgp(2)+lL). We can see that we must suppose (1) = 0 to avoid mixing
of neutrinos with the charged leptons, and &+ = »(2) > 0. This
corresponds to our selection of the vacuum as (125).

4. Neutrino masses are assumed to be zero m,; = mye2 = myz = 0. We
postpone discussion of this issue until Section 7.

At the same time, except for the band states ¥1, 12, 13 (i.e. the states, which
interact with the corresponding isospinor fields), the flavor states e, 1, ¢r
(i.e. the states, which interact with normal oscillation modes of the coupled
isospinor fields) must exist

QpLe = <VL6>7 ¢R6:6R7 wLu:<VLM>) ¢R/LZ,U'R)

€L ML

Yrr = ( LT ) . YRr=TR. (129)

L
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The relationship between the band states and the flavor states (i.e. the
lepton oscillations) has been discussed in Section 4 and will be considered
again in Section 7.

Let us consider the movement of the phases ¥; 2 3. The corresponding
Lagrange equations for Lagrangian (126) are

Ui -7 9 — 10
9031(%8“191 — 201 4p02€ Sin ! 2 _ 201 po3€sin ! 5 _ 0,
Ui — 7 ¥y — 10
90(2)28Mau192 + 2¢01p02€ Sin ! 2 _ 20203 € sin 2 3 0,
.t =0 . Yo — 10
60(2)38M8“193 + 2¢01$03€ Sin ! 3 + 2¢02(pp3€ sin 2 3 0. (130)

As we have seen above, the coupling terms Up in Eq. (128) can be reduced to
the Dirac mass terms, only when three condensates (¥1), (¥s), (¥3) have the
same equilibrium phases 99 = 99 = 9¥J = 0. This is only possible in the case
of the attractive interband coupling € < 0. Considering small variations, i.e.
|¥| < 7, we can linearize Eq. (130)

©310,0"91 — po1p02e(91 — ¥2) — po1poze(Vr — VI3) =0,
©350,0" 92 + Po1p026(91 — P2) — po2poze(V2 — ¥3) =0,
P030,0"03 + porpose(th — ¥3) + orpose(Pa —U3) =0, (131)

which coincides with Eq. (51) for the phases 61,602,035 when ¢ < 0, i.e.
all equilibrium phase differences are 9. = 0 = cos 9% = 1. Therefore,
the spectrum of Goldstone modes due to the spontaneous breaking of the
SU(2) gauge symmetry in the three-band system with the interband coupling
coincides with the spectrum (53) of Goldstone modes resulting from the
spontaneous breaking of the U(1) gauge symmetry in the three-band system
with the interband coupling.

Let us consider oscillations of ¢; only. Then, at € < 0 (i.e. equilibrium
phase differences are 19% = 0), Lagrangian (126) takes the form

L = 0,p10"p1 + 0,920 pa + 030" 3

b1 by b3
—a1pt — 5P — 023 — Sps — aspl — s
—2ep102 — 260103 — 260203, (132)

which coincides with Lagrangian (41) for the fields |¢1], |p2], |¢3| when e < 0.
Therefore, the spectrum of Higgs modes due to the spontaneous breaking
of the SU(2) gauge symmetry in the three-band system with the interband
coupling coincides with the spectrum (66) of Higgs modes resulting from the
spontaneous breaking of the U(1) gauge symmetry in the three-band system
with the interband couplings.
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Let us consider the interaction of the isospinor fields ¥; 2 3 (120), breaking

the gauge SU(2) symmetry each, with the gauge Yang—Mills field /Yu- The
corresponding gauge-invariant Lagrangian has the form

L = D (D")* + D,y (D"Ws)t + D,Ws (D"W5)*
—alquWf“ — GQWQW; — a3u73W3+

2 2
—e (U Wy + W) — € (U] W5 + W) — e (W5 W3 + Woi5")
1 - =
= 124
T (133)
where 7

D, = 700, — z'giffu (134)
is the covariant derivation,

Fu =0 AV—&,A“—i—g[fT xffy} (135)
is the tensor of the Yang-Mills field. Usmg Eq. (120), from which we can
assume that [¥| < 1 = S =79+ i3 19, and using a property of the Pauli
matrixes —i [2 Ok, T A“} = [19 X A“} . g [1], Lagrangian (133) can be
rewritten in the followmg form:

3
7

L = Z( 0, ; )(7'08“—28“19 +ig— A“+zg [2 15;] /f“)
i=1

‘ (Toa# Vil —igL Ay~ ig [; ‘ 19} A‘u> ( 0 )

—a1p] — azps — azps — XA A L

91 — 99 Y1 — I3 Jo — 3
—2eg01<p2 cos — 2ep1p3 cos — 2€epap3 cos >
— F F“” 136
167 (136)
The corresponding Lagrange equation
oL oL
81/ = - == O (137)

d(0,A,) 9A,

with the Yang—Mills equation O, Fm + g [Ey x FHv } = 4m JH gives the cur-
rent

l\D\b

ZS: (aﬂﬁi _gAr g [ﬁi X ff“D . (138)
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The gauge field can be transformed as

4= Ao (Cod - [fix4)]) -6 (Cad- [7.x 4]

g
1 - [ -
— <a#193 - [193 X AMD : (139)
g
where
o — b1 8= 5o
P81 + b + ¥ @51 + oo + ©ba
2
v = L (140)

$o1 + g + ¥Bs
which are analogous to Egs. (88) and (89). Then, neglecting the second order

of smallness in the phase 90,9, Eq. (138) can be reduced to the “London
law”

2
- g TR 1 -
J“:*?( 31+@32+@%3)Au:*4ﬂ)\2fwa (141)
where
1
A (142)

V2o (8, + 0% + ¢Bs)
is the “penetration depth” — the length of interaction mediated by the gauge

bosons A,,.
Applying the transformation (139), we can transform Lagrangian (133)
to the following form:

2
L = Oup10p1 + 0up20"p2 + 030 o3 + gz (01 + 03 + 03) A, AF
V1 — o V1 — U3 Vg — U3
—2€ep1p2 COS — 2ep1p3 €OS — 2€pop3 COS 5
% — 9 =
+ (18° + p3a?) O g0 =
% — 0 =
+(<P%72+90§042)5u 12 3 g 12 3
o — 9 Py —
+(‘P%W2+80§52)0u 22 3 g 22 3
_30%27/86,u01 ;1928“191 ; Y3 B 90%20478;1191 gﬁgauﬁg ; 3

~ 42090, ot

by by b3 1 - =
5@% - EW% - 5@% - HTFFWFW, (143)

2 2 2
—a1p1 — a2y — a3z —
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which is analogous to the calibrated Lagrangian (94) with the spontaneous
breaking of the U(1) symmetry. We can see that the phases 91,2, 93 have
been excluded from the Lagrangian individually leaving only their differ-
ences: 1 —J9,91 — U3, 93 —¥3. Thus, the gauge field ffH absorbs the Gold-
stone boson (i.e. the common mode oscillations, where Vi#; = ViJo = Vi3)
with the acoustic spectrum (55). At the same time, the Leggett bosons (i.e.
the oscillations of the relative phases ¥; — ¥;) with massive spectrum (56),
(57) “survive”.

Substituting the calibrated Lagrangian (143) into Eq. (137), we obtain
the equation for the field /TM

B L. 1 -
a,F" 1 g [AV X FW} + A =0, (144)
where
1
Vi 2mg° (951 + o2 + ¥o3) = mA (145)

is the squared mass of the gauge boson /_f“, which is the squared reciprocal
“penetration depth” (142) in the “London law” (141).

6. Spontaneous breaking of the SU(2); ® U(1)y gauge symmetry
in the three-band system with the Josephson couplings

It is not difficult to notice that the scalar product of the isospinors (118)
YU is invariant under both the SU(2) transition and the U(1) transition.
Thus, we can write by analogy with Eq. (120)

W3(g;) = ei93($)ei253(x) < @3(33) > . (146)

Lagrangian (121) is a sum of the gauge-invariant part (relative to the SU(2)®
U(1) gauge symmetry) and the Josephson terms. As in the previous case,
the Josephson terms are not invariant relatively to this gauge symmetry
due to the terms LD;FJ/]- + Wjilf, however these terms depend on the phase
differences 9; —¥; and ¢; — 0; only, but not on the single phases 9;, 0;, if the
conditions (122), (125) are satisfied. Then, substituting representation (146)
into Lagrangian (121) and considering (125), we obtain
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. (147)

e=3 e (20 0070) st o]
i=1
—2€ep12 -COS bt cos(f1— 02) + n. sin —— L sin(6 — 92)-
—2€p13 —COS = Vy cos(01— 03) + n, sin — V3 sin(0; — 63)—
—2epa¢p3 _cos V2 U5 cos(0y— 03) + n sin —— Vs sin (g — 93)_

Considering small variations of the phases from their equilibrium values
Yo; = 0p; = 0, we can rewrite this Lagrangian in the form

3
19,‘ 191' bz‘
L= Z [%%Ww + 2 (6“23“2 + 3;@'3“91) — a0} — 290?]
i=1
[ (91—12)% (61— 02)? Y — U |
_ 1— _ _
21902 _ 3 5 n:— (01 92)_
[ ¥y — 93)2 01— 03)? =0 i
*26(,01@3 _1 — ( ! 8 3) — ( ! 2 3) My ! 2 3(91* 03)_
[ ¥y — U3)2 0y — 63)2 Yo — 0 )
—2ep203 PG g 3)” _ (2 5 D" 4, 22 2 (0,— 05)| . (148)

We can see that the Goldstone modes corresponding to the U(1) gauge
symmetry (oscillations of the phases 61, 63,03) are coupled with the Gold-
stone modes corresponding to the SU(2) symmetry (oscillations of the phases
Y1,192,93) by the component n, = £1 of the unit vector 7 = kn, in the di-
rection of the axis around which the rotation is made in isospace J = .
In the presence of the Abelian field B,,, corresponding to the local gauge

U(1) symmetry, and the non-Abelian field ffu, corresponding to the local
gauge SU(2) symmetry, we must apply the covariant derivative

=

DH = TOa,u — ’L'TogB“ — ig—A“ y (149)

where f and g are corresponding coupling constants. Using the gauge trans-
formations (88) and (139), Lagrangian (133) can be presented in the form
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L = 0,p10"p1 + 0up20"pa + 030" 3

0 — 99 O =0 7
+ (928% + p3a?) |0, 12 2gn 1 5 2 18, (6, — 62) 0" (6) — 62)
S T 7
(e 4+ gh?) (0,0 o T, (01— ) 0% 01— 03
R P T y
+ (932 + 93267 |0, 22 3 o 32 3 48, (62 — 03) 0" (62 — 63)
Oy — 9y Dy — 0 ] )
— 2248 aﬂ . LY, U 5 5 1 0,(01 — 02)0" (6, — 63)
9y — Dy 9y — 1 ]
— 520y |8, — 5 2gr 22 5 5 4+ 0,(01 — 02)0" (62 — 63)
[ 9 — 15 0y — 1 7
— 2203 |0, — 5 3 gn 22 5 2+ 0,(01 — 039" (05 — 03)
B _ 2 o 2 _ i T
—2ep1p2 |1 — (V1 = b2) —(91 02) +nzﬁ1 192(01—92)
i 8 2 9 ]
. co c o : ]
~2epyipg |1 — (V1 —s)" (61— b3) +nzl91 193(01_03)
i 8 2 2 ]
- Co C o ; J
*26@2@3 1— (192 193) — (92 93) +nzﬁ2 193((92*93)
i 8 2 9 ]
b b
—a1p] — asph — azpi — 51 i 52%‘—53@%
2
+gz (90%‘1‘90%4‘90%) (Azp Al + Ay AY)
1
+5 (03 + 3+ ¢3) (g*A. A" + f2B,B")
1 - - 1
S v 24
o FuF = 1 GG, (150)
where
G = 0,B, — 9,B, (151)

is the field tensor for the Abelian gauge field B,,. In the GWS theory, the
linear combinations

1 .
W, = ﬁ (Azp +iAy,) , (152)
Z, = A, cosa— By sina A,y =Z,cosa+ Aysina

A, = A, sina+ By, cosa = BM:_ZM51HQ+AMCOSQa(153)
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where

cosoz:g, Sinoz:i, g=vg*+ f?, (154)
g

g
allow us to make the transformation
g L9 2 g o 9°
1 (Aep AL+ Ay, AY) + 1 (9° Az AL+ [*BuB") = 5 W “+ZZMZH-
(155)
Thus, the masses of charged W-boson and neutral Z-boson are

my = gy/2n (hted+ed) . mz = 5y/2m (Gt ehtels) = o

(156)
but the field A, (photon) remains massless (with the interaction constant
— electrical charge e = gsina). However, separation of the components
Ay, Ay, from the component A,, (which is mixed with the Abelian field
B,,) takes place only in the London gauge, where we exclude the single
phases 6,9 from Lagrangian, see Eq. (150). Then, let us consider the gauge
transformation (139)

S T o1 - i gk
X, = B0, 0+ [T x &) = B=—0,0+9-| 0y, ne |.(157)
g g Awp  Ayp Az

We can see that the gauge transformation mixes the components A;,, and
Ay, with the component A.,. On the other hand, separating the field W,
(152) from the component A, makes physical sense if and only if the fields
W, = (A1 +iA4,2)/V2 and A,, are transformed by themselves. From
Eq. (157), we can see that it is possible only when n, =n, =0

A%w = Az + 90 Ay,
Ayu = Ay, —In Az,

ALy = Ay — 25040 (159)

(158)

Therefore, n, = 41 which coincides with Eq. (125) as the condition for
interference of condensates ¥, ¥, ¥3. Thus, separating of the field W, also
selects a direction in isospace. The spectrum of excitations depends only on
ng, n‘zl, so the sign of n, is not important.

As before, we must assume that € < 0, hence the equilibrium phases are
such that cos;; = cos¥;; = 1. Then, from Lagrangian (147), we can see
that the spectrum of Higgs oscillations coincides with the spectrum (66). At

the same time, the spectrum of the Goldstone modes takes the form

(00" (9" + (g4 b+c) =0, (160)
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where

b— 26@31 (po2+03) + 32 (o1 +003) + 953 (o1 +Po2)
$01$02403
e 42 P01 o+ 083 951 (vo2+003) + 98 (o1 +¢03) + 55 (o1 +02) .
$01%£02%03

Y

(161)

From Eq. (160) we can see that one of the dispersion relations is ¢,¢" = 0.
This relation corresponds to the twofold degenerated common mode os-
cillations, which are absorbed by the gauge fields W, W;, Z,, and to the
twofold degenerated massless Leggett mode. The remaining quadratic equa-
tion determines two Leggett modes with massive spectra: m%m = quq" =

%(—b F Vb% —4¢). As we could see above, the L-bosons are not absorbed
by the gauge fields. Thus, if all bands are independent, i.e. ¢ = 0, then we
have two massless Goldstone modes per band (independent oscillations of
the phase ¢ and ), a total of six independent Goldstone modes. Due to the
internal proximity effect, i.e. € # 0, the Goldstone modes from each band
transform to the following normal oscillations for all bands: twofold degen-
erated common mode oscillations with the acoustic spectrum, the twofold
degenerated massless Leggett mode, and two Leggett modes with the en-
ergy gaps. Squared masses of the L-bosons are proportional to the inter-
band coupling m?, , ~ |e|. For the symmetrical three-band system, i.e.
Vo1 = P02 = P03, masses of both massive L-bosons are equal

mL1 = my2 = /6le|. (162)

Thus, we can see that, unlike the cases of U(1) and SU(2) symmetries, for
the case of the SU(2) ® U(1) symmetry, we have two massless L-bosons and
two massive L-bosons. However, the massless bosons, like relic photons,
lose their energy in the process of space expansion. Hence, the role of these
bosons can be neglected. In contrast to them, the massive L-bosons are able
to form stable gravitationally bound structures (clusters, halo). Moreover,
the L-bosons are sterile. Therefore, the massive L-bosons are a suitable
candidate for Dark Matter.

It should be noted that if we suppose the nonsymmetrical Josephson
coupling €12 # €13 # €93 instead of the uniform coefficient €, then the twofold
degenerated massless Leggett mode splits into one massless mode and one
massive mode. However, in what follows, we will consider only the minimal
model with the uniform coefficient e.
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7. Lepton mixing and the mass states of neutrinos

From Eq. (128) we can see that the band states of the Dirac fields, i.e.
1,9, 13, are determined by the coupling between the corresponding Dirac
field 1; and the scalar field ¢; (isospinor field ¥;). Then, the gauge-invariant
Dirac Lagrangian for the lepton fields has the form

3 ~AB _ _
Lp =) ifry"D, v, + ithp7" DH Yrj — [ijgjijj + UR; Y YL |
=1
(163)
where

Y LT .
D:;%B = Toau - 29514“ + ZTogB# , DE = 7—08/1 + ZTofB# (164)

are covariant derivations. Thus, each band state 1,9,v3, emitting or
absorbing the gauge bosons A, B,,, transforms only to itself, i.e. 1 <+ 1,
2 <> 2, 3 > 3. Analogously, for the flavor states e, 1y, 1, (129),

—AB _
Lp = itpLey" D, tre + ’LeR”Y“D er — X [Yr¥eer + Er¥, Y] + L, +<LT -)
165
We can conditionally use e for the electron e and the electron neutrino v,
p for the muon g and the muon neutrino v, 7 for the tauon 7 and the
tauon neutrino v,. If m, < m, < m;, then the bands should be strongly
asymmetrical: g1 < g2 < 3. As for the band states, each flavor state
Ve, Yu, Y7 emitting or absorbing the gauge bosons /L, B,,, transforms only
to itself, i.e.e <> e, > u, T & T.

As we could see in Section 4 each of “L” and “R” components should mix
with the corresponding “R” and “L” components of other flavors ¢r;¢rr +
YREWLi, Which is the fermionic analog of the interband Josephson coupling,
unlike SM, where the mixing coefficients are off-diagonal Yukawa interac-
tions. Thus, we can take the SU(2)-symmetric mixing term for the Dirac
fields in the following form:

Z/{mix = &Le < C(e)u ) wRu + 7»ELe ( C(E)T ) wRT + ”&LM < CST > ”QURT + h.C.,

(166)
where (. are mixing parameters determined by the interband coupling € of
the scalar fields, see Eq. (113), ¥ = I;eL is the left-handed bispinor,

L

YRe = er is the right-handed spinor. The band masses mp1, mps2, mp3 are
determined by the Yukawa interaction of the Dirac fields with the corre-
sponding band states of scalar fields g1, o2, 3. In turn, the flavor masses
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MDe, MDy, MpD7 are determined by the Yukawa interaction of the Dirac fields
with the corresponding flavor states of scalar fields ¢oe, You, ¢or which are
result of the diagonalization (73). The mixing R <+ L results in the tran-
sition from the flavor masses to the band masses via diagonalization of the
matrix M., as demonstrated in Section 4

MDe Ce,u Cer €R
uDe/,m— +Umnix = ( €L, ML, TL ) Ceu MDu C,LLT UR + h.c.
Cer CMT mpr TR
mp1 0 0 hLir
=(hy, o, BL)[ O mp2 0 lor | +h.c.
0 0 mps lgR

(167)

The mixing takes place due to the interband Josephson coupling of the
scalar fields 1, @2, p3: from Eq. (113) we can see that (.5 o 2. As will be
demonstrated in Section 9, the interband coupling is extremely small € ~
1040 eV2. Taking masses of H-bosons as Am?; ~ 10 GeV? (see Section 8),
we can see that the mixing angles, determined by Egs. (113), (115), are
extremely small: a;; ~ 107190, Probability of interflavor transition is P, ~
sin?(2ayy) [36-41], hence, for the massive leptons (electrons, muons, tauons),
the effect of mixing is negligible P ~ 1072, Thus, the mixing of charged
leptons is negligible and it lies beyond the sensitivity of any experiment.

In SM, masses of neutrinos are zero. However, observation of the neu-
trino oscillations in vacuum means the presence of mass of neutrinos [36—
41], and the differences in the squares of the masses have been measured:
|Am3,| = |m2 —m3| = 2.51 x 1073 eV2, |[Am?2,| ~ 7.41 x 107° eV? [42, 43].
Formally, we can write the Dirac mass term (Yukawa interaction) for both
the charged lepton and the neutrino in the form (1), assigning neutrinos a
small but non-zero Yukawa constant x, and introducing the sterile right-
handed neutrino. Thus, the neutrino mass becomes similar to the mass of
charged leptons. However, in the proposed three-band model, the problem
of mass is fundamental. As we have seen, the interaction of Dirac fields with
the corresponding scalar fields leads to lepton oscillations as a consequence
of the Josephson coupling between scalar fields. Hence, the mixing angles
are extremely small: «a;; ~ 107109 At the same time, the experimental
mixing angles for neutrinos are large: a9 = 33.4°, a3 = 42.2...49.5°,
a3 = 8.6° [42, 43].

However, within the framework of the three-band model, the presence of
mixing alone, without interaction with scalar fields, can lead to mass genera-
tion. Let us suppose the existence of massless sterile right-handed neutrinos
VRes VRy, VR, -€. which are characterized by zero isospin and hypercharge:
I, = 0,Y = 0, unlike the active left-handed neutrinos v, v, v which
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are characterized by I, = %,Y = —1. Then, the SU(2)-symmetric mixing
term for neutrinos should have the following form:

uIZliX = @Z_}Le ( gBM > VR,LL"’?ZLe < gBT > VRT“"‘I}LM < ggT > vrr+h.c., (168)

ey,
eL
is the left-handed bispinor, vge is the right-handed neutrino. Then, the
corresponding neutrino Lagrangian has the form

where ¢ # (1 are mixing parameters specially for neutrinos, i, =

A ~ g B 2
L, =i | VeV OgVLe + VLYY aCIVLM + VL7 OolLr
_ge,u(DLeVR,u,"i‘ﬂL/ﬂ/Re)_ ger(leeVRT"i"jLTVRe)_ gMT(DLMVRT_'_leTVR}L)
A e IR
+1 | VReY 80VR6+VR/L'7 80VRM+VRT7 aO'Z/RT

—Sep(PReVLp+TRpVLe) = Ser (PReVLr +PRrVLe) — Spr (PRuVLr + VR VL) -

(169)
We can diagonalize the matrix M., as
0 Cep Ser VRe
( VLe, DL/JJ ULr ) Sep 0 Sut VRu +h.c.
Ser Syt 0 VRr
my1 0 0 V1R
= ( L, VoL, V3L ) 0 my2 0 9R, + h.c. (170)
0 0 my3 9R
The corresponding characteristic equation is
m?lj - (gezu + §€2T + §3T) my — 2§3.U»§37'§N7' =0. (171)

For the symmetrical interband mixing ¢, = Ser = ur = ¢, We obtain the
following solutions of Eq. (171):

my1p = My2 = —¢, my3 = 26. (172)

Obviously, the right-handed (sterile) neutrinos and left-handed (active) neu-
trinos have exactly the same masses: myr; = m,1;. We can see that neutrino
masses can take both the positive and the negative magnitudes. This means
that the mass states of neutrino v, v9, 13 are quasiparticles (unlike the band
state of charged leptons [y, ls, 3, which are determined by the Yukawa cou-
pling with the scalar fields of the corresponding bands). Respectively, the
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masses (172) are effective masses of the quasiparticles. Only the square root

of the squares of masses \/ m?,, \/ m? ,\/ m?, makes physical sense since
only the differences |[AmZ;| = [m3 — m3|, |[Am3,| = |m3 — m?2| are measured
in experiments regarding neutrino oscillations, and the upper limits of the
masses \/mzZ, /M2, \/mi, have been determined experimentally from the
[B-decay of tritium, pion decay, 7-decays into multi-pion final states, respec-
tively, where the spectral distribution of leptons is determined by m2, but
not by m,. Moreover, my, = \/Zle |Uai|2ml2,i, where U,; is the PMNS
matrix [38, 44, 45].

In view of the above, we should consider equations that include only

the squares of the effective masses. The Lagrange equations for Lagrangian
(169) are

i77 OsVLe — SepVRy — SerVRr = 0
Z"}/UaUVL,u — SeuVRe — SurVRr = 0
iﬁYUaaVLT — SerVRe — SurVRu = 0
177 OsVRe — SepVLy — SerVir = 0,
i7? 0o VR — SepVLe — SurVLr = 0
0

i’YUaUVRT — SerVLe — SurVLy = (173)

Then Eq. (173) can be transformed to the system of the Klein-Gordon-like
equations for the left-handed fields separately

2 2
0705 1,e + (gelt + geT) VLe + SerSurVLp + SepSprVLr = 0,

80801/[,“ + geTguTVLe + (%QM + 9%7) VL;L + geugeTVLT =0 )
0° OpvLr + SeuSurVLe + SerSepVLp + (§827_ + §37_) v = 0, (174)

where we have used (v/9,)(Y*8,) = 30,0, (V9" + ") = £0,0,29" =
0,0". Thus, we obtain Lorentz-covariant equations of motion only for the
left-handed neutrinos vy, v, vr. Analogously, we can obtain such equa-
tions for the right-handed fields.

Let us consider the spinors vy, , in the form of plane waves v, , =

Ueyr e P7% | where uc,, r are the corresponding spinor amplitudes. Then
Eq. (174) takes the form
2 2 o —
(geu +Cer — P po) Ue + SerSprlUy + SepSpurlr = 0,
SerSutUe + (%2# + giq- - papa) Uy, + SepSerUr = 0 )

SepSprUe + SerSeply + (§e27' + C'L%T — pgpg) ur = 0. (175)
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The corresponding characteristic equation is

3
(P7po)” — (262, + 262 + 2¢2,) (17ps)?
4 4 4 2 2 2 2 2 2 2 2 2
+ (S Ser + Sur + 262,507 + 2620500 T 250557 ) (07P0) — 42, 5ersir = 0.
(176)

This equation has three positive real solutions: m2, = (p"p,)1, m2y =
(P°po)2, m23 = (p°po)3, which can be associated with the mass states of
neutrinos vy,1, V1,2, VL3

" 0pv1y + M = 0,
0°Oyvr,9 + m,%QI/Lg =0,
808,;VL3 + m33VL3 =0 , (177)

and we can assume the hierarchy of the masses as m?2; < m?2, < m?;. Thus,
for the symmetrical interband mixing <., = ¢r = ¢ur = ¢, We obtain the
following solutions of Eq. (176):

m12/1 = m12/2 = §27 "7133 =4¢”. (178)
Thus, the effective masses of neutrinos are of order of the interband mixing
parameters. It should be noted that the masses my 1, my2, m,3 are the result
of interband mixing, unlike the electron—-muon—tauon masses, which are the
result of coupling with the corresponding scalar fields ¢, ,, . Obviously, the
flavor states vpe,vr,, v must be linear combinations of the mass states
V11, VL, VL3 and vice versa, that can be written in the following way:

VLe Vi Vi T Vle
YLy =U- V12 s 14 W] =U"- VLu y (179)
VLr VL3 VL3 VLr

where U and U? are mixing matrices (79), (80). Let us find a relation
that the angles aj9, @13, a3 must satisfy. At first, let us introduce the
designations in Eq. (174)

80607/&5 + Avpe + BVLM +Cy, =0 ,
808UVLu + Bur,e + EVL'M + Dy = 0,
80(901/L7— 4+ Crpe + DVLM + Fur,- 0. (180)
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Using Egs. (177), (179), we can write Eq. (180) as

2 2 2
c12€13MiVL1 + c13512MavLe + s13m3vLs = Avye + Bry, + Crpr,

2 2 2
(—s13523C12 — €23512)MIVL1 + (—S12513523 + C23C12)M3VL2 + C13S23M3VL3
= Brpe + EVLM + Dy,

2 2 2
(_623612813 + 523512)m11/L1 + (_023812513 - 823612)m2VL2 + C13C23M3VL3
=Cue + DVL;,L + Fup,,.
(181)

The right-hand side can be transformed like this

Avye + By, + Cury A B C Ve
Buy,e + EVL;L + Dur,- = B E D VLp
Cvre + Dvyy, + Furr C D F VL

A B C . V1

= B E D U - UL

C D F 14 9%}

[Aci3c12 — B(s23s13¢12 + c23512) — C(c23513¢12 — S23512) V11
+[Ac13512 — B(s23s13512 — ca3c12) — C(ca3si3s12 + s23c12)|vne
+[As13 + Bsazciz + Ceascislyns

[Beisciz — E(s23s13¢12 + €23512) — D(c23s13¢12 — S23512) Vi1
= | +[Bcizsiz — E(s23s13512 — c23¢12) — D(ca3s13512 + s23¢12)|VL2
+[Bsi3 + Esgzciz + Deasceys|vrs

[Ceizcia — D(sazs13¢12 + ca3512) — F(ca3s13C12 — S23512)|V11
+[Ceizsi2 — D(s23513512 — €23¢12) — F(ca3s13512 + s23¢12) V12
+[0813 + D823013 + FCQgClg]VLg

(182)
Then, the angles a9, a3, aiag satisfy the following equation:
A A A
A = Agl AQQ A23 = 0, (183)
Az Az Asz

where
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Ay = (A —mi) 1312 — B(sassiscrz + cazsi2) — Clcazsizcra — $23512)
Az = (A —m3) c13s12 — B(sa3s13512 — casc12) — C(cazsi3s12 + s23c12) s
Az = (A —m3) s13 + Bsagcrs + Ceasers,

Az = Beygerz — (B —mi) (sa3s13¢12 + cassi2) — D(cazsizcra — s23512)
Az = Beigsiz — (E — m3) (s23813812 — c23c12) — D(cazs13s12 + S23¢12)
Aoy = Bsiz + (E — mj3) sasc13 + Deasens

As1 = Ceizera — D(sa3s13¢12 + c23512) — (F' — m7) (cozsizera — s23512)
Asy = Ceizsiz — D(s23513512 — cagci2) — (F — m3) (ca3s13512 + S23€12)
Assz = Cs13 + Dsoscis + (F — mg) €23C13 - (184)

It is noteworthy that for the case of two-band system, we obtain

177 OpVLe — SeuVRy = 0

Z.’YJ&JVLM — SepuVRe = 0 0705V + §32 Ve =0
177 OgVRe — SepVLy = 0 07 Ogvry + o =0
Z’YoaaVRu — SeulVLe = 0

(185)

Thus we can see that, unlike the three-band system, in the two-band system
the flavor states coincide with the mass states. This means that neutrino
oscillations in the two-band system are impossible.

We can see that the mixing of massive (charged) leptons and the mix-
ing of neutrinos have completely different nature. From Eq. (113), we can
see that the lepton mixing parameters (,g are determined by the inter-
band coupling €, since the masses of the electron, muon, and tauon mp;
are determined by coupling the with scalar fields 1, w3, @3, respectively, see
Eq. (105), and in turn, these scalar fields are mixed by the interband cou-
pling €, see Eq. (73). Thus, if we turn off the interband interaction, i.e. ¢ = 0
is assumed, then the lepton mixing will be absent. On the contrary, neutrinos
do not interact with the scalar fields, therefore the neutrino mixing parame-
ters ¢,g are not determined by the interband coupling e. Thus, the neutrino
mixing parameters ¢,g remain free parameters of the theory. Cosmological
data (anisotropy of cosmic microwave background radiation, formation of
structures, efc.) impose restrictions on the masses: )" m, < 0.19 eV [46],
>, my, < 0.28 eV [47]. Since m,, ~ [s|, then [¢| ~ 0.1 eV.

The matrix U (79), which is determined by the three mixing angles
12,13, i3, is unitary. The unitarity property is preserved in the presence
of one more parameter, the phase ¢, so that



8-A2.58 K.V. GRIGORISHIN

VLe r 0 0 ci3 0 size® ci2 s12 0 [vL1
vip | =10 c23  s23 o 1 0 —s12 ci2 0| ve2 |,
VLr 0 —s23 c23) \—s13¢ 0 ci3 0 0 1/ \wvws
(186)
Vil ci1o2 —S12 0 C13 0 *8136_16 1 0 0 Ve
vig | =182 c2 0 0 1 0 0 co3 —so3|| vin |,
Vi3 0 0 1 slge“s 0 C13 0 s23 23 VLr
(187)

As is well known, the complex multipliers ¢, e~* produce the violation of
CP-invariance [5, 8, 39-41]. Then, instead of Egs. (183), (184), we obtain

A Ap Ags B
A21 AQQ A23 — Re(A) +4 Im(A) 0 — { RG(A) = (()) } ’
Az Azp Asg

A

(188)

A = (Afm%) 013012—B(523813012ei6+023512)*0(023513012ei5*523512) )
Ajg = (A—m%) 13512 — B(5935135126% — cazcra) — Ccazs13512¢™ + s23¢19)
Ay = (A—m3) s13¢ "+ Bsaseiz+Ceasers
A9y = Beigeia— (E*m%) (s23513¢12€™ +Co3512) — D(cazs13c12e™ — 593512)
Aoy = Beygsio— (E—m%) (8238138126i6—023012)_D(623313312ei(5+323012) )
Agg = Bsige 0+ (E—m%) s93c13+Deogers,

i 2 5
Az; = Ceizcip—D (823813012€Z +C23812) —(F—mf7) <C235>’13€12€Z —823312) ,

Azy = Ceizsia—D(s23813512¢" —cazcr2) — (F—m3) (023513812ei5+823012> :
A33 = 08136_i5+D523613+ (F—mg) C23C13 . (189)

In the case of symmetrical interband mixing <., = Ser = §ur = ¢, it is not
difficult to see that any magnitudes of the mixing angles a2, a3, crag and the
CP-violation phase 0 satisfy Eq. (188). Thus, the asymmetry of interband
neutrino mixing selects values of the mixing angles a;; and the CP-violation
phase 6.

At present, it is known from experiments that |[Am3,;| = |m3 — m3| ~
2.51x1073 V2, |[Am2,| ~ 7.41x107° eV?, ajy = 33.4°, ang = 42.2...49.5°,
a3 = 8.6° §/° = 195fgé [42, 43]. Thus, to find masses of neutrinos, we
should solve an inverse problem: knowing the mixing angles «;k, the CP-
violation phase §, and the mass differences |[Am2 |, we can find the mixing
parameters Gey, Ser, Sur- However, such a problem is very difficult to calcu-
late. At the same time, we can see that the two angles aq2, a3 are close to
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/4, i.e. this mixing is close to full mixing. On the other hand, the mass
differences are strongly asymmetric Am?, < Am3;. In the case of symmet-
rical mixing, i.e. ¢ep = Ser = Sur = ¢, we have effective masses (178). We
can see that there is a tendency Am3; > Am3, — 0. Thus, we can estimate
the mixing parameters as

1
2~ gAmgg ~ 8.369 x 107% eV?2. (190)

Hence, the band masses of neutrinos can be estimated as

\/m»gl ~/m2, ~ |s| = 0.0289 eV, \/m2s &~ 2[g| =0.0579 eV. (191)

Magnitudes of the band masses (191) are the result of a very rough approx-
imation of the symmetric mixing <., = Ser = Gur, in reality, m2, # m?,,
although |Am?2,| < |Am3;]. Then, we can choose the mixing parame-
ters Geu, Ser, Sur to obtain the experimentally observed difference in squared
masses Ami,y, Am3, by slightly changing the parameter ¢ from Eq. (190)
(by module)

Gep = 2988 x 1072 eV, G =¢ur =2.893 x 1072 V. (192)

Then, using Eq. (176), the band masses of neutrinos can be estimated as

\/m2, =0.0286 eV, m2, = 0.0299 eV, m2, = 0.0585 eV. (193)

Unfortunately, Eq. (188) is extremely sensitive to the parameters m,;, ¢k, so
we can only make some estimations. Let us suppose a3 — 0 in Egs. (188)
and (189), then we should take

13 — 0= 19 X (3 = 38° (194)
that is close to the tribimazimal miring a2 = 35.3°, ang3 = 45°, 13 = 0.

Then /m2, + \/m2, + \/m2; =~ 0.12 eV, that is consistent with current
cosmological data ), m, < 0.19 eV [46, 47| (where all m,, > 0).

8. Systematics of elementary particles, masses of Higgs bosons,
and Dark Matter

Summarizing the results of previous sections, we can make Table 3 of
elementary particles in the three-band GWS theory (excluding quarks). We
can see that, unlike the single-band theory, in the three-band case, we have
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Table 3. Elementary particles in the three-band GWS theory: leptons, Higgs bosons
(scalar), Leggett bosons (scalar), gauge bosons (vector). Each flavor of leptons can
interact with the Higgs field of only corresponding flavor. The Leggett bosons are
sterile particles, therefore the massive modes form the so-called “ultra-light Dark
Matter”. The sterile right-handed neutrinos have exactly the same effective masses
as the corresponding active left-handed neutrinos. Each charged lepton can be
both left- and right-handed.

Electron flavor | Muon flavor | Tauon flavor
Higgs bosons H. o, H,
Charged leptons eL.R HLR TL,R
Active neutrinos VLe VLu Vir
Sterile neutrinos VRe VR VRr
Leggett bosons Gauge bosons
Massive | L; | Lo Massive | W* | Z
Massless | L3 <» Ly || Massless ¥

three H-bosons with somewhat different masses. In the limit of weak inter-
band coupling || < |a1,2,3|, we can write their flavor masses via the band
parameters

mpe = \/2|a1] < mu, = /2las| < mug, = \/2|az| ~ 100 GeV.  (195)

All H-bosons have zero electrical charge Q = 0, zero lepton charges [, [,
l; = 0, hypercharge Y = 1, and the third projection of isospin I3 = —1/2. At
the same time, the bosons H., H,,, H; interact only with the corresponding
leptons e, pi, 7 changing their chirality according to Eq. (108) as shown in
Fig. 8 (a). The masses of leptons are

Me = XP01 My = X¥02 ; Mr = X¥03 , (196)
where
ol e Sl [l e
0 b V2 by 2 % bs /203
(197)

are the equilibrium values of the scalar fields, y is the dimensionless cou-
pling constant between the corresponding Dirac fields and the scalar fields
(Yukawa coupling).
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Fig.8. The Higgs-lepton vertices (a), and the Higgs-gauge boson vertices (b).
Leptons of each flavor can only interact with the H-bosons of corresponding flavor.
W# and Z gauge bosons can interact with H-bosons of all flavors, but the photon
does not interact with the Higgs fields.

According to Egs. (150), (155), and (156), the gauge fields W* and Z
interact with all scalar fields as shown in Fig. 8 (b). At the same time,
photon « does not interact with the scalar fields and remains massless. The
masses of the charged W-boson and neutral Z-boson are

1
— 2 \/2 2 2 2\
mw s1na\/7r (31 + @3y + ¥35) = e V2T (m2+m2 +m )X
. mw
my = , (198)
cos o

where sina = 0.4721 is the Weinberg angle, e = 1/1/128 is the electro-
magnetic coupling constant at energy of ~ 100 GeV. Using masses of the
gauge boson my = 80.377 GeV, lepton masses m, = 0.51 x 1073 GeV,
my, = 0.1057 GeV, m, = 1.7768 GeV, we obtain the coupling constant x

x = 0.0104, (199)
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and the amplitudes of the scalar fields po; = m;/x

woe ~ o1 =0.05 GeV,  @ou ~ pog = 10.17 GeV,
Yor =~ Y3 = 170.98 GeV . (200)

In the standard representation of the isospinor field ¥ = % g , we

have g, = 0.07 GeV, g, = 14.38 GeV, ¢or = 241.80 GeV, so the effective

amplitude of the scalar field is g = \/ (go%l + 02, + cpgg) = 242 GeV.

If we take the electromagnetic coupling constant at energy of ~ 1 GeV:
e~ 1/4/132, then we obtain peg = 246 GeV.

Unfortunately, both the single-band GWS theory and the three-band
GWS theory do not allow us to calculate the masses of H-bosons (195).
We only know one H-boson with a mass of my = 125.10 GeV. Since the
H-boson mediates interactions between leptons (as illustrated in Fig. 8 (a)),
these interactions are interactions of a common nature, characterized by the
same coupling constant (199) in our model. They should therefore have

X2 2

approximately the same effective interaction constants ~ 2 N Wz‘z R
He Hp
2
X" and radii ~ —— ~ —1— ~ —L_ similar to the weak interactions
ULyz . MHe MHu myr
. . . . 2 ~2
which have approximately equal interaction constants ~ -%4- ~ -2 and
My mz

radii ~ % ~ %Z’ since the masses of mediators are of the same order:

my = 80.% GeV ~ my = 91.2 GeV. Therefore, the masses of H-bosons
should be of the same order too: mpe ~ mp, ~ mp,. At the same time,
different Dirac masses of leptons m. < m, < m, are caused by different
amplitudes of scalar fields ¢p1 < @p2 < @o3. The amplitudes of scalar fields
©o1, P02, o3 from Eqs. (197), (200) differ from each other by orders, namely
©o1 P02 : Yoz = Me : my : my. Thus, the small changes in the mass of
H-bosons mpye < mpg, < mpg, should be accompanied by the significant
changes of the scalar fields w1 < o2 <K pos3.

In a single-band case, the critical temperature is determined by the equi-
librium magnitude of the scalar field at T' = 0: T, = 2, at the same time,

at nonzero temperatures, we have ¢(T") = ¢(0),/1 — ?—2 [77]. Let us write

coefficients a(T") and b in the following manner:

a:/\/<T2—1>, po N (201)
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Then, the coefficient N does not take part in the condensate density ¢o(T") =

|a(g)| — %\/@ Since myg = \/m at T = O, we haVe
2

N = % (202)

For the three-band system, we can write the coefficients a123 and b1 23 as

T2 T2 T2
a =M <—1> : az = N <—1> : as = N3 <—1> ,
T3 T3 T3

(203)
b AN b 4N5 b 4N3
1= 2= s 3= 3
T3 T3 T
(204)

Here, 1.1, T2, Te3 are the critical temperatures of the corresponding bands,
if the bands were independent, i.e. ¢ = 0. In the presence of interband
coupling € # 0, the system is characterized by the single critical temperature
Tt, which can be calculated using the linearized Eq. (45) as the condition of
the existence of nonzero solutions at 7T

ay(Te) € €
€ as(Tt) € =0 = a1(Te)az(Te)as(T.) + 263 — € (a1 (Te)
€ e a3(Te)

+a2 (TC) + ag(TC)) =0. (205)

It should be noted that the coefficient d in Eq. (67) is such that d(7¢) = 0
(here a;(Tc) = ai(Tc) > 0 as follows from Eq. (63)). The solutions of
Eq. (45) are illustrated in Fig. 9 for the case of strongly asymmetrical bands
Te1,c2 < Te3. The effect of interband coupling € # 0, even if the coupling
is weak |€] < |a;(0)], is non-perturbative for the smaller scalar fields ¢ 2
— applying the interband coupling drags the smaller amplitudes up to a
new critical temperature T, > Tt c2. At the same time, the effect on the
largest scalar fields (3 is not so significant — applying the interband coupling
slightly increases only the critical temperature T, = T¢3. If the interband
coupling is weak, then the magnitude of the scalar fields ¢g1,02,03 at 7' = 0
changes very little |74, 75|, for example,

_ []a1(0)] el laz(0)| laz(0)] | _ [lax1(0)]
0o1(0) =4/ ™ +’a1(0)| b A N@/T,(Q%)

i.e. 0 (0) is predominantly determined by the intraband coefficients a;(0), b;.
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(PO3

|
! Tcs/ \T

c

Fig.9. The scalar fields ¢o1(T), w02(T), vo3(T) as solutions of Eq. (45), if the
interband coupling is absent, i.e. € = 0 (dashed lines), and if the weak interband
interaction takes place, i.e. || < |a;(0)] (solid lines). Applying the weak interband
coupling drags the smaller parameters g1 02 up to a new critical temperature
Tc > Tei,c2. The effect on the larger parameter g3 is not so significant. The
magnitudes of the scalar fields (g1 ,02,03 at T = 0 change very little.

The coefficients N1, N3, N3, i.e. Higgs masses as a generalization of
Eq. (202) in a sense

mye =2N1,  mi, =2Na,  mi =2\ (207)

cannot be calculated at the present time. In SM, the mass of H-boson

mpy = 125.10 GeV is taken from experiment as a parameter of the theory. In

superconductors, the coefficient A/ plays role of the density of electron states

on the Fermi surface. The critical temperature T. depends exponentially on

N, T ~ ¢p(0) ~ 2exp (—g%), at weak coupling, where {2 is the phonon

frequency and g is the constant of the electron—phonon interaction. The
larger the parameter A/, the higher the critical temperature T.. In our
model, N1 < My < N3 and pg1 < @2 < @3 mean that small changes to the
parameter N cause large (exponential) changes to the scalar field ¢g. Then,
by analogy with the BCS theory, we can assume that the amplitudes of the
scalar fields ¢g; at T' = 0 are determined by the corresponding parameters

N;
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1 1
po1 = Qexp( N1> , cpogzﬁexp<—gN,2) , Pz = Qexp( gN3>
(208)

where the parameters g, {2 are some common parameters for all three bands.

Thus, the change in ¢ (T¢) is accompanied by the logarithmic change of A.

Moreover, if the “interaction constant” is zero, i.e. gN = 0, then the “con-

densate” is absent @9 = 0. Thus, the scalar fields ¢; can be a result of

the Cooper pairing of some more fundamental fermions as, for example, in

models with the top-quark condensation [78, 79| or with the technicolor [80].
We can get rid of the parameter (2

1n9002_1<1_1> 1n3003_1<1_1>

o1 g\M  Ny)~ o1 g \M N3/~
©03 1/1 1 )

m¥% _ S ) 209
©02 g (Nz N3 ( )

By eleminating the parameter g, we obtain an expression connecting the
parameters N7, No, N3 between themselves

2 2 2
N — M Ng A My, — Mge My, _ A

Ny A _ 2 210
Ns—MNM Ny B m%ﬁ fm%{e m%m (210)

sy

where we have used Eq. (207), mpge # mp, # mu,, and we have denoted

©o2 ln@
A= Gy ooy = 189, Bzhl%:A+1:2.89. (211)
©02 02

Thus, due to the three-band system, the magnitudes of the Higgs masses
mpe < My, < mp, are related by Eq. (210). We assume (as will be
demonstrated below) that the 7-Higgs boson coincides with the observed
H-boson of mass my = 125.10 GeV, i.e. the masses of my, and mpy,. are
limited from the above by the mass 125.10 GeV. Using Eq. (210), we can
find mass of the lightest H-boson myg. as a function of the boson of medium
mass myy, at known mass of the heaviest H-boson mpy, = 125.10 GeV

Bqu — Am%{
= T T 212
MHe me,\/B HT AmH# ’ ( )

as illustrated in Fig. 10.
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Fig. 10. The mass of the e-Higgs boson my. as a function of the mass of u-Higgs
boson mp,, which is limited above by the mass of the 7-Higgs boson mpg, =
125.10 GeV.

Thus, in the proposed model, we have H-bosons of three flavors (genera-
tions) He, H,, H, which should be characterized by quantum numbers sim-
ilar to, for example, lepton numbers or quark flavors. However, at present,
only one H-boson of mass 125 GeV is observed experimentally. Let us
consider the processes of the H-boson production [48-50|. These processes
can be categorized into two types: (a) production by the vector bosons —
Fig. 11 (a) due to interaction (100), (b) production by the heaviest quarks
(t and b) — Fig. 11 (b) due to the Yukawa interaction similar to Eq. (108).
First, let us compare the constants for coupling between gauge bosons and
H-bosons of each flavor (generation) from Eq. (100) using Eq. (200)

2¢200e : 2¢%p0,, ¢ 2¢%por = 0.00028 : 0.059 : 1. (213)

Thus, gauge bosons W+, Z most efficiently radiate H, bosons. H u and H,
bosons must also be radiated, but they are extremely inefficient compared
with H: bosons.

Now, let us consider the production of H-bosons by quarks (or leptons)
We should calculate the constants of Yukawa coupling x as x = 2«
an index ¢ means flavor. The amplitudes of the scalar fields ¢q; are taken
from Eq. (200). The results of this calculation are presented in Table 4.
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(a)

(b)

Fig. 11. Some processes of Higgs-boson production: (a) production by the vector
bosons W+, Z, (b) production by t and b quarks (here the blue lines g represent

gluons).

Table 4. Masses (experimental) and Yukawa constants of elementary fermions y
calculated in the three-band GWS theory using amplitudes of the scalar fields g,

zw*

zw3

from Eq. (200) for the corresponding “flavors” (generations).

Electron flavor

Muon flavor

Tauon flavor

Scalar fields poe = 0.05GeV | o, =10.51GeV | o, = 176.70GeV

Charged leptons | m. = 0.0005 GeV |m, = 0.1057 GeV | m, = 1.7768 GeV
x = 0.010 x = 0.010 x = 0.010

Up quarks m, = 0.0023 GeV | m, = 1.275 GeV |m; = 173.210 GeV
x = 0.046 x = 0.121 x = 0.975

Down quarks mq = 0.0048 GeV | mg = 0.095 GeV | my = 4.180 GeV
x = 0.096 x = 0.009 x = 0.024

8-A2.67
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The probability of producing or decaying of the H-bosons is I" < x2. The

squared Yukawa constants related to the t-quark coupling constant: x?/x?

m?2

mi
are shown in Fig. 13. In the single-band GWS theory (i.e. in SM), the masses
of fermions are controlled by x only, because the scalar field ¢ is single.
In the multi-band GWS model, the masses of fermions are controlled by

both x and the corresponding (for each generation) amplitudes of the scalar

are shown in Fig. 12. For comparison, the Yukawa constants for SM i‘(—z =
t

1,0
L% o) O

0,015
0,010

0,005

0,000 -
e u t d u s c b t

Fig. 12. Squared Yukawa constants related to the t-quark coupling constant: i—z in
the three-band GWS model. '

1,0
O 0L =

0,0006
0,0005
0,0004
0,0003
0,0002
0,0001

0,0000 L ——— - ; —

e n T d u s c b t

X2
X7

Fig. 13. Squared Yukawa constants related to the ¢t-quark coupling constant:

%z in the single-band GWS theory (Standard Model).
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fields ¢g;. Thus, the differences between Yukawa constants for different
flavors are somewhat smoothed out, as we saw earlier for leptons of all
flavors x = 0.01. However, from Table 4 and Fig. 12 (and also Fig. 13),
we can see that x; is giant, moreover m; > mpy (but mep < mpg). This
means that H -bosons are produced in the vast majority of cases, as in the
described above production, by the vector bosons W+, Z

Let us consider the decays of the H-boson into quarks or leptons shown
in Fig. 2. According to SM, the H-boson should decay as H — bb with
a probability of 57.5%, H — 77 with a probability of 6.30%, H — c¢ with
a probability of 2.90%, and H — pji with a probability of < 0.022% [50]. As
an illustration, the squared Yukawa constants for fermions of the second and

third generations (muon, tauon, s-quark, c-quark, b-quark) related to the

b-quark coupling constant X Z—z calculated in SM are shown in Fig. 14.

Thus, in SM, the H-boson 1nteracts most strongly with the third generation,
wh1ch is the most massive, therefore the H — bb and H — 77 decays are
dominant. However, the decays into the second-generation fermions H — c¢
should also be noticeable.

X[ 150
0.8 —-
0,64
04

0,24

0,0~

n T S [ b

Fig. 14. Squared Yukawa constants for fermions of the second and third generations
(muon, tauon, s-quark, c-quark, b-quark) related to the b-quark coupling constant:
2
X = %2 in the single-band GWS theory (Standard Model).
b b

=

At the same time, there has been no experimental evidence found in di-
rect searches by the ATLAS and CMS collaborations [51, 52] of the H-boson
decaying into charm quark—antiquark, into strange quark—antiquark, and
into electron—positron. The decay into muon—antimuon has been detected
with a significance of 30 [53], which is clearly not enough for an experi-
mental fact (i.e. more than 50), moreover, there are similar decays such as
H — ~ypp,vee, which occur through many intermediate channels due to
various interactions (via virtual photon, Z-, W-bosons, quarks) with a sig-
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nificance of 3.20 [54]. This fact (the absence of observations of decays of
H-bosons into fermions of the first and second generations) is usually asso-
ciated with the small Yukawa constants of the first and second generations.
However, from Fig. 14, we can see that the decay rate into a pair of c-quarks
is not much less than the decay rate into a pair of 7-leptons, i.e. x> < x2 (the
decay probabilities are 2.9% and 6.4%, respectively). On the other hand,
such rare decays as two-photon decay H — ~+ with probabilities of ~ 0.2%
have been detected.

If we turn to the three-band GWS model, then we have the squared
Yukawa constants for fermions of the second and third generations (muon,
tauon, s-quark, c-quark, b-quark) related to the b-quark coupling constant:

i—z shown in Fig. 15. Let us compare these relations with those in Fig. 14.

b
It is not difficult to see that

F(HT—>T7_')%F(H—>TZ')%0.2' (214)
I'(H: —bb)  I'(H — bb)

This means that the probability of decay of the H, -boson into 7-leptons
regarding the decay into b-quarks in the three-band GWS model and prob-
ability of decay of H-boson into 7-leptons regarding the decay into b-quarks
in SM model are almost equal. However, in the three-band model, the
H, — cc,H; — s5, H. — pji decays are prohibited. But the H,, — c¢, s3, pji
decays are allowed, with the H,, — c¢ decay dominating sharply. As have
been demonstrated previously, the H,-boson is emitted extremely ineffi-
ciently. Thus, due to the inefficiency of production of H, and H, by gauge

6 ) —

0.8
0.6
044

0,2

0,0-

n T s c b

Fig. 15. Squared Yukawa constants for fermions of the second and third generations
(muon, tauon, s-quark, c-quark, b-quark) related to the b-quark coupling constant:
2
% in the three-band GWS model.
b
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bosons, the anomalously large Yukawa constant of the t-quark and the huge
background from QCD, searching for H., and H, by hadron-hadron colli-
sions at the LHC requires to probe the Higgs decays to a deeper level with
sufficient accuracy. At the same time, there are plans to build the Future
Circular electron—positron Collider (FCC-ee) that would provide measure-
ments with unprecedented precision and potentially point the way to physics
beyond the SM [81]. It would allow us to look for H, in direct e~e™ col-
lisions at high energies, since then the background from QCD should be
absent, electron—positron pairs can annihilate directly to H.-bosons (simi-
larly to how muon-antimuon pairs can annihilate to H,-bosons and tauon—
antitauon pairs can annihilate to Hr-bosons).

Proceeding from the aforesaid, we should identify H,-boson with exper-
imentally observed H-boson

HT = Hobserved . (215)

Other generations (flavors) of H-bosons, H, and H., require detection.
Thus, the H-boson of the electron flavor (the first generation) should decay
as H, — dd, ua, eé.

It should be noted that in recent years, the observation of so-called
“multi-lepton anomalies” [82, 83| at the Large Hadron Collider is inter-
preted (with a local significance of < 30) as the existence of beyond the
SM Higgs bosons: a new scalar particle S with a mass of mg = 151 GeV,
produced from the decay of a new heavier scalar particle H (with a mass
of my > 276 GeV) into a lighter one S and the SM Higgs h: H — Sh,SS
according to 2HDM + S model [84, 85]. However, the significance of this
anomaly is debatable [86]. The CMS and ATLAS collaborations reported
on the signal with the production cross section of the SM-like scalar ¢
with a mass of ~ 95 GeV which manifests itself as the diphoton decay
pp — ¢ — vy [87-89] with a local significance of 1.70...2.90. During
the search for additional Higgs bosons ¢ and vector leptoquarks in 77 final
states CMS found a 3.10 excess of events for pp — ¢ — 77 at an invariant
mass mg ~ 100 GeV and a 2.60 at an invariant mass mg ~ 95 GeV. Thus,
the low significance of these anomalies (< 30) does not make it possible to
interpret them as unambiguous confirmation of multi-HDM models. It is
possible that these recorded signals correspond to some very heavy meson
resonances or tetraquark resonances.

As we could see in Sections 2, 3, 5, 6, due to the interband coupling, the
Goldstone modes from each band (oscillations of # and ¥ phases) transform
into the following normal modes of the system. The twofold degenerated
acoustic mode g,g" = 0 is a common mode oscillations of the phases of the
isospinor fields ¥ 2 3. The propagation of this mode is accompanied by the
current J# # 0, hence this mode is absorbed by the gauge fields W,,, W, Z,,.
Other modes are the Leggett modes, which are antiphase oscillations of
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the phases of the isospinor fields. The propagation of the L-modes is not
accompanied by the current J* = 0, hence they do not interact with the
gauge fields. Moreover, the Leggett modes do not interact with the Higgs
modes in the linear approximation if attractive interband coupling takes
place € < 0. Furthermore, these modes do not interact with the Dirac fields
12,3, unlike the Higgs modes. Thus, the Leggett modes do not interact
with any particles, i.e. they are sterile. These modes can only manifest
themselves through gravity on astrophysical scales. One of the L-modes is
the twofold degenerated acoustic mode ¢,g" = 0, which we labeled L3 <+ L4
in Table 3. However, the massless bosons lose their energy in the process of
space expansion, similarly to the relic photons. Moreover, ultrarelativistic
particles cannot be assembled into a self-gravitating halo. Therefore, such
particles do not contribute to DM. However, other two modes L.y and Ly are
massive with masses determined by the coefficient of the interband coupling
as ¢,q" ~ e. The masses of L-bosons can be calculated using Eqgs. (160),
(161), and (200)

me1 =5.83]e|,  muo =85.98\/]¢]. (216)

Since the L-bosons do not take part in the electro-weak interaction, they
cannot decay, for example, into two photons, therefore the L-bosons are
stable particle. Obviously, the massive L-bosons are able to form stable
gravitationally bound structures (halo, clusters, etc.). Therefore, the mas-
sive L-bosons are suitable candidates for DM.

9. The masses of Leggett bosons and the cuspy halo problem

In Section 8, we found that the Leggett modes do not interact with any
particles, 7.e. these modes are sterile and they can only manifest themselves
through gravity on astrophysical scales. Therefore, the massive L-bosons are
particles of so-called Dark Matter (massless, i.e. ultrarelativistic, L-bosons
cannot be accumulated in self-gravitating clusters). Masses of L-bosons are
determined by the coefficient of the interband coupling e, see Eq. (216). This
coefficient can be arbitrary small because the effect of interband coupling is
nonperturbative.

Observation of DM density distributions (halo around a galaxy) seems to
prefer a central density as p ~ r°. For example, the empirical core profiles
can be described by the following function with two parameters: a scale
radius 9 and a scale density pg [25]:

p(r) = Hp{’) (217)

However, in the large-scale simulations using the collisionless cold Dark Mat-
ter model, the inner region of the halo shows a density distribution described
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by a power law p ~ r* where o = —1. Such behavior is now called a “cusp”.
One example is the Navarro—Frenk—White profile

Po
T s 2
()

Since the mass of L-bosons can be extremely small and the critical tem-
perature of BEC can be very high (because the coefficient |e| can be arbi-
trarily small), then the Bose-Einstein condensate Dark Matter (BEC DM
or Scalar Field Dark Matter, Fuzzy, Wave, Ultra-light Dark Matter) can
form [25, 29, 31]. This means that the halo is described by the macroscopic
wave function

plr) = (218)

\/Mzb(r) =/p(r,t) eSrt) (219)

where M = mN is the total mass of the DM halo, m is the DM particle
mass (mass of L-bosons, see Eq. (216)), N is the number of the particles in
the halo. Then the quantum Euler—-Madelung equation for the stationary
D(VS(rt)) _ A
case — 5, =01s
\Y% v
g——p+aVT+—Q=0, (220)
p m

where g is the gravitational field strength

T

g= _dnGr /p(r’)r’2d7“/. (221)

r3
0

L-bosons do not interact with anything except through gravity, so we can
assume “dust” matter p = 0. In BEC at T — 0, the entropy can be supposed
o = 0 or the profile can be suppose isothermal VI = 0. @ is a quantum

potential

R Ay/p
2m /p '
i.e. %VQ is the quantum pressure term.

Let us consider the central cusp of profile (218) in a form of p(r) = pp™2.
Then the gravitational field strength is

Q- (222)

g = —4rGporo— , (223)
T

and the quantum pressure term takes the form

vQ R 1r

- - 924
m 2m2 3 r (224)
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We can see that, while the field strength is finite, the quantum pressure is
singular at » = 0. Thus, the equilibrium cannot be achieved. Such a cusp
should be blurred by itself.

Now, let us consider the observed profile (217). At r — 0, we obtain

47 T V@ h? 6r r
— — " Gpor— - 225
g 3 PO m  m2 ré r’ (225)

from which we can see that the Euler equation (220) can be satisfied when
a7 n? 6
—Gpo=——. 226
3 £o m2 T‘é ( )

Obviously, if por3 ~ M, then we have from Eq. (226)

mS M4 h?

w0 GmEar (227)

po ~ G*

Thus, due to the quantum pressure, the central density p(r — 0) is not
singular. From Eq. (227), we can see that the extremely small mass m =
mr, ~ 10720 eV can ensure the small central density py and the large pro-
file width ry. At the same time, we can see that the spatial distribution
(217) does not give a finite mass of a self-gravitating Dark Matter halo:

fo _rfdr o A good approximation would be the profile obtained in
1+(r/ro)?

Ref. [91] for a self-gravitating system

_ P
p(r) = Coshf(:o) ' (228)

This distribution becomes the profile (217) at r < rg, at the same time, it
gives a finite mass of the halo: M = 753 pm‘S’ Unfortunately, we cannot verify
(228) by direct substitution into Eq. (220) because the integral [ rrdr

cosh?(r/r0)
cannot be calculated analytically. However, we can verify it at another limit
r > r9. Then we have

Mr vQ R 1 r
- o=r e 2 229
g r2or’ m m2 rirg r (229)

Obviously, Eq. (220) is satisfied at 7o = anizM’ which corresponds to Eq. (227).
Thus, the spatial distribution (228) can describe the DM halo.
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Using Eq. (227), the mass and radius of the DM halo of the Milky Way
M ~ 102Mg and ry ~ 120 kpc [11], we can estimate the mass of an
L-boson m = my, ~ /]¢|, and using Eq. (216), we can then estimate the
magnitude of the parameter of the interband coupling |¢| my, ~ 1072 eV =
le|] ~ 107°* V2. However, numerical simulations demonstrate that the
DM halo has some structure: a core from BEC of a size of ~ 1 kpc and
the above-condensate Bose gas behaving as the cold DM, then a mass of
~10722...1072Y eV [28-32] is assumed. Indeed, observations of the stellar
kinematics of dwarf galaxies give the mass of just ~ 10722...10720 eV [33~
35]. Then, we can suppose

my, ~ 10720 eV = |e| ~ 1074 V2, (230)

As mentioned above, the interband coupling is nonperturbative, therefore
even such a small magnitude of € determines the symmetry and spectrum of
the system.

The L-bosons can appear due to vacuum decay after inflation and precip-
itate into the Bose-condensate. The temperature of the Bose condensation

. 2/3 p2 2/3  p2 . " .
is TeC ~ nm{ TT?kB = pcr/ m%% ~ 103! K, where p, is the critical density

of the universe. Thus, Tggc is commensurable with the Plank temperature
Tpiank ~ 1032 K. Thus, the L-bosons are so light that Tgrc ~ Tplank Which
means that the L-bosons should always be in BEC. This indicates a purely
condensate nature of the DM halo and not a two-component structure with
the condensate core of a size < 1 kps and a cloud of above-condensate Bose
gas of a size ~ 120 kps. L-bosons could condense in BEC during the early
years of the universe. Galaxies, galaxy clusters, and superclusters are im-
mersed in the Bose-condensate clouds of sterile massive L-bosons that create
the effect of Dark Matter.

Using Eq. (227), let us estimate the radius of the Dark Matter halo
7o and the mass of the Milky Way (mass of Dark Matter) M ~ 10'2M,
assuming my, ~ 1072° eV. Then we obtain 79 ~ 10~° pc, which is in no way
comparable to the radius of the DM halo being around R ~ 120 kpc. In
connection with this fact, a hypothesis has been proposed [92, 93], regarding
the formation of Bose stars, a large number of which can form the dark halo.
However, we can propose another model. Let us compare the energy of the
halos with sizes ro and R, respectively,

M? M?
By~ —G— ~—-10%J, Erp~-G— ~—-10%1]. (231)
To R
These energies correspond to two different states of BEC — the ground

state v, with energy E,, and excited state ¢)r with energy Eg, which are
solutions to the Gross—Pitaevskii equation
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2
—h—Aw(T) _m47rGM

2m T

/ WO ERAr(r) = (), (232)
0

where 4 = E/N = EJ;. We can see that the Hamiltonian of the self-
gravitating system is determined by its eigen-state . Thus, different states
(ground and excited) correspond to different Hamiltonians of one and the
same system. This means that the states corresponding to different energies
may not be orthogonal to each other, for example, [ 1y, wzd?’r 2 0. Suppose
we excite the system from the ground state v,, to an excited state 1)r. Such
a transition stipulates the restructuring of the potential U,, — Ug, so that
our excited states ©gr become the ground state of the new potential Ur as
demonstrated in Fig. 16.

Mo R r

Fig. 16. Potentials U,, and Ug for the ground state ¥,, with energy F,, = ,uro%
and an excited state ¥ with energy Er = uR%, respectively. The corresponding
radii of the DM halos are ry and R.
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Let us enlarge the radius of the system by n > 1 times, i.e. 1o — nro,
where rg is the “Bohr radius” for the self-gravitating system. The wave
functions for the ground and excited states have the corresponding forms

ﬁcoshl(;) | .

balr) ~ V3T (234)

n>1.
3/2 ’
(nTO) COSh (%)

Prg (T) ~

Here, the value rg plays the role of the Bohr radius, R = rgn. The average
energy of a self-gravitating system in the state 1 is

o0
M R*4x
m 2m

E

9 oo
(v¢ﬁr%h-“§rcm4{/uﬁﬁdr. (235)
0 0

Substituting the ground-state wave function (233) into Eq. (235), we obtain

h2M 0. 4 .24 A B
E:E—igg—EGM” gzﬁ—f. (236)
w2m?2 S 4 ro TS 1o

Minimizing this energy by the radius rg, we obtain

A, _ B B 58GM?
TR A GmEM T T T TIA T Ty A g
9.80 G2M3m?2
T = (237)

Substituting the excited-state wave function (234) into Eq. (235), we obtain

A B 2 1
R = =F=——-—=Fkr=F,|—-———] . 238
nro n2r3  nrg " o (n n2> (238)
For the highly excited states n > 1, we have Er = 2%0, unlike the excited
energies of a hydrogen atom: F, = %

Obviously, the self-gravitating system aspires to transition to an under-
lying state. To do so, the system must give somewhere the released energy
E(R1) — E(R2) > 0, where Ry < R;. Let us consider transition of the
system from a high “orbit” to a lower one. As a result, the cloud collapses
and heats up. However, as we could see above, the L-bosons are sterile par-
ticles, that is, they do not scatter with each other or with baryonic matter.
Hence, the above-mentioned mechanism of cloud collapse does not work.
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Then there is only one way: in order to make a transition from the state ¢r
to the state 1)y,, it is necessary to radiate gravitation waves (since an atom
making a quantum transition from an exited state to an underlying state
radiates photons). The energy loss rate and the halo compression rate due
to gravitational radiation can be estimated using the two-particle attraction
problem according to Newton’s law [94]

dE  G*MP 21 drR G*M3 10
~ ~ 1 —~ ——— ~ 107 2
& e 0° J/s, g” T 0" m/s, (239)
from where we obtain the relaxation time to the ground state vy,
(R =rg)c® s
T = W ~ 10 S, (240)

which is incommensurably greater than the age of the universe 4 x 107 s.
Thus, the DM halo of a galaxy is similar to Rydberg atoms (instead of the
Coulomb interaction — self-gravity, and instead of electro-magnetic radia-
tion — gravitational radiation, however instead of electrons — L-bosons). A
notable feature of Rydberg atoms is their very long lifetime compared to the
lifetime of low-excited states, so for the hydrogen atom 7(n = 2) ~ 107% s
against 7(n = 1000) ~ 1 s. As we could see above, the analogous situation
takes place for DM halos. Thus, the DM halo is a Rydberg, self-gravitating,
many-boson atom. It should be noted that we have proposed the simplest
model of the halo as an excited state of a self-gravitating many-boson sys-
tem. However, the excited states can also be much more complex structures.

10. Higgs modes at T' = T

Let us consider a three-band system near the critical temperature 7¢1,
Tea, Tes < T < Te. In this region, cpgi ~ |e|/b; [74]. Then we have from
Eq. (63)

Oéi(T) = CLZ‘(T) >0. (241)
Then coefficients a, b, d (67) in the dispersion equation (66) take the form
W(T) = —a1—az —as,
o(T) = aras + araz + agaz — 3¢, (242)
d(T) = —ajasaz —2€* + €*(a1 +az + az),

where we have accounted cos 8;;, = 1. From the equation for critical temper-
ature (205), we have d(T.) = 0. Then, from the dispersion equation (66),
we obtain the corresponding dispersion relations at the critical temperature

quq"(Te) = 0, (243)

qua" (1) = (b= Vb2 —4c) /2> 0. (244)
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For the first mode (243) (i.e. for the common-mode oscillations, see Fig. 7)
the energy gap vanishes at the critical temperature, as it takes place in the
single-band model. At the same time, the energy gaps of the second and
third modes (244) (i.e. for the antiphase oscillations, see Fig. 7) do not vanish
at the critical temperature. Thus, for symmetrical bands a1 = as = a3 = «a,
the massive modes have the same spectrum (b? — 4c = 0 taking into account
the condition d(T;) = 0 = a(Tc) = 2|e|)

quq"(Te) = 3le| = mu12(1c) = \/3le]. (245)

Thus, the energy gaps of the second and third Higgs modes are determined
by the interband coupling €. At the same time, at T = T, the second-
order phase transition occurs: all equilibrium scalar fields become zero
vo1(Te) = wo2(Te) = @o3(Te) = 0, see Fig. 9. Higgs bosons are oscilla-
tions of the modules |p1], |¢2], |¢s| of the condensates. Since all p;(7T) = 0,
then the nonzero energy gap q,q"(71c) # 0 of the Higgs modes at T' = T
is a nonphysical property. In other words, at T' > T, there is nothing to
oscillate, there are only fluctuations, where (¢;) = 0, (p?) # 0 [95]. There-
fore, nonzero masses of Higgs bosons at T' = T, are incompatible with the
second-order phase transition.

In order to solve this problem, in Refs. [70, 74, 75|, the intergradient
interaction in the form of (8MSPZ-8“£{7; + 8“&?1*8M£Pk) has been proposed.
With special choice of the coefficients 7;, we obtain a single Higgs mode with
the correct dispersion law q,¢" (1) = 0 (but g,¢"(T < T;) > 0) and single
Goldstone modes g,¢" = 0 (i.e. the Leggett modes are absent). However,
unlike in superconductivity, there is no restriction on the type of phase
transition in the field theory. Thus, the second-order phase transition can
be turned into the first-order phase transition by, for example, quantum
corrections to the Lagrangian of the scalar field which interacts with the
gauge fields [77]. Alternatively, we can use the effective potential [96] in the
following form:

U( T):lN T—2—1 2 _Lopgs 4 Ly (246)
©, N\ 72 7= gele” + b,

where T is the lower spinodal temperature. Due to presence of the cubic
term ¢T'@3, the potential describes the first-order phase transition at the

critical temperature T, = T and the jump of the density of the

\/1-2c2T2 /9N
condensate A‘p%ETC) = %% Thus, the presence of the jump, i.e. po(7,) # 0,

allows for the existence of the nonzero energy gap q,,¢"(7c) # 0 of the Higgs
modes at T' = T.. Any other options can be considered.
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11. Results

In this work, we proposed an extension of the Glashow—Weinberg—Salam
model of the electro-weak interaction using analogy involving three-band
superconductors with interband Josephson couplings. The proposed model
describes important phenomena formulated in Section 1:

— There are two ultra-light sterile bosons — the Leggett bosons, the
Bose—Einstein condensate of which plays the role of the Dark Matter
halo. The halo is in an excited yet stable quantum state. There is no a
central cusp due to the quantum pressure counteracting gravitational
compression. In order to obtain the L-boson, at least two bands are
required. In the case of the multi-band system, the attractive inter-
band coupling € < 0 should take place in order for fermions to acquire
Dirac masses.

— Dirac neutrinos receive effective masses which manifest themselves in
the neutrino oscillations and S-decays. In order to obtain the neutrino
oscillations and violation of CP-invariance, at least three bands are
required. The mixing angles for charged leptons are negligibly small,
so the flavor oscillations of electron—-muon—tauon cannot be observed.

— There are neutral Higgs bosons of three flavors: H,., H,, H;. Each
interacts only with the corresponding generation of fermions, where the
heaviest boson H; is associated with the observed H-boson. Therefore,
decays of the H-boson into fermions of the second and first generations
through the Yukawa interaction are prohibited. Another more light
flavors H, and H, require detection as an experimental test of the
proposed model. At the same time, these two additional H-bosons
interact very weakly with gauge and Dirac fields, which makes them
difficult to detect.

— The masses of each generation of fermions are determined by the
Yukawa couplings with the amplitudes of the corresponding conden-
sates ©oe, Pou, por of the scalar fields. The slight mass asymmetry
mpge < myg, < mpg; leads to the strong band asymmetry g, <
You <K @or. Therefore, the fermion masses differ by orders of magni-
tude m, < m,, < m-.

It should be noted that, unlike extensions of SM such as nHDM or nHDM+S5,
the proposed model does not generate a large number of other particles (for
example, charged Higgs bosons), that can essentially interact with ordinary
matter. In addition, the proposed particle candidates for DM — the Leggett
bosons — are absolutely sterile, which means that they cannot even weakly
interact with matter (as neutrinos).
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Appendix A
Some symmetric SHDM potentials

Following [65], a scalar 3HDM potential symmetric under group G can
be written as

V=Vy+ Vg, (A.1)

where

3
b;
Vo = > ai|W|* + 3 5"+ bro [0 2@ + byg | [ [W5]? + bos| o |? |3
=1

+hhz (00" W2) (W50 + bl (W17 W05) (0570 ) + by (W57 W5) (U7 W0)
(A.2)
is invariant under the most general U(1) ® U(1) gauge transformation and

Vi is a collection of extra terms ensuring the symmetry group G. The
U(1) ® U(1) group is generated by

e 0 0 e HB3 0 0
0 e 0 0 B30 : (A.3)
0 0 1 0 0 B3

However, in the present work, we use the minimal model, where b;; =b}, = 0.
A potential symmetric under the U(1) group is

Vo) = Vo + Aias [(1170) (%57 %) + (01057) (%2%)] - (A4)

The U(1) group is generated by

e—ZO{ 0 O
0 ¢ 0 (A.5)
0 0 1

A potential symmetric under the U(1) ® Zs group is

Vuyez, = Vo + Az [(W;%f + (%%*)2} : (A.6)
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The U(1) ® Zs group is generated by

e2B/3 0 0 -1 0 0
0 B30 0 -1 0 |. (A7)
0 0 etB8/3 0 0 1

A potential symmetric under the Z, group is
2 2
Vz, = Vo + €12 W] W + 10| + Aip [(Wfrwz) + (1) }
2 2 2
s [ (570)" + (B0 ] + e | (05 08)° + (2)°] . (A9)

The Zs group is generated by

-1 0 0
0o -1 0 |. (A.9)
0 0 1
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