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By analogy with the Ginzburg–Landau theory of multi-band supercon-
ductors with inner (interband) Josephson couplings, we formulate the three-
band Glashow–Weinberg–Salam model with weak Josephson couplings be-
tween strongly asymmetrical condensates of scalar (Higgs) fields. Unlike the
usual single-band model, we found three Higgs bosons corresponding to the
three generations of particles. Moreover, the heaviest of these bosons corre-
sponds to the already discovered H-boson and decays into fermions of only
the third generation through the Yukawa interaction. The other two decay
into fermions of the first and second generations, but they are difficult to
observe due to very poor production conditions. We found two sterile ultra-
light Leggett bosons, the Bose condensates of which form the dark halos of
galaxies and their clusters (i.e. so-called Dark Matter). The masses of the
Leggett bosons are determined by the coefficient of the interband coupling
and can be arbitrarily small (∼ 10−20 eV) due to non-perturbativeness of
the interband coupling. Since propagation of the Leggett bosons is not
accompanied by a current, these bosons are not absorbed by gauge fields,
unlike the common-mode Goldstone bosons. Three coupled condensates
of the scalar fields are related to the existence of three generations of lep-
tons, where each generation interacts with the corresponding condensate
getting mass. The interflavor mixing between the generations of active neu-
trinos and sterile right-handed neutrinos in the three-band system causes
the existence of mass states of neutrino without interaction with the Higgs
condensates.
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1. Introduction

The Standard Model (SM) is an SU(3)c ⊗ SU(2)I ⊗ U(1)Y gauge the-
ory. Here, SU(3)c is the symmetry of the strong color interaction of quarks
and gluons. The group of the weak isospin I and the weak hypercharge Y ,
SU(2)I ⊗U(1)Y , describes the electroweak interaction of quarks and leptons
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mediated by the corresponding gauge bosons A⃗µ, Bµ. Due to the coefficient
a < 0 in the potential for the scalar field aφ+φ + b

2(φ
+φ)2, the complex

scalar field φ = |φ|eiθ acquires a nonzero vacuum expectation value, which

can be supposed as |⟨0|φ|0⟩| =
√

|a|
b ≡ φ0, and the SU(2)I ⊗ U(1)Y elec-

troweak symmetry is spontaneously broken down to the U(1)Q gauge sym-
metry of electromagnetism with the electrical charge Q = Iz + Y

2 . Here,
the Higgs mechanism takes place: the phase θ is absorbed by the gauge
fields, and while three linear combinations of the gauge fields interact with
the condensate φ0 and become massive (i.e. W+,W−, Z bosons), the pho-
ton γµ = Azµ sinα + Bµ cosα remains massless g2

4 φ
2
0(AxµA

µ
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1
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4 φ
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µ (here, sinα = 0.47

is the Weinberg angle, e = 1/
√
137 is an elementary charge in the Gaussian

system of units, g = e
sinα , f = e

cosα , g̃ 2 = g2 + f2). In addition, the Dirac
fields ψ (spinor) interact with the condensate by the Yukawa interaction
χ(ψ̄LφψR+ ψ̄Rφ

+ψL), and, as the result, leptons obtain masses mDi = χiφ0

(where i = e, µ, τ — electron, muon, tauon); it is analogously for quarks,
however neutrino remains strictly massless, and it is supposed that the right-
handed neutrino νR and the left-handed antineutrino νCL are absent [1, 2],
but in various extensions of SM, the existence of additional neutrinos with
different parameters is allowed, for example, the neutrino minimal Standard
Model (νMSM) supposes the existence of three sterile right-handed neutri-
nos νR [3]. It should be noted that the lepton mixing and the quark mixing
occur in such a way that some elements of the mixing matrices, i.e. the
PMNS matrix for neutrino mixing and the CKM matrix for quark mixing,
are complex (presence of phase multipliers e±iδCP), which results in the CP
violation [4–9].

SM with its minimal Higgs structure successfully describes the nature
of fundamental particles. Especially, the Glashow–Weinberg–Salam (GWS)
model of the electroweak interaction provides an extremely successful de-
scription of the observed electroweak phenomena. However, SM in its present
form is unable to describe a number of extremely important phenomena. In
the present work, we would like to discuss some of them.

1.1. Dark Matter

At present time, it is well known that the total mass–energy of the ob-
servable universe consists of 5% ordinary matter (baryonic, leptonic, pho-
tonic), 26% Dark Matter (DM), and 69% in the form of energy known as
the dark energy [10]. Thus, DM constitutes 81% of the total mass. Thus,
the total mass of the Milky Way taking into account DM is estimated as
M ∼ 0.8 . . . 1.2 × 1012M⊙ and the radius of the DM halo is estimated as
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r0 ∼ 120 kpc [11]. On the contrary, the mass of baryonic matter in the
Milky Way is estimated as MB ∼ 5 . . . 7× 1010M⊙, and radius of the disk is
estimated as rB ∼ 25kpc. Thus, DM constitutes 94% of the total mass of the
Milky Way and the region occupied by the relatively dense baryonic matter
is a very small region in a central part of the DM halo. Thus, the Milky
Way (in the same way as other galaxies and galaxy clusters) is immersed
in an almost homogeneous cloud of DM as illustrated in Fig. 1. Moreover,
density perturbations in the baryon–electron–photon plasma before recom-
bination do not grow due to high light pressure. Instead, the perturbations
produce sound waves that propagate in the plasma. Since DM particles do
not interact with photons, there is nothing to prevent them from forming
self-gravitating clusters. After recombination, baryons fall into potential
wells formed by DM. Galaxies form in those regions where DM originally
formed self-gravitating clusters [12]. Thus, without DM, no structures would
have been formed, no galaxies, no life.

dark matter halo

spherical stellar halo

 Galaxy

(r)

Fig. 1. Top figure: the region of the DM halo compared with the size of the
galaxy and its stellar halo. Lower figure: corresponding profiles ρ(r) of DM density
(dark line) and baryonic matter density (blue line). The dashed line is the result
of numerical simulations of the distribution of DM density, where we can see a
singularity — “cusp”.
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Thus, we have a situation, when SM does not describe 81% of matter
in the universe. Attempts have been made repeatedly to expand the SM
so that it would include particles of DM. Since such particles do not man-
ifest themselves in any way except through gravity (do not absorb, radiate
or scatter electromagnetic waves and do not cause any significant nuclear
reactions), they must be almost sterile: they do not interact with photons
and do not participate in strong interactions, only the weak interactions are
allowed. Therefore, they have been proposed as candidates for DM particles,
for example, sterile (right-chiral) neutrinos [13–16] with a mass of ∼ 1 keV,
neutralinos (as WIMP) with a mass of > 102 GeV [17, 18], axions with a
mass of ∼ 10−2 eV [17, 19], light scalaron of f(R) gravity with a mass of
∼ 10−3 eV [20], and many others [17, 21]. At present, no DM candidate
particles have been detected.

In order to form potential wells, the DM particles must be nonrelativis-
tic, because relativistic particles travel through gravitational wells instead
of being trapped there. On the other hand, according to numerical simu-
lations, a DM halo should tend to produce densities in galactic centers as
ρ ∼ rα with α ≈ −1: the so-called cusp in density profile [22–25]. At the
same time, the observed distributions of the DM halo is almost flat in the
centre of a DM cloud ρ ∼ r0. For example, distributions of mass in a DM
halo profile and in ordinary baryonic matter are schematic shown in Fig. 1.
The cuspy halo problem is proposed to be solve by heating the DM gas in
the central region as, for example, is proposed in [26]. Another solution to
this problem is, instead of proposing a complicated mechanism for heating
the DM gas, to assume a property of the DM particles, which makes im-
possible formation of a cusp. If DM is composed of some kind of ultra-light
bosons (10−24 ≲ m ≲ 1 eV), then such a Bose gas can form a Bose–Einstein
condensate [25, 27–29]. The latest state of development of this hypothesis
is presented in the review [30]. Due to the uncertainty principle, the central
cusp is washed out to the flat profile, moreover, the formation of small struc-
tures (galaxy satellites) is suppressed, many of which are predicted by the
cold DM theory. Such a model has different names in the literature, such as
Fuzzy Dark Matter (FDM), ultra-light DM, BEC Dark Matter, wave DM,
scalar field DM, and others. Estimation of the ultra-light boson masses lies
within a wide range — from ∼ 10−24 eV, which was obtained by comparing
the de-Broglie wave length of DM to the typical size of the DM halo in galax-
ies (∼ 100 kpc) [27]. If we suppose that the DM halo has some structure: a
core of size ∼ 1 kpc from BEC and a Bose gas behaving as the cold DM, then
a mass of ∼ 10−22 eV [28–32] is assumed. At the same time, observations of
stellar kinematics in dwarf galaxies give a mass of ∼ 10−22 . . . 10−20 eV [33–
35]. Obviously, in these models, the ultra-light bosons are assumed to be
noninteracting or to interact very weakly with each other. If we suppose
a strong interaction between bosons, then they can form a superfluid Bose



Three-band Extension for the Glashow–Weinberg–Salam Model 8-A2.5

liquid (as HeII). In this case, the mass of the boson can be ∼ 1 eV [30].
However, obviously, in such a model, in addition to unknown particles, there
is also an interaction of unknown nature. Thus, we can see that this hypoth-
esis about FDM adequately describes the dark halo, despite some backlash
in boson masses. However, the nature of the ultra-light weakly interacting
(or even sterile) bosons remains unknown: these bosons do not fit into the
framework of SM.

1.2. Neutrino masses

Observation of the neutrino oscillations in vacuum means the presence
of mass of neutrinos [36–41], but only the differences in the squares of
the masses can be measured: |∆m2

23| ≡ |m2
3 − m2

2| ≈ 2.51 × 10−3 eV2,
|∆m2

12| ≈ 7.41 × 10−5 eV2 [42, 43], and the upper limits of the masses√
m2

νe,
√
m2

νµ,
√
m2

ντ can be determined experimentally from the β-decay
of tritium, pion decay, τ -decays into multi-pion final states, respectively [44,
45]. Cosmological data (anisotropy of cosmic microwave background radia-
tion, formation of structures, etc.) impose restrictions on masses:

∑
ν mν <

0.19 eV [46],
∑

ν mν < 0.28 eV [47]. We can formally write the Dirac mass
term (Yukawa interaction) for both the charged lepton and the neutrino

UD = χl

(
ψ̄LΨlR + lRΨ

+ψL

)
+ χν

(
ψ̄LΨ̃νR + ν̄RΨ̃

+ψL

)
= mDl

(
l̄LlR + l̄RlL

)
+mDν (ν̄LνR + ν̄RνL) , (1)

where the isospinor ψL =

(
νL
lL

)
is a left-handed dublet, lR are νR right-

handed singlets (here, νL is a spinor of the active neutrino, νR is a spinor
of the hypothetical sterile neutrino, lL,R are spinors of charged lepton), Ψ =(

0
φ

)
, Ψ̃ = iτyΨ =

(
φ
0

)
are isospinors, where φ is scalar field with

condensate ⟨φ⟩ = φ0 ̸= 0, τy is a Pauli matrix. mDl = χlφ0 and mDν =
χνφ0 are Dirac masses of the charged lepton and the neutrino, respectively.
However, the problem is the unnatural difference in the Yukawa constants

χν ∼ 10−11 ≪ χl ∼ 10−6 , (2)

unlike, for example, top and bottom rows of quarks, where their masses are
not very different.

In SM, the right-handed neutrinos νR are absent, hence mDν = 0. There
are several opportunities for the extension of SM, where the small neutrino
mass appears. For example, following review in [38], it should be noted
that in the Gelmini–Roncadelli model, where an extension of the model
with the single-scalar field to the scalar doublet has been proposed, the
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additional vacuum condensate φ1 appears, so that φ1 ≪ φ0 ∼ 250 GeV. In
this model, the neutrino interacts only with the last χν̄ C

L φ1νL (where “C” is
a charge conjugation), so the neutrino mass can be much smaller than the
electron mass. Another example is the well-known “see-saw” mechanism,
in which there are two scales of mass mD ≪ mM ∼ 1014 GeV, so that
mν ∼ m2

D
mM

≪ mD as a result of diagonalization of the mass matrix. However,
these models assume that the neutrino is a Majorana neutrino which results
in the neutrinoless double β-decay, but this has not been yet observed. Thus,
origin of the neutrino mass remains unknown.

1.3. The absence of experimentally detected decays of the Higgs boson
into fermions of the second and first generations

There are many types of H-boson decay channels [48–50]. Due to the
Yukawa coupling, the H-boson can decay into quark–antiquark pairs (all
quarks except t-quarks, because mt > mH) and into lepton–antilepton pairs
as illustrated in Fig. 2. According to SM, the H-boson should decay as
follows: H → bb̄ with a probability of 57.5%, H → τ τ̄ with a probabil-
ity of 6.30%, H → cc̄ with a probability of 2.90%, and H → µµ̄ with a
probability of ≲ 0.022% [50]. At the same time, there has been no quite
reliable experimental evidence found in direct searches by the ATLAS and
CMS collaborations [51, 52] for an H-boson decaying into a charm quark–
antiquark pair, a strange quark–antiquark, an electron–positron pair, and a
muon–antimuon pair. This fact is usually associated with the small Yukawa
constant for the first and second generations of fermions. However, the decay
rate into a pair of c-quarks is not much smaller than the decay rate into a
pair of τ -leptons (the decay probabilities are 2.9% and 6.4%, respectively).
On the other hand, such very rare decays as two-photon decay H → γγ
with a probability of ≈ 0.2% have been detected. Thus, in our opinion, the
absence of experimentally detected decays of the H-boson into fermions of
the second and first generations can point to New Physics, in the sense that
several Higgs fields can exist, so that the mass of each generation is caused
by the corresponding Higgs field.

, ,e

b,c,s,d,u

H

b,c,s,d,u

H

, ,e

Fig. 2. Theoretical decays of Higgs boson into quark–antiquark pairs and lepton–
antilepton pairs due to the Yukawa coupling. The green font denotes experimentally
observed decays with a significance grater than 5σ.
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It should be noted that the CMS Collaboration reported on the H →
µµ̄ decay with a significance of 3σ [53]. At the same time, the ATLAS
Collaboration reported on H → γµµ̄, γeē decays, which occur through many
intermediate channels due to various interactions (via virtual photons, Z-,
W -bosons, quarks) with a significance of 3.2σ [54]. Thus, H → µµ̄ and
H → γµµ̄ decays still need to be securely separated. Unlike H → γγ, it
is difficult to discover the signal of H → cc̄, because the background from
QCD is several orders of magnitude larger than the signal. Thus, LHC is
not well suited to these problems, but multi-TeV lepton–antilepton colliders
would be more suitable.

1.4. Why are three generations of fermions needed, the problem
of the hierarchy of their masses and lepton oscillations

As is well known, all fundamental fermions are divided into three genera-
tions, that is, three sets of particles with identical interactions but with very
different masses (except neutrinos): the first — u, d-quarks, e, νe-leptons
(electron and electron neutrino), the second — c, s-quarks, µ, νµ-leptons
(muon and muon neutrino), the third — t, b-quarks, τ, ντ -leptons (tauon
and tau neutrino). However, the first generation is sufficient for the sub-
stance and it is unclear why the other two are needed. Thus, in Ref. [55],
the model with two heavy right-handed neutrinos is proposed in order to
provide a generation of baryon asymmetry in the early universe and one
sterile right-handed neutrino which makes up DM. However, this model re-
quires the “see-saw” mechanism. The origin of the mass hierarchy is un-
known at this time. Indeed, for instance, the electron (me = 0.511 MeV),
the muon (me = 105.7 MeV), and the tauon (me = 1777 MeV) carry iden-
tical gauge quantum numbers, but their masses differ by orders of magni-
tude (this means that their Yukawa constants χe, χµ, χτ differ by orders of
magnitude, because mDi = χiφ0). As stated in the review [56], an expla-
nation of the hierarchy requires extra spatial dimensions. Moreover, the
neutrino oscillations take place with large mixing angles (∼ π/4), however
for charged leptons (electron–muon–tauon), the mixing is absent. It should
be noted that purely quantum-mechanical reasons for the absence of oscil-
lations of charged leptons associated with the processes of their detection
were expressed [57, 58]. When the production of more than one type of
mass-eigen-state charged leptons is kinematically allowed, the charged lep-
ton states are either produced as incoherent mixtures of e, µ, and τ , or they
lose their coherence over microscopic distances due to the large difference in
the masses of the basis states m(τ)−m(e) ≫ m(ντ )−m(νe), except at ex-
tremely high energies, not accessible to present experiments. However, this
does not exclude others fundamental reasons for the absence of the mixing
of charged leptons.
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To solve these and other problems of SM, a two-Higgs-doublet model
(2HDM) as a simple extension of SM is used [59–63]. This model supposes
a two-doublet scalar potential

V2HDM = m2
11Ψ

+
1 Ψ1 +m2

22Ψ
+
2 Ψ2 −m2

12

(
Ψ+
1 Ψ2 + Ψ+

2 Ψ1
)

+
1

2
λ1
(
Ψ+
1 Ψ1

)2
+

1

2
λ2
(
Ψ+
2 Ψ2

)2
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(
Ψ+
1 Ψ1

) (
Ψ+
2 Ψ2

)
+λ4

(
Ψ+
1 Ψ2

) (
Ψ+
2 Ψ1

)
+

1

2
λ5

((
Ψ+
1 Ψ2

)2
+
(
Ψ+
2 Ψ1

)2)
+λ6

(
Ψ+
1 Ψ1

) (
Ψ+
1 Ψ2 + Ψ+

2 Ψ1
)
+ λ7

(
Ψ+
2 Ψ2

) (
Ψ+
1 Ψ2 + Ψ+

2 Ψ1
)
. (3)

Here, we restrict to the CP-conserving models in which all λi and m2
ij are

real, at least one of m2
ii < 0 and λ1,2 > 0. For illustration and simplicity, an

exact Z2 discrete symmetry can be imposed, i.e. Ψ1 → −Ψ1, Ψ2 → Ψ2. Then
m12 = 0, λ6,7 = 0. The fields Ψ1,2 are SU(2) isospinors

Ψ1,2 =

(
ϕ+1,2

(v1,2 + ρ1,2 + iη1,2)/
√
2

)
,

Ψ+
1,2 =

(
ϕ1,2, (v1,2 + ρ1,2 − iη1,2)/

√
2
)
, (4)

where scalar vacuum condensates v1,2 are such that
√
v21 + v22 = 246 GeV,

⟨ρ1,2⟩ = ⟨η1,2⟩ = ⟨ϕ1,2⟩ = 0. There are 8 fields(
H
h

)
=

(
cosα sinα
sinα cosα

)(
ρ1
ρ2

)
— two neutral scalars (neutral Higgs bosons) , (5)(

G0

A

)
=

(
cosβ sinβ
sinβ cosβ

)(
η1
η2

)
— two neutral pseudoscalars , (6)(

G±

H±

)
=

(
cosβ sinβ
sinβ cosβ

)(
ϕ±1
ϕ±2

)
— two charged scalars , (7)

where G0 and G± are Goldstone bosons which are absorbed as longitudinal
components of the W±, Z, tanβ ≡ v2

v1
, α is an angle.

Masses of fermions (quarks and leptons) are the result of Yukawa inter-

action: coupling of left-handed Dirac fields qL ≡
(
uL
dL

)
, lL ≡

(
νeL
eL

)
with right-handed Dirac fields uR, dR, eR via isospinor fields Ψ = Ψ1, Ψ2

UD =
√
2χu

(
q̄LΨ̃uR + ūRΨ̃

+qL

)
+
√
2χd

(
q̄LΨdR + d̄RΨ

+qL
)

+
√
2χe

(
l̄LΨeR + ēRΨ

+lL
)
, (8)
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where ψ = ψ+γ0 is Dirac conjugated spinor, Ψ̃ = iτyΨ ; χu, χd, χe are Yukawa
constants for u-quark, d-quark, and electron, respectively. The neutrino νe
remains massless. Since there are two fields Ψ1, Ψ2, four options of interaction
with fermions (u, d quarks and electron e) are possible, which is illustrated
in Table 1. It is analogously for the second c, s, µ, νµ and third t, b, τ, ντ
generations.

Table 1. The four independent types of the Yukawa interaction for 2HDM scalar
doublets.

u d e

Type I Ψ1 Ψ1 Ψ1

Type II Ψ1 Ψ2 Ψ2

Lepton-specific Ψ1 Ψ1 Ψ2

Flipped Ψ1 Ψ2 Ψ1

Let m2
11 < 0,m2

22 > 0, then we should choose the vacuum as v = v1 =
246 GeV, v2 = 0 [60, 65], and the expressions for the boson masses take the
simple form [60]

m2
h = λ1v

2 = −2m11 = (126 GeV)2 , m2
H = m2

A + λ5v
2 ,

m2
H± =m22 +

λ3
2
v2 , m2

A = m2
H± +

λ4−λ5
2

v2 , (9)

where the h-boson is associated with the observed Higgs boson. Due to
the exact Z2 symmetry, the lightest neutral component H or A is stable
and may be considered as a DM candidate. If taking H as DM, it requires
λ5 < 0, λ4 − |λ5| < 0. If taking A as DM, it requires λ5 > 0, λ4 − λ5 < 0.
However, the model requires [60]

mA +mH > mZ , 2mH± > mZ , mA +mH± > mW ,

mH +mH± > mW =⇒ mA , mH ∼ 10 . . . 100 GeV . (10)

As we can see, particles that are candidates for the ultra-light DM should
have a mass of mDM ∼ 10−24 . . . 1 eV. Obviously, that H-, A-bosons are not
suitable for this role.

We can go another way. In Ref. [64], a model containing two scalar
doublets, Ψ1 and Ψ2, and a real scalar singlet ΨS with a specific discrete
symmetry Ψ1 → Ψ1, Ψ2 → −Ψ2, ΨS → −ΨS has been constructed
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V2HDM+S = m2
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4
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1
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λ7Ψ

+
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2
S +

1

2
λ8Ψ

+
2 Ψ2Ψ

2
S . (11)

All fermion fields are considered to be neutral under this symmetry. As
such, only the doublet Ψ1 couples to fermions. Thus, DM can be attached
to 2HDM Lagrangian as excitations of the neutral ΨS field (which does not
interact with either fermions or gauge bosons). Thus, we can obtain the
desired mass of DM by choosing the appropriate values for the coefficients
m2

S, λ6, λ7, λ8.
As a further generalization, the three-Higgs-doublet model (3HDM) can

be formulated [65, 66]. The maximal symmetry for such a model is U(1)⊗
U(1). The corresponding potential V0 is invariant under any phase rotation

V0 =
3∑

i=1

[
m2

iiΨ
+
i Ψi +

1

2
λii
(
Ψ+
i Ψi

)2]

+
3∑

i=1,i ̸=j

[
λij
(
Ψ+
i Ψi

) (
Ψ+
j Ψj

)
+ λ′ij

(
Ψ+
i Ψj

) (
Ψ+
j Ψi

)]
. (12)

This potential gives three massive neutral scalarsH1,2,3, two massive charged
scalars H±

1,2, and one massless charged scalar H±
3 , two massive neutral

pseudo-scalars A1,2 and one massless neutral pseudo-scalar A3. In the gen-
eral case, the 3HDM potential symmetric under a group G can be written
as

V0 = V0 + VG , (13)

where VG is a collection of extra terms ensuring the symmetry group G,
which can be both continuous and discrete symmetries, both Abelian and
non-Abelian symmetries. The classification of symmetric 3HDM potentials
and the corresponding Higgs and Goldstone particles is presented in [65].
For clarity, in Appendix A, we present some invariant potentials under
the simplest transformations. Finally, an n-Higgs-doublet model (nHDM,
n > 3) can be formulated [67], where the number of scalar, pseudoscalar,
and charged bosons will be even larger. The lightest of the neutral massive
bosons (H-, A- or S-types) can be a candidate for the role of DM.
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Despite the fact that in the nHDM or nHDM+S (n ≥ 2) models and
in many others, the particle candidates for the role of DM appear (the
lightest of massive neutral H-, A- or S-bosons), these models generate a
lot of other particles (which can be numbered in tens in multiplets). These
particles can be both electrically neutral and charged, both massless and
massive, and have not yet been detected in collider experiments or in cosmic
rays. In addition, even the proposed DM particles are weakly interacting
(as WIMPs), that is, they are not completely sterile, hence could have been
detected as well. In the future, with more in-depth research, the discovery
of these particles, of course, cannot be ruled out.

Historically, the GWS theory arose as a field-theoretic, dynamic, rela-
tivistic, group (from the U(1) symmetry to the SU(2) ⊗ U(1) symmetry)
generalization of the Ginzburg–Landau (GL) theory for superconductors.
Attractive forces act between electrons with opposite spins due to the ex-
change of phonons, overpowering Coulomb repulsion. As a result, electrons
bind into effective pairs (so-called Cooper pairs), which at low temperatures
condense into the same quantum state (similar to a Bose–Einstein conden-
sate). The resulting coherent state of a collective of Cooper pairs can be
described with the many-particles wave function

φ(r) = |φ(r)|eiθ(r) , (14)

where both the module |φ| and the phase θ are functions of spatial coor-
dinates r, moreover, the module determines the density of superconducting
electrons ns = 2|φ|2, and the gradient of the phase determines the current
J = eℏ

m |φ|2∇θ. The density of free energy is

F =
ℏ2

4m

(
∇− i2e

ℏc
A

)
φ

(
∇+

i2e

ℏc
A

)
φ+ + a |φ|2 + b

2
|φ|4 + (∇×A)2

8π
,

(15)
where a < 0, b > 0, A is a vector potential of magnetic field, 2m and 2e are
the mass and charge of a Cooper pair, respectively. Then the current is

J =
eℏ
m
φ2
0

(
∇θ − 2e

ℏc
A

)
, (16)

where
φ0 =

√
−a
b

(17)

is an equilibrium magnitude of the module of the field φ. Free energy (15)
and current (16) are invariants under the U(1) gauge transformation, i.e.
when the phase is rotated by a certain angle δθ: θ → θ + δθ, which is
a function of a point δθ(r) in the general case



8-A2.12 K.V. Grigorishin

F
(
φ→ φ eiδθ, φ+ → φ+ e−iδθ,A → A+

ℏc
2e

∇δθ
)

= F
(
φ,φ+,A

)
, (18)

J

(
θ → θ + δθ,A → A+

ℏc
2e

∇δθ
)

= J (θ,A) . (19)

This means that any phase rotations do not change either the energy of the
system or the current flowing through the superconductor. This symmetry
is illustrated schematically in Fig. 3 (a). Moreover, the equation for the
magnetic field has the form (in the gauge ∇ ·A = 0)

∇× ∂F
∂(∇×A)

− ∂F
∂A

= 0 ⇒ ∆A =
8πe2φ2

0

mc2
A ≡ 1

λ2
A ∝ m2

AA , (20)

where the value reciprocal of the magnetic penetration depth λ plays the
role of a photon mass mA. The dynamics generalization of the GL theory
has been done in Ref. [68], where it has been demonstrated that the Higgs
mass in such a system is

mH =
√
2κmA ∝ 1

ξ
, (21)

where κ ≡ λ/ξ is a GL parameter, ξ is a coherence length. Then for type-I
superconductors, mH < mA, and for type-II superconductors, mH > mA.

Now, let us cut our superconductor into two parts and place them far
apart. We obtain two independent condensates

φ1 = |φ1|eiθ1 , φ2 = |φ2|eiθ2 . (22)

Then, let us bring them closer to a distance of the order of the coherence
length ξ ∼ 1/mH . The remaining slit can be filled, for example, with an
insulator as demonstrated in Fig. 3 (b) and (c). A Copper pair from bank 1
with condensate φ1 can tunnel to bank 2 with condensate φ2, which is
described by nondiagonal matrix elements [69]

H12 =

∫
φ+
1 Ĥφ2dV , H21 =

∫
φ+
2 Ĥφ1dV , K ≡ |H12| = |H21| .

(23)
The value K is determined by the properties of the junction. Such a device
is called the Josephson junction and matrix elements (23) are the Josephson
coupling. Then the current through the junction is

J =
4Kφ2

0

ℏ
sin(θ2 − θ1) . (24)

It is not difficult to see that the Josephson coupling breaks the U(1) gauge
invariance, because the current (24) depends on the phase differences θ2−θ1.
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Josephson junction

1= 2

J

S

single superconductor

J( )=J( )(a)

J

1 1
1

S
J( 1 2)=J( 1 1 2 2)

(b) I

2 2

2

S

1= 2

J

1 1

1

S
J( 1 2)=J( 1 1 2 2)

(c) I
2 2

2

S

Fig. 3. (a) U(1) symmetry of a one-piece superconducting sample: any phase rota-
tions do not change the current J . (b) Independent phase rotations in supercon-
ductors separated by a thin insulator with a thickness of the order of the coherence
length (S–I–S Josephson junction) change the current through the junction. (c)
Synchronous phase rotations (so that θ2 − θ1 = const.) do not change the current.

Thus, if we rotate phases θ1 and θ2 in each bank independently, then the
current J changes. In order to keep the current constant, we must rotate
the phases synchronously, i.e. so that θ2 − θ1 = const.

The Josephson junction can also be realized in the momentum space: if in
some material two conduction bands take place (for example, in magnesium
diboride MgB2, nonmagnetic borocarbides LuNi2B2C, YNi2B2C, and some
oxypnictide compounds), then in each band the condensate of Cooper pairs
φ1 and φ2 can exist. In a bulk isotropic s-wave superconductor, the GL free
energy functional can be written as [70–75]
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F =

∫
d3r

[
ℏ2

4m1
|∇φ1|2 +

ℏ2

4m2
|∇φ2|2

+a1 |φ1|2 + a2 |φ2|2 +
b1
2
|φ1|4 +

b2
2
|φ2|4 + ϵ

(
φ+
1 φ2 + φ1φ

+
2

) ]
, (25)

where m1,2 denotes the effective mass of carriers in the corresponding band,
the coefficients a1,2 are given as ai = γi(T − Tci), where γi are some con-
stants, the coefficients b1,2 are independent of temperature, the quantity ϵ
describes the interband mixing of the two condensates: the proximity effect
or the internal Josephson effect. If we switch off the interband interaction
ϵ = 0, then we will have two independent superconductors with different
critical temperatures Tc1 and Tc2, because the intraband interactions can
be different. Thus, a two-band superconductor is understood as two single-
band superconductors with the corresponding condensates of Cooper pairs
φ1 and φ2 (so that densities of superconducting electrons are ns1 = 2|φ1|2
and ns2 = 2|φ2|2, respectively), but these two condensates are coupled by
the internal proximity effect ϵ

(
φ+
1 φ2 + φ1φ

+
2

)
.

Minimization of the free energy functional with respect to the amplitudes
of condensates, if ∇φ1,2 = 0, gives{

a1φ1 + ϵφ2 + b1φ
3
1 = 0

a2φ2 + ϵφ1 + b2φ
3
2 = 0

}
, (26)

where the equilibrium values φ1,2 are assumed to be real (i.e. the phases
θ1,2 are 0 or π) in the absence of a current and magnetic field. Near the
critical temperature Tc, we have φ3

1,2 → 0, hence we can find the critical
temperature by equating to zero the determinant of the linearized system
(26)

a1a2 − ϵ2 = γ1γ2(Tc − Tc1)(Tc − Tc2)− ϵ2 = 0 . (27)

By solving this equation, we find Tc > Tc1, Tc2, moreover, the solution does
not depend on the sign of ϵ. The sign determines the equilibrium phase
difference of the condensates |φ1|eiθ1 and |φ2|eiθ2

cos(θ1 − θ2) = 1 if ϵ < 0 ,

cos(θ1 − θ2) = −1 if ϵ > 0 , (28)

that follows from Eq. (26). The ϵ < 0 case corresponds to an attractive inter-
band interaction (for example, in MgB2, where s++ wave symmetry occurs),
the ϵ > 0 case corresponds to a repulsive interband interaction (for example,
in iron-based superconductors, where s+− wave symmetry occurs) [71]. The
solutions of Eq. (26) φ01, φ02 are illustrated in Fig. 4 for the case of strongly
asymmetrical bands Tc1 ≪ Tc2. We can see that the effect of interband
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coupling ϵ ̸= 0, even if the coupling is weak |ϵ| ≪ |a1(0)|, is nonperturba-
tive: applying the interband coupling drags the smaller parameter φ01 up
to the new critical temperature Tc ≫ Tc1. At the same time, the effect on
the larger parameter φ2 is less significant — applying the interband coupling
only slightly increases the critical temperature compared with Tc2: Tc ≳ Tc2.

02

Tc1
Tc

Tc2

01

Fig. 4. The amplitudes of the condensates φ01(T ) and φ02(T ) as solutions of
Eq. (26), if the interband coupling is absent, i.e. ϵ = 0 (dashed lines), and if
the interband coupling is weak, i.e. ϵ ̸= 0, |ϵ| ≪ |a1(0)| (solid lines). Applying
the weak interband coupling drags the smaller parameter φ01 up to a new critical
temperature Tc ≫ Tc1. The effect on the larger parameter φ02 is less significant.

In the module-phase representation (22), the interband mixing takes the
form

ϵ
(
φ+
1 φ2 + φ1φ

+
2

)
= 2ϵ|φ1||φ2| cos(θ1 − θ2) . (29)

Thus, the Josephson term describes interference between Cooper pairs con-
densates φ1 and φ2. As in the Josephson junction, the Josephson term
breaks the U(1) gauge invariance, because this term depends on the phase
differences θ1−θ2. In Ref. [74], the normal oscillations of the internal degrees
of freedom (the Higgs and Goldstone modes) of two-band superconductors
using the dynamical generalization of GL theory have been investigated,
which was formulated in Ref. [68]. It is demonstrated that, due to the in-
ternal proximity effect, the Goldstone modes from each band transform to
normal oscillations for all bands: common mode oscillations with an acous-
tic spectrum, which are absorbed by the gauge field because propagation
of these collective excitations is accompanied by a current; and anti-phase
oscillations with an energy gap in the spectrum (mass) determined by the
interband coupling mL ∼

√
|ϵ|, which can be associated with the Leggett

mode. Propagation of the Leggett mode is not accompanied by the cur-
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rent, hence this mode “survives”. Analogously, for three-band superconduc-
tors [75], it has been demonstrated that the Goldstone modes from each
band transform to normal oscillations for all bands: common mode oscil-
lations with an acoustic spectrum, which are absorbed by the gauge field,
and two massive modes for anti-phase oscillations which are analogous to
the Leggett mode and are determined by the coefficients of the interband
coupling ϵ12, ϵ13, ϵ23.

The free energy functional F =
∫
d3rF can be written in a general

n-band system, where the potential has the form

V = V0 +

n∑
i<k

ϵik
(
φ+
i φk + φiφ

+
k

)
, (30)

and the potential
V0 =

n∑
i=1

ai |φi|2 +
bi
2
|φi|4 (31)

is a sum of independent potentials of each condensate. The potential V0
is invariant under any phase rotation. Since the condensates in a three-
band system are coupled by the Josephson terms ϵik

(
φ+
i φk + φiφ

+
k

)
=

ϵik|φi||φk| cos(θi − θk), the spontaneously broken U(1) symmetry of the
ground state is shared throughout the system: the presence of the conden-
sate ⟨φi⟩ ̸= 0 in a band induces the condensation in other bands ⟨φk⟩ ̸= 0,
that is the internal proximity effect takes place. At the same time, the
global gauge symmetry U(1)n−1 of the potential V0 with n > 1 is broken
down by the Josephson terms [65], because these terms depend on the phase
differences θi − θk. In the n-band case, we have n − 1 phase-difference
(Leggett) modes. These modes acquire masses because the phase differences
are fixed near the minimums of the potential V . In Ref. [76], the total rule
has been formulated: in the n-band system, the global symmetry U(1)n−1

is broken down by the Josephson terms to the U(1)n−3 symmetry. Thus,
in n > 3-band system, n − 3 massless Leggett modes must be present. Ul-
timately, the system with potential (30) is invariant under the synchronic
U(1) gauge transformation, i.e. when each scalar field is turned by the same
phase θ: φk → φke

iθ. Hence, as demonstrated for two- and three-band
superconductors in Refs. [74, 75], the common mode phase oscillations are
absorbed by the gauge field, however, oscillations of the phase differences
θi − θk occur.

Proceeding from aforesaid, we can use the analogy with multi-band su-
perconductors to formulate the appropriate extension of SM, formalizing the
superconducting order parameter φ as a scalar field. Such a model allows
us to obtain particle candidates for the role of DM — an analog of Leggett
modes, because (i) masses of these bosons can be arbitrarily small due to
the nonperturbativness of interband coupling mL ∼

√
|ϵ|; (ii) since propa-
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gation of the Leggett mode is not accompanied by a current, then they can
be “sterile” in the field theory. However, the symmetry of the GL free energy
is U(1)Q, but the symmetry of GWS Lagrangian is SU(2)I⊗U(1)Y . Accord-
ingly, instead of the scalar field φ, we have the isospinor Ψ similar to Eq. (4).
Hence, we must try to represent the interband coupling ϵ

(
Ψ+
1 Ψ2 + Ψ1Ψ

+
2

)
in

the form of interference between the fields Ψ1 and Ψ2, similar to Eq. (29).
Then, we can assume that the coefficients λn>2 = 0 in Lagrangians (3),
(11) or that the coefficients λi ̸=j = 0 in Lagrangian (12). This approach
relieves us of a large number of other particles (for example, charged Higgs
bosons H±) which could be easily detected experimentally. However, the
purpose of formulation of the model that differs from SM is not so much
in solving the DM problem, but in solving a whole complex of problems.
Thus, except for the DM problem, we propose the nature of oscillations and
masses of neutrinos, leaving them as Dirac fermions. At the same time, we
demonstrate why oscillations of charged leptons (electron–muon–tauon) are
absent, why masses of such leptons differ by orders, and why three gener-
ations of fermion are needed. The model proposes three neutral H-bosons
that explain the absence of experimentally detected decays of the already
discovered H-boson into fermions of the second and first generations, but
these two additional H-bosons interact very weekly with gauge and Dirac
fields which makes their detection difficult, but still possible. This could be
an experimental test.

Our paper is organized in the following way. In Section 2, we formulate
a model with three scalar fields (bands) with spontaneous breaking of the
U(1) gauge symmetry in each field and with the Josephson couplings between
them. In such a system, we obtain both the Higgs and Goldstone modes, and
introduce the concept of band states and flavor states of the scalar fields. In
Section 3, the Higgs effect on the Abelian (electromagnetic) field in the three-
band system is considered. In Section 4, we connect the three-bandness with
three generations of fermions, and we consider the band states and flavor
states of the Dirac fields. In Section 5 and Section 6, we consider the three-
band system with spontaneous breaking of the SU(2)I and SU(2)I ⊗U(1)Y
gauge symmetries, respectively, and with the Josephson couplings between
the bands. The Higgs effect on both the Abelian and Yang–Mills gauge fields
is considered. In Section 7, the lepton mixing is described and the mechanism
of origin of neutrino “masses” is proposed. In Section 8, we summarize the
results of the three-band GWS model as the system of elementary particles,
where the particles that make up DM are present. Moreover, we propose
two additional neutral H-bosons, estimate their masses, and analyze their
production and decays. The mechanism of the fermions mass hierarchy is
proposed. In Section 9, we estimate the masses of L-bosons as DM particles
and demonstrate that such ultra-light bosons solve the central cusp problem.
In Section 10, we consider the masses of H-bosons at critical temperature.
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2. Spontaneous breaking of the U(1) gauge symmetry in
the three-band system with the Josephson couplings

2.1. The three-band Lagrangian with the Josephson terms

Let us have three complex scalar fields, which are equivalent to two real
scalar fields each: the modulus |φ(x)| and the phase θ(x) (the modulus–
phase representation)

φ1(x) = |φ1(x)| eiθ1(x) , φ2(x) = |φ2(x)| eiθ2(x) , φ3(x) = |φ2(x)| eiθ3(x).
(32)

Here, x ≡ (t, r), and we will use the system of units, where c = ℏ = 1. These
fields should minimize some action S in the Minkowski space

S =

∫
L
(
φ1, φ2, φ3, φ

+
1 , φ

+
2 , φ

+
3

)
d4x , (33)

where the Lagrangian L is a sum of three gauge-invariant Lagrangians (or-
dinary single-band Lagrangians) and Josephson terms (the interband two-
by-two coupling of the scalar fields φiφ

+
j + φ+

i φj)

L= ∂µφ1∂
µφ+

1 + ∂µφ2∂
µφ+

2 + ∂µφ3∂
µφ+

3

−a1 |φ1|2 − a2 |φ2|2 − a3 |φ3|2 −
b1
2
|φ1|4 −

b2
2
|φ2|4 −

b3
2
|φ3|4

−ϵ
(
φ+
1 φ2 + φ1φ

+
2

)
− ϵ
(
φ+
1 φ3 + φ1φ

+
3

)
− ϵ
(
φ+
2 φ3 + φ2φ

+
3

)
, (34)

where ∂µ ≡ ∂
∂xµ ≡

(
∂
∂t ,∇

)
, ∂µ ≡ ∂

∂xµ
≡
(
∂
∂t ,−∇

)
are covariant and con-

travariant differential operators, respectively. The a1,2,3 < 0 and b1,2,3 > 0
coefficients belong to the corresponding band. The ϵ < 0 case corresponds
to the attractive interband interaction, the ϵ > 0 case corresponds to the
repulsive interband interaction. If we switch off the interband interaction
ϵ = 0, then we will have three independent scalar fields φi. It should be
noted that the considered model is similar to 3HDM [65], but without any
specific symmetry in the sense of Appendix A, except for symmetry under
the synchronic U(1)-transformation

L
(
φ1 → φ1e

iδθ, φ2 → φ2 e
iδθ, φ3 → φ3 e

iδθ
)
= L (φ1, φ2, φ3) , (35)

i.e. all phases θ1, θ2, θ3 must be rotated equally, so that θ2 − θ1 = const.,
θ3 − θ1 = const., θ3 − θ1 = const.

The Lagrange equations for functional (33) are

∂µ∂µφ1 + a1φ1 + ϵφ2 + ϵφ3 + b1 |φ1|2 φ1 = 0 ,

∂µ∂µφ2 + a2φ2 + ϵφ1 + ϵφ3 + b2 |φ2|2 φ2 = 0 ,

∂µ∂µφ3 + a3φ3 + ϵφ1 + ϵφ2 + b3 |φ3|2 φ3 = 0 , (36)
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where ∂µ∂µ = ∂µ∂
µ = ∂2

∂t2
−∆. The current for such a Lagrangian is

Jµ =

3∑
j=1

∂L
∂ (∂µφj)

(−iφj) +
∂L

∂
(
∂µφ

+
j

) (iφ+
j

)
= i

3∑
j=1

(
φ+
j ∂

µφj − φj∂
µφ+

j

)

= −2

3∑
j=1

|φj |2∂µθj , (37)

where we have used the modulus-phase representation (32). Using equations
of motion (36), it can be shown that ∂µJµ = 0.

Let us consider stationary and spatially homogeneous case, i.e. ∂tφ = 0,
∇φ = 0. Then from Eqs. (36), we obtain

a1φ1 + ϵφ2 + ϵφ3 + b1|φ1|2φ1 = 0

a2φ2 + ϵφ1 + ϵφ3 + b2|φ2|2φ2 = 0

a3φ3 + ϵφ1 + ϵφ2 + b3|φ3|2φ3 = 0

 , (38)

which can be rewritten in the form
a1|φ1|+ ϵ|φ2|ei(θ2−θ1) + ϵ|φ3|ei(θ3−θ1) + b1|φ1|3 = 0

a2|φ2|+ ϵ|φ1|ei(θ1−θ2) + ϵ|φ3|ei(θ3−θ2) + b2|φ2|3 = 0

a3|φ3|+ ϵ|φ1|ei(θ1−θ3) + ϵ|φ2|ei(θ2−θ3) + b3|φ3|3 = 0

 , (39)

or in an expanded form

a1|φ1|+ ϵ|φ2| cos(θ2 − θ1) + ϵ|φ3| cos(θ3 − θ1) + b1|φ1|3 = 0

a2|φ2|+ ϵ|φ1| cos(θ1 − θ2) + ϵ|φ3| cos(θ3 − θ2) + b2|φ2|3 = 0

a3|φ3|+ ϵ|φ1| cos(θ1 − θ3) + ϵ|φ2| cos(θ2 − θ3) + b3|φ3|3 = 0

|φ2| sin(θ2 − θ1) + |φ3| sin(θ3 − θ1) = 0

|φ1| sin(θ1 − θ2) + |φ3| sin(θ3 − θ2) = 0

|φ1| sin(θ1 − θ3) + |φ2| sin(θ2 − θ3) = 0


. (40)

In the ϵ > 0 case for absolutely symmetrical bands a1= a2= a3, b1= b2 =b3,
we obtain cos(θj − θk) = −1

2 . In the ϵ < 0 case, we obtain cos(θj − θk) = 0
for any bands. Possible configurations corresponding to some limit cases
are illustrated in Fig. 5. As an approximation in the case of weak coupling
ϵ ≪ |a1|, |a2|, |a3|, we can assume |φi| =

√
|ai|
bi

and then substitute them
into Eq. (40) to find the angles θi − θk.
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Fig. 5. The possible configurations of the mutual arrangement of the scalar fields
φ1, φ2, φ3 corresponding to some limit cases as solutions of Eq. (40).

Substituting representation (32) into Lagrangian (34), we obtain

L = ∂µ|φ1|∂µ|φ1|+ ∂µ|φ2|∂µ|φ2|+ ∂µ|φ3|∂µ|φ3|
+|φ1|2∂µθ1∂µθ1 + |φ2|2∂µθ2∂µθ2 + |φ3|2∂µθ3∂µθ3

−a1 |φ1|2 −
b1
2
|φ1|4 − a2 |φ2|2 −

b2
2
|φ2|4 − a3 |φ3|2 −

b3
2
|φ3|4

−2ϵ|φ1||φ2| cos θ12 − 2ϵ|φ1||φ3| cos θ13 − 2ϵ|φ2||φ3| cos θ23 . (41)

Let us consider small variations of the modules from their equilibrium values:
|φ1,2,3| = φ01,02,03 + ϕ1,2,3, where |ϕ1,2,3| ≪ φ01,02,03. Then, |φ|2 ≈ φ2

0 +
2φ0ϕ+ϕ

2, |φ|4 ≈ φ4
0+4φ3

0ϕ+6φ2
0ϕ

2, |φ1||φ2| ≈ φ01φ02+φ01ϕ2+φ02ϕ1+ϕ1ϕ2,
and Lagrangian (41) takes the form
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L = ∂µ|ϕ1|∂µ|ϕ1|+ ∂µ|ϕ2|∂µ|ϕ2|+ ∂µ|ϕ3|∂µ|ϕ3|+ φ2
01∂µθ1∂

µθ1

+φ2
02∂µθ2∂

µθ2 + φ2
03∂µθ3∂

µθ3 − ϕ21
(
a1 + 3b1φ

2
01

)
− ϕ22

(
a2 + 3b2φ

2
02

)
−ϕ23

(
a3 + 3b3φ

2
03

)
− 2ϵϕ1ϕ2 cos θ12 − 2ϵϕ1ϕ3 cos θ13 − 2ϵϕ2ϕ3 cos θ23

−2ϕ1
(
ϵφ02 cos θ12 + ϵφ03 cos θ13 + a1φ01 + b1φ

3
01

)
−2ϕ2

(
ϵφ01 cos θ12 + ϵφ03 cos θ23 + a2φ02 + b2φ

3
02

)
−2ϕ3

(
ϵφ01 cos θ13 + ϵφ02 cos θ23 + a3φ03 + b3φ

3
03

)
−2ϵφ01φ02 cos θ12 − 2ϵφ01φ03 cos θ13 − 2ϵφ02φ03 cos θ23

−a1φ2
01 −

b1
2
φ4
01 − a2φ

2
02 −

b2
2
φ4
02 − a3φ

2
03 −

b3
2
φ4
03 . (42)

We can consider small variations of the phase differences from their equilib-
rium values: cos θik = cos(θik − θ0ik + θ0ik) = cos(θik − θ0ik) cos θ

0
ik − sin(θik −

θ0ik) sin θ
0
ik ≈

(
1− (θik−θ0ik)

2

2

)
cos θ0ik − (θik − θ0ik) sin θ

0
ik. Then the potential

energy in Lagrangian (42) takes the form

U ≈ Uϕ + Uθ + Uϕθ + a1φ
2
01 +

b1
2
φ4
01 + a2φ

2
02 +

b2
2
φ4
02 + a3φ

2
03 +

b3
2
φ4
03

+2ϵ cos θ012φ01φ02 + 2ϵ cos θ013φ01φ03 + 2ϵ cos θ023φ02φ03 , (43)

where the last nine terms determine global potential (as the “Mexican hat”),
Uϕ determines a potential for the module excitations ϕ1,2,3

Uϕ = ϕ21
(
a1 + 3b1φ

2
01

)
+ ϕ22

(
a2 + 3b2φ

2
02

)
+ ϕ23

(
a2 + 3b3φ

2
03

)
+ϕ1ϕ22ϵ cos θ

0
12 + ϕ1ϕ32ϵ cos θ

0
13 + ϕ2ϕ32ϵ cos θ

0
23

+2ϕ1
(
ϵ cos θ012φ02 + ϵ cos θ013φ03 + a1φ01 + b1φ

3
01

)
+2ϕ2

(
ϵ cos θ012φ01 + ϵ cos θ023φ03 + a2φ02 + b2φ

3
02

)
+2ϕ3

(
ϵ cos θ013φ01 + ϵ cos θ023φ02 + a3φ03 + b3φ

3
03

)
. (44)

The terms at ϕ1,2,3 have to be zero, then
ϵ cos θ012φ02 + ϵ cos θ013φ03 + a1φ01 + b1φ

3
01 = 0

ϵ cos θ012φ01 + ϵ cos θ023φ03 + a2φ02 + b2φ
3
02 = 0

ϵ cos θ013φ01 + ϵ cos θ023φ02 + a3φ03 + b3φ
3
03 = 0

 (45)

corresponds to the first three equations in Eq. (40). Uθ determines a poten-
tial for the phase excitations θ1,2,3
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Uθ = −2ϵφ01φ02

(
θ12 − θ012

)2
2

cos θ012 − 2ϵφ01φ03

(
θ13 − θ013

)2
2

cos θ013

−2ϵφ02φ03

(
θ23 − θ023

)2
2

cos θ023 − 2ϵφ01φ02

(
θ12 − θ012

)
sin θ012

−2ϵφ01φ03

(
θ13 − θ013

)
sin θ013 − 2ϵφ02φ03

(
θ23 − θ023

)
sin θ023 . (46)

In order for the linear terms (θij−θ0ij) do not affect the equations of motion,
the following condition must be satisfied:

φ02 sin θ
0
12 + φ03 sin θ

0
13 = 0

φ01 sin θ
0
12 + φ03 sin θ

0
32 = 0

φ01 sin θ
0
13 + φ02 sin θ

0
23 = 0

 (47)

that corresponds to the second three equations in Eq. (40). Uϕθ determines
interaction between the module excitations and the phase excitations

Uϕθ = −ϕ1ϕ2ϵ
((
θ12 − θ012

)2
cos θ012 + 2

(
θ12 − θ012

)
sin θ012

)
−ϕ1ϕ3ϵ

((
θ13 − θ013

)2
cos θ013 + 2

(
θ13 − θ013

)
sin θ013

)
−ϕ2ϕ3ϵ

((
θ23 − θ023

)2
cos θ023 + 2

(
θ23 − θ023

)
sin θ023

)
−ϕ1ϵ

((
θ12 − θ012

)2
cos θ012φ02 +

(
θ13 − θ013

)2
cos θ013φ03

)
−ϕ2ϵ

((
θ12 − θ012

)2
cos θ012φ01 +

(
θ23 − θ023

)2
cos θ023φ03

)
−ϕ3ϵ

((
θ13 − θ013

)2
cos θ013φ01 +

(
θ23 − θ023

)2
cos θ023φ02

)
−2ϕ1ϵ

((
θ12 − θ012

)
sin θ012φ02 +

(
θ13 − θ013

)
sin θ013φ03

)
−2ϕ2ϵ

((
θ12 − θ012

)
sin θ012φ01 +

(
θ23 − θ023

)
sin θ023φ03

)
−2ϕ3ϵ

((
θ13 − θ013

)
sin θ013φ01 +

(
θ23 − θ023

)
sin θ023φ02

)
. (48)

We can see that the first six terms are of the third ϕiϕk(θik−θ0ik), ϕi(θik−θ0ik)2
and the forth ϕiϕk(θik − θ0ik)

2 order, hence they can be neglected. At the
same time, the last three terms are of the second order ϕi(θik − θ0ik). In the
ϵ < 0 case, we have all θ0ik = 0, that is sin θ0ik = 0, hence the oscillations
of modules and phases are not hybridized. Additionally, if θik − θ0ik = 0,
that takes place for the common mode oscillations (the Goldstone mode
with an acoustic spectrum), therefore in this case, the hybridization is also
absent. Thus, the Leggett and Higgs modes are hybridized only in the ϵ > 0
case, that is the phase-amplitude modes can take place. However, as it will
be demonstrated in Section 4, only the ϵ < 0 case has a physical sense,
hence, we will consider the normal oscillations without the phase-amplitude
hybridization further.
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2.2. Goldstone modes

Let us consider the movement of the phases θ1,2,3. The corresponding
Lagrange equations for Lagrangian (42) are

φ2
01∂µ∂

µθ1 − φ01φ02ϵ sin(θ1 − θ2)− φ01φ03ϵ sin(θ1 − θ3) = 0 ,

φ2
02∂µ∂

µθ2 + φ01φ02ϵ sin(θ1 − θ2)− φ02φ03ϵ sin(θ2 − θ3) = 0 ,

φ2
03∂µ∂

µθ3 + φ01φ03ϵ sin(θ1 − θ2) + φ02φ03ϵ sin(θ1 − θ3) = 0 . (49)

The phases can be written in the form of harmonic oscillations

θ1 = θ01 +A ei(qr−ωt) ≡ θ01 +A e−iqµxµ
,

θ2 = θ02 +B ei(qr−ωt) ≡ θ02 +B e−iqµxµ
,

θ3 = θ03 + C ei(qr−ωt) ≡ θ03 + C e−iqµxµ
, (50)

where qµ = (ω,−q), xµ = (t, r), θ01,2,3 are equilibrium phases. Equation (49)
can be linearized assuming cos θik ≈ cos θ0ik, sin θik = sin(θik − θ0ik + θ0ik) ≈
(θik − θ0ik) cos θ

0
ik + sin θ0ik, and using Eq. (47)

φ2
01∂µ∂

µθ1 − φ01φ02ϵ cos θ
0
12

(
θ12 − θ012

)
− φ01φ03ϵ cos θ

0
13

(
θ13 − θ013

)
= 0 ,

φ2
02∂µ∂

µθ2 + φ01φ02ϵ cos θ
0
12

(
θ12 − θ012

)
− φ02φ03ϵ cos θ

0
23

(
θ23 − θ023

)
= 0 ,

φ2
03∂µ∂

µθ3 + φ01φ03ϵ cos θ
0
13

(
θ13 − θ013

)
+ φ02φ03ϵ cos θ

0
23

(
θ23 − θ023

)
= 0 .

(51)

Substituting Eq. (50) into Eq. (51), we obtain equations for the amplitudes
A,B,C

A

(
−φ02

φ01
ϵ cos θ012−

φ03

φ01
ϵ cos θ013−qµqµ

)
+B

φ02

φ01
ϵ cos θ012+C

φ03

φ01
ϵ cos θ013 = 0 ,

A
φ01

φ02
ϵ cos θ012+B

(
−φ01

φ02
ϵ cos θ012−

φ03

φ02
ϵ cos θ023−qµqµ

)
+C

φ03

φ02
ϵ cos θ023 = 0 ,

A
φ01

φ03
ϵ cos θ013+B

φ02

φ03
ϵ cos θ023+C

(
−φ01

φ03
ϵ cos θ013−

φ02

φ03
ϵ cos θ023−qµqµ

)
= 0 .

(52)

Setting the determinant of the system (52) equal to zero, we find a dispersion
equation

(qµq
µ)3 + (qµq

µ)2 b+ (qµq
µ) c = 0 , (53)
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where

b = ϵ

[(
φ01

φ03
cos θ13 +

φ02

φ03
cos θ23

)
+

(
φ01

φ02
cos θ12 +

φ03

φ02
cos θ23

)
+

(
φ02

φ01
cos θ12 +

φ03

φ01
cos θ13

)]
,

c = ϵ2
[(

φ01

φ02
cos θ12 +

φ03

φ02
cos θ23

)(
φ01

φ03
cos θ13 +

φ02

φ03
cos θ23

)
+

(
φ02

φ01
cos θ12 +

φ03

φ01
cos θ13

)(
φ01

φ03
cos θ13 +

φ02

φ03
cos θ23

)
+

(
φ02

φ01
cos θ12 +

φ03

φ01
cos θ13

)(
φ01

φ02
cos θ12 +

φ03

φ02
cos θ23

)]
. (54)

From Eq. (53) we can see that one of dispersion relations is

qµq
µ = 0 ⇒ ω2 = q2 , (55)

wherein A = B = C, thus this mode is common mode oscillations as the
Goldstone mode in the single-band GWS model. There are other oscillation
modes with such spectra that

m2
L1 = qµq

µ =
1

2

(
−b−

√
b2 − 4c

)
, (56)

m2
L2 = qµq

µ =
1

2

(
−b+

√
b2 − 4c

)
, (57)

i.e. two massive modes, wherein

Aφ2
01 +Bφ2

02 + Cφ2
03 = 0 . (58)

These modes are analogous to the Leggett modes in multi-band supercon-
ductors [68, 74, 75]. It should be noted that if we assume that ϵ = 0, then
b = c = 0 and the dispersion equation will be (qµq

µ)3 = 0, that is we obtain
independent common mode oscillations in each band. From Eqs. (54), (56),
and (57), we can see that the squared masses of the L-bosons are propor-
tional to the interband coupling m2

L1,2 ∼ |ϵ|.
For example, let us consider a symmetrical three-band system, i.e. φ01 =

φ02 = φ03. Then masses of both L-bosons are equal (b2 = 4c)

mL1 = mL2 =

√
3

2
ϵ , when ϵ > 0 ⇒ cos θ12 = cos θ13 = cos θ23 = −1

2
,

mL1 = mL2 =
√
3|ϵ| , when ϵ < 0 ⇒ cos θ12 = cos θ13 = cos θ23 = 1 .

(59)
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rys.6 Amplitudes of the modes (56), (57) relate as A = −C, B = 0, and
A = C, B = −(A + C), respectively. These three Goldstone modes (the
acoustic mode (55) and the Leggett modes (56), (57)) are shown in Fig. 6.
If we have the case of strongly asymmetrical bands φ01 ≪ φ02 ≪ φ03, then
the masses of L-bosons are

m2
L1 ∼ min

{
−φ03

φ01
ϵ cos θ13,−

φ03

φ02
ϵ cos θ23,−

φ02

φ01
ϵ cos θ12

}
,

m2
L2 ∼ max

{
−φ03

φ01
ϵ cos θ13,−

φ03

φ02
ϵ cos θ23,−

φ02

φ01
ϵ cos θ12

}
, (60)

where we suppose that all −ϵ cos θij > 0.

J=0J=0

(c)(b)(a)

J=0

Fig. 6. Normal oscillations of the phases θ1, θ2, θ3 in the symmetrical three-band
system φ01 = φ02 = φ03, with the attractive interband interactions ϵ < 0 and
the repulsive interband interactions ϵ > 0. (a) Common phase oscillations with
the acoustic spectrum (55) accompanied by the nonzero current J = φ2

01∇θ1 +

φ2
02∇θ2 + φ2

03∇θ3 ̸= 0. (b), (c) Anti-phase oscillations with the massive spectrum
(56) and (57), not accompanied by the current, i.e. J = 0.
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The phase oscillations (50) are accompanied by the current (37)

Jµ = 2iqµe−iqµxµ (
Aφ2

01 +Bφ2
02 + Cφ2

03

)
⇒ 2iAqµe−iqµxµ (

φ2
01 + φ2

02 + φ2
03

)
for the acoustic mode

0 for the Leggett modes

 , (61)

where we have used Eq. (58). Thus, due to the internal proximity effect, the
Goldstone modes from each band transform to common mode oscillations,
where ∇θ1 = ∇θ2 = ∇θ3, with the acoustic spectrum, see Eq. (55), and the
oscillations of the relative phases θi−θj between condensates with the energy
gap in spectrum determined by the interband coupling ϵ, see Eqs. (56),
(57), and (59), which can be identified as the Leggett mode by analogy with
multi-band superconductors. Propagation of the acoustic Goldstone mode
is accompanied by the current Jµ ̸= 0, propagation of the Leggett modes
(the massive Goldstone modes) is not accompanied by the current Jµ = 0.
If we turn off the interband coupling ϵ = 0, then we will have an ordinary
Goldstone mode with an acoustic spectrum for each band. Transformation
of Goldstone modes from each band into one common mode for all bands
and two Leggett modes takes place even at the infinitely small coefficient ϵ:
|ϵ| ≪ |a1,2,3(0)|. Thus, the effect of interband coupling is nonperturbative.

2.3. Higgs modes

Let us consider movement of the modules |φ1,2,3(t, r)| ≈ φ01,02,03 +
ϕ1,2,3(t, r). The corresponding Lagrange equations for Lagrangian (42) with
accounting Eq. (45) are

∂µ∂
µϕ1 + α1ϕ1 + ϵ cos θ12ϕ2 + ϵ cos θ13ϕ3 = 0 ,

∂µ∂
µϕ2 + α2ϕ2 + ϵ cos θ12ϕ1 + ϵ cos θ23ϕ3 = 0 ,

∂µ∂
µϕ3 + α3ϕ3 + ϵ cos θ13ϕ1 + ϵ cos θ23ϕ2 = 0 , (62)

where we have introduced the following notes:

α1 ≡ a1 + 3b1φ
2
01 , α2 ≡ a2 + 3b2φ

2
02 , α3 ≡ a3 + 3b3φ

2
03 . (63)

Then, in the case of weak coupling |ϵ| ≪ |a1|, |a2|, |a3|, where corresponding

amplitudes of the condensates can be assumed as φ0i =
√

|ai|
bi

, we have

αi = −2ai = 2|ai| . (64)

The fields ϕ1,2,3 can be written in a form of harmonic oscillations: ϕ1 =
Ae−iqµxµ , ϕ2 = Be−iqµxµ , ϕ3 = Ce−iqµxµ , where qµxµ = ωt− qr. Substitut-
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ing them into Eq. (62), we obtain equations for the amplitudes A,B,C

A (α1 − qµq
µ) +Bϵ cos θ12 + Cϵ cos θ13 = 0 ,

Aϵ cos θ12 +B (α2 − qµq
µ) + Cϵ cos θ23 = 0 ,

Aϵ cos θ13 +Bϵ cos θ23 + C (α3 − qµq
µ) = 0 . (65)

Setting the determinant of the system (65) equal to zero, we find the dis-
persion equation

(qµq
µ)3 + (qµq

µ)2 b+ (qµq
µ) c+ d = 0 , (66)

where

b = −α1 − α2 − α3 ,

c = α1α2 + α1α3 + α2α3 − ϵ2
(
cos2 θ12 + cos2 θ13 + cos2 θ23

)
,

d = −α1α2α3 − 2ϵ3 cos θ12 cos θ13 cos θ23

+ϵ2
(
α1 cos

2 θ23 + α2 cos
2 θ13 + α3 cos

2 θ12
)
. (67)

In real physical cases |ε| < |a1,2,3|, hence b < 0, c > 0, d < 0. This cu-
bic equation has three real positive roots qµqµ = m2

H (squared masses of
H-bosons). In the symmetrical case α1 = α2 = α3 ≡ α, cos θ12 = cos θ13 =
cos θ23 ≡ cos θ, and we obtain

m2
H = α+ 2ϵ cos θ , α− ϵ cos θ , α− ϵ cos θ . (68)

It should be noted that these three frequencies are normal modes, but not
the frequencies of oscillations of each band separately. The amplitudes of
these modes relate as, for example, A = B = C; A = C, B = −(A + C),
and A = −C, B = 0, respectively. We can see that in the case of weak
interband coupling |ϵ| ≪ |a1,2,3|, the masses of H-bosons are almost equal
mH ≈ α =

√
2|a|. These three Higgs modes are shown in Fig. 7 (a).

Let us consider the case of weakly coupled |ϵ| ≪ α1,2,3 and strongly asym-
metrical bands, because, as we will see below, exactly this case corresponds
to the real physical situation. Let us suppose

φ01 ≪ φ02 ≪ φ03 , α1 < α2 < α3 , (69)

where we assume that small changes in the Higgs massmH =
√
α correspond

to large changes in the amplitude of the condensate φ0. Similar behavior
takes place in superconductor: |a| ∝ N , where N is the density of elec-
tron states on the Fermi surface, then in the case of weak electron–phonon
coupling, we have φ0 ∼ Ω exp(−1/gN ). In the asymmetrical case, we can
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q q = cos

32

q q = e   1

1 321 321

q q =    2 q q =    3

(a)

q q = cos

(b)

Fig. 7. Normal oscillations of the small variations of the modules of the scalar fields
ϕ1, ϕ2, ϕ3 in a symmetrical case α1 = α2 = α3 ≡ α, cos θ12 = cos θ13 = cos θ23 ≡
cos θ (a), and in the case of strongly asymmetrical bands α1 < α2 < α3 (b).

obtain masses of H-bosons mHe,mHµ,mHτ , i.e. frequencies of each normal
mode

m2
He ≈ α1 −

ϵ2 cos2 θ12
α2 − α1

− ϵ2 cos2 θ13
α3 − α1

,

m2
Hµ ≈ α2 −

ϵ2 cos2 θ12
α1 − α2

− ϵ2 cos2 θ23
α3 − α2

,

m2
Hτ ≈ α3 −

ϵ2 cos2 θ13
α1 − α3

− ϵ2 cos2 θ23
α2 − α3

, (70)

and the relations between the amplitudes of these modes
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qµq
µ = α1 ⇒ B = −Aϵ cos θ12

α2 − α1
, C = −Aϵ cos θ13

α3 − α1
,

qµq
µ = α2 ⇒ A = −Bϵ cos θ12

α1 − α2
, C = −Bϵ cos θ23

α3 − α2
,

qµq
µ = α2 ⇒ A = −C ϵ cos θ13

α1 − α3
, B = −C ϵ cos θ23

α2 − α3
. (71)

We have written the index e for the lightest boson, the index τ for the
heaviest boson, and the index µ for the boson of medium mass. These three
Higgs modes are shown in Fig. 7 (b) for the case, where ϵ cos θij < 0 (as the
rule).

Due to the weakness of interband coupling |ϵ| ≪ α1,2,3, we can write the
following effective diagonalization of the potential energy in the sense that
each normal mode ϕe, ϕµ, ϕτ is an oscillation of the corresponding effective
band:

|φe| ≈ φ0e + ϕe(t, r) , |φµ| ≈ φ0µ + ϕµ(t, r) , |φτ | ≈ φ0τ + ϕτ (t, r)
(72)

so, that these effective bands are not coupled

U = a1 |φ1|2 + a2 |φ2|2 + a3 |φ3|2 +
b1
2
|φ1|4 +

b2
2
|φ2|4 +

b3
2
|φ3|4

+2ϵ cos θ012|φ1||φ2|+ 2ϵ cos θ013|φ1||φ3|+ 2ϵ cos θ023|φ2||φ3|

≈ ae |φe|2 + aµ |φµ|2 + aτ |φτ |2 +
b1
2
|φe|4 +

b2
2
|φµ|4 +

b3
2
|φτ |4

+O

(
|ϵ|

m2
Hi −m2

Hj

)
, (73)

where the strong band asymmetry (69) is assumed, and we have noted

mHe =
√
−2ae , mHµ =

√
−2aµ , mHτ =

√
−2aτ , (74)

that can be named as the flavor masses (i.e. eigen-frequencies — the masses
of H-bosons), and

mH1 =
√
−2a1 , mH2 =

√
−2a2 , mH2 =

√
−2a2 , (75)

that can be named as the band masses (i.e. frequencies if there was no
interband coupling ϵ = 0). Accordingly, the states

(
φ1, φ2, φ3

)
with

equilibrium condensate amplitudes

φ01 =

√
|a1|
b1

, φ02 =

√
|a2|
b2

, φ03 =

√
|a3|
b3

(76)
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can be named as the band states, and the states
(
φe, φµ, φτ

)
with

equalibrium condensate amplitudes

φ0e ≈

√
|ae|
b1

, φ0µ ≈

√
|aµ|
b2

, φ0τ ≈

√
|aτ |
b3

(77)

can be named as the flavor states, i.e. they give normal oscillations of the
multi-band system. For strongly asymmetrical bands with the weak in-
terband coupling, the band masses and flavor masses are almost equal:
mHe ≈ mH1,mHµ ≈ mH2,mHτ ≈ mH3. Moreover, the equilibrium am-
plitudes of the condensates of band states and flavor states are also almost
equal: φ0e ≈ φ01, φ0µ ≈ φ02, φ0τ ≈ φ03. Indeed, we could see that due to the
strong band asymmetry (69) and the weak interband coupling |ϵ| ≪ α1,2,3,
each collective mode in Eq. (70) is approximately an oscillation of a single
band according to the following correspondence ϕe ≈ ϕ1, ϕµ ≈ ϕ2, ϕτ ≈ ϕ3,
see Fig. 7 (b).

Thus, the above transition from the coupled scalar fields ϕ1, ϕ1, ϕ1 to the
normal oscillations ϕe, ϕµ, ϕτ with frequencies mHe,mHµ,mHτ (the masses
of H-bosons), see Eq. (70), can be considered as diagonalization of the “po-
tential” energy (44)

Uϕ = ϕ21α1 + ϕ22α2 + ϕ23α3 + ϕ1ϕ22ϵ cos θ
0
12 + ϕ1ϕ32ϵ cos θ

0
13 + ϕ2ϕ32ϵ cos θ

0
23

= αe |ϕe|2 + αµ |ϕµ|2 + ατ |ϕτ |2

=
(
ϕ1, ϕ2, ϕ3

) α1 ϵ cos θ012 ϵ cos θ013
ϵ cos θ012 α2 ϵ cos θ023
ϵ cos θ013 ϵ cos θ023 α3

 ϕ1
ϕ2
ϕ3


=
(
ϕe, ϕµ, ϕτ

) αe 0 0
0 αµ 0
0 0 ατ

 ϕe
ϕµ
ϕτ


≡ ⟨ϕ123|M123|ϕ123⟩ = ⟨ϕeµτ |Meµτ |ϕeµτ ⟩ . (78)

Obviously, αe, αµ, ατ are eigen-values of the matrixM123:Meµτ =diag(M123),
in addition, the band H-bosons and the flavor H-bosons are connected by
the unitary transformation: |φeµτ ⟩ = U |φ123⟩, |φ123⟩ = UT|φeµτ ⟩, where U
is a unitary matrix U−1 = UT, which can be written via the mixing angles
α12, α13, α23

U =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13
0 1 0

−s13 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 , (79)

UT =

 c12 −s12 0
s12 c12 0
0 0 1

 c13 0 −s13
0 1 0
s13 0 c13

 1 0 0
0 c23 −s23
0 s23 c23

 , (80)
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where cik = cosαik, sik = sinαik. Then, we obtain an equation for the
mixing angles αik

Meµτ = UM123U
T or M123 = UTMeµτU . (81)

Assuming the independent mixing for each pair of bands 1 ↔ 2, 1 ↔ 3,
2 ↔ 3, we obtain (for example, for 1 ↔ 2, besides, a1,2 < 0, |ϵ| ≪ |a1| < |a2|)

tan 2α12 =
2ϵ cos θ012
α1 − α2

, sin 2α12 =
2ϵ cos θ012
αe − αµ

,

(αe − αµ)
2 = (α1 − α2)

2 + 4ϵ2 cos2 θ012
αe + αµ = α1 + α2

⇒ αe ≈ α1 +
ϵ2 cos2 θ012
α1 − α2

,

αµ ≈ α2 −
ϵ2 cos2 θ012
α1 − α2

, (82)

which is approximately consistent with Eq. (70). In the case of weak inter-
band coupling |ϵ| ≪ α1, α2, α3 and asymmetrical bands α1 < α2 < α3, the
mixing angles are very small | tanαik| ≪ 1. This means that the flavor
states almost coincide with the band states (as we can see in Fig. 7 (b)).
Let us estimate the mixing angle αik. In Section 9, it will be demonstrated
that ϵ ∼ 10−40 eV2. Since αi = m2

Hi, then α2 − α1 = m2
H2 −m2

H1 ∼ m2
H ∼

104 GeV2. Hence
αik ∼ 10−62 . (83)

Thus, oscillations of H-bosons (unlike the neutrino oscillations) are negligi-
ble. On the contrary, in the symmetrical case (68), we have

αik =
π

4
, ae,µ,τ − a ∼ ϵ . (84)

Thus, in the symmetrical case, each flavor state is the complete mixing of
all band states (as we can see in Fig. 7 (a)).

3. The Higgs effect for the Abelian gauge field

Let us consider the interaction of the scalar fields φ1,2,3, spontaneously
breaking the gauge U(1) symmetry, with the gauge field Aµ in its simplest
Abelian (Maxwell) form. The corresponding gauge-invariant Lagrangian has
the form

L = (∂µ + ieAµ)φ1(∂
µ − ieAµ)φ+

1 + (∂µ + ieAµ)φ2(∂
µ − ieAµ)φ+

2

+(∂µ + ieAµ)φ3(∂
µ − ieAµ)φ+

3

−a1 |φ1|2 − a2 |φ2|2 − a3 |φ3|2 −
b1
2
|φ1|4 −

b2
2
|φ2|4 −

b3
2
|φ3|4

−ϵ
(
φ+
1 φ2 + φ1φ

+
2

)
− ϵ
(
φ+
1 φ3 + φ1φ

+
3

)
− ϵ
(
φ+
2 φ3 + φ2φ

+
3

)
− 1

16π
FµνF

µν , (85)
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where Aµ = (φ,−A), Aµ = (φ,A) are covariant and contravariant potentials
of the electro-magnetic field, Fµν = ∂µAν−∂νAµ is the Faraday tensor. The
corresponding Lagrange equation

∂ν
∂L

∂(∂νAµ)
− ∂L
∂Aµ

= 0 (86)

and the Maxwell equation ∂νFµν = −4πJµ give the current

Jµ = −2e
[
|φ1|2 (∂µθ1 + eAµ) + |φ2|2 (∂µθ2 + eAµ) + |φ3|2 (∂µθ3 + eAµ)

]
.

(87)
The potential can be transformed as

A′
µ = Aµ +

1

e
(α∂µθ1 + β∂µθ2 + γ∂µθ3) , (88)

where

α =
|φ1|2

|φ1|2 + |φ2|2 + |φ3|2
, β =

|φ2|2

|φ1|2 + |φ2|2 + |φ3|2
,

γ =
|φ3|2

|φ1|2 + |φ2|2 + |φ3|2
, (89)

so that

α+ β + γ = 1 , |φ2|2|φ3|2α = |φ1|2|φ3|2β = |φ1|2|φ2|2γ . (90)

Then Eq. (87) is reduced to the “London law”

Jµ = −2e2
(
|φ1|2 + |φ2|2 + |φ3|2

)
Aµ ≡ − 1

4πλ2
Aµ , (91)

where
λ =

1√
8πe2 (|φ1|2 + |φ2|2 + |φ3|2)

(92)

is the “penetration depth” — the length of interaction mediated by the
gauge bosons Aµ. Thus, screening of the electro-magnetic field by the scalar
fields φ1,2,3, spontaneously breaking the gauge U(1) symmetry, is analo-
gous to the response of the single-band system, but with a contribution
from each band |φi|2. It should be noted that in Eqs. (89)–(92), the field
modules |φ1|2, |φ2|2, |φ3|2 should be replaced with their equilibrium values
φ2
01, φ

2
02, φ

2
03, respectively.

The modulus-phase representations (32) can be considered as the local
gauge U(1) transformations. Then, the covariant derivative is transformed
by the follows:

(∂µ + ieAµ)φj = eiθj (∂µ + i∂µθj + ieAµ)|φj | . (93)

Applying the transformation (88), we can transform Lagrangian (85) to the
following form:
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L= ∂µ|φ1|∂µ|φ1|+ ∂µ|φ2|∂µ|φ2|+ ∂µ|φ3|∂µ|φ3|
+e2

(
|φ1|2 + |φ2|2 + |φ3|2

)
AµA

µ

−2ϵ|φ1||φ2| cos(θ1−θ2)−2ϵ|φ1||φ3| cos(θ1−θ3)−2ϵ|φ2||φ3| cos(θ2 − θ3)

+
(
|φ1|2β2 + |φ2|2α2

)
∂µ (θ1 − θ2) ∂

µ (θ1 − θ2)

+
(
|φ1|2γ2 + |φ3|2α2

)
∂µ (θ1 − θ3) ∂

µ (θ1 − θ3)

+
(
|φ2|2γ2 + |φ3|2β2

)
∂µ (θ2 − θ3) ∂

µ (θ2 − θ3)

−|φ1|22γβ∂µ (θ1 − θ2) ∂
µ (θ1 − θ3)− |φ2|22αγ∂µ (θ1 − θ2) ∂

µ (θ2 − θ3)

−|φ3|22αβ∂µ (θ1 − θ3) ∂
µ (θ2 − θ3)

−a1 |φ1|2 − a2 |φ2|2 − a3 |φ3|2 −
b1
2
|φ1|4 −

b2
2
|φ2|4 −

b3
2
|φ3|4

− 1

16π
FµνF

µν . (94)

We can see that the phases θ1, θ2, θ3 have been excluded from the Lagrangian
individually leaving only their differences: θ1 − θ2, θ1 − θ3, θ2 − θ3. Thus,
the gauge field Aµ absorbs the Goldstone boson (i.e. the common mode
oscillations, where ∇θ1 = ∇θ2 = ∇θ3) with an acoustic spectrum (55). At
the same time, the L-bosons (i.e. the oscillations of the phases differences
θi − θj) with massive spectra (56), (57) “survive”. This “survival” can be
explained as follows. Each phase oscillation θi is absorbed by the gauge
field, but such mutual oscillations of θi and θk exist that the gauge fields
from each oscillation cancel each other out due to interference, so that the
Leggett modes “survive”. The phase differences are not normal coordinates,
because, firstly, they are not independent: we can assume, for example,
θ2−θ3 = θ1−θ3−(θ1−θ2); secondly, we can see from Eq. (94), that there are
off-diagonal kinetic terms, as ∂µ (θ1 − θ2) ∂

µ (θ1 − θ3). Thus, diagonalizing
Lagrangian (94) and noticing that θ23 = θ13 − (θ12), we can obtain the
Leggett modes (56), (57) again.

Substituting the calibrated Lagrangian (94) into the Eq. (86), we obtain
the equation for the field Aµ

∂νF
νµ +

1

λ2
Aµ = 0 , (95)

where
1

λ2
= 8πe2

(
φ2
01 + φ2

02 + φ2
03

)
≡ m2

A (96)

is the squared mass of the gauge boson Aµ, which is the squared reciprocal
“penetration depth” (92) in the “London law” (91). The scalar field φ can
be written in a dimensionless form: φ = φ0φ̃, where φ0 =

√
−a
b is the
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equilibrium value. Then the Lagrangian takes the form

L = ∂µφ∂
µφ+ − a |φ|2 − b

2
|φ|4 = a2

b

[
ξ2∂µφ̃∂

µφ̃+ − |φ̃|2 − 1

2
|φ̃|4

]
, (97)

where the length ξ ≡ 1√
|a|

determines the spatial scale of variations of the

scalar field φ — the “coherence length”. On the other hand, we could see
that the mass of H-boson is mH =

√
2|a|. Then we have

mH =

√
2

ξ
. (98)

It is noteworthy that the mass of the Higgs boson and the mass of the gauge
boson are related as mH

mA
=

√
2κ , (99)

where κ = λ/ξ is the Ginzburg–Landau parameter. Accordingly, the three-
band system is characterized with the three coherence lengths ξ1 =

√
2

mH1
,

ξ2 =
√
2

mH2
, ξ3 =

√
2

mH3
, hence with three Ginzburg–Landau parameters κ1 ≡

λ
ξ1

= mH1√
2mA

, κ2 ≡ λ
ξ2

= mH2√
2mA

, κ3 ≡ λ
ξ3

= mH3√
2mA

.
Let us consider the term of interaction of modulus of the scalar fields

|φ1|, |φ2|, |φ3| with the gauge field Aµ in Lagrangian (94). Using the small
deviations |ϕi| ≪ φ0i from the corresponding equilibrium values |φi|2 ≈
φ2
0i + 2φ0iϕi(t, r), we obtain

UφA = e2
(
|φ1|2 + |φ2|2 + |φ3|2

)
AµA

µ

≈ e2
(
φ2
01 + φ2

02 + φ2
03

)
AµA

µ

+e2 (2φ01ϕ1(t, r) + 2φ02ϕ2(t, r) + 2φ03ϕ3(t, r))AµA
µ

≡
m2

A

8π
AµA

µ + e2 (2φ01ϕ1(t, r) + 2φ02ϕ2(t, r) + 2φ03ϕ3(t, r))AµA
µ

≈
m2

A

8π
AµA

µ + e2 (2φ01ϕe(t, r) + 2φ02ϕµ(t, r) + 2φ03ϕτ (t, r))AµA
µ ,

(100)

where we have used Eq. (96) and we have taken advantage of the strong
band asymmetry and the weakness of interband coupling discussed in Sub-
section 2.3, where we could see that each collective mode is approximately
oscillations of a single band according to the following correspondence ϕe ≈
ϕ1, ϕµ ≈ ϕ2, ϕτ ≈ ϕ3. As will be demonstrated below φ01 : φ02 : φ03 =
me : mµ : mτ = 0.00028 : 0.059 : 1. Thus, the gauge boson Aµ interacts
with τ -Higgs boson ϕτ predominantly, at the same time, the interaction with
µ, e-Higgs bosons ϕµ, ϕe is very weak.
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4. The band states and the flavor states of Dirac fields

We can consider three Dirac spinor fields ψ1, ψ2, ψ3 as we have considered
three scalar fields (32). The fields are massless, but each field interacts with
the corresponding scalar field (i.e. in own band). Then, the Lagrangian will
have the form

L= iψ̄L1γ
µ
↔
∂ µψL1 + iψ̄R1γ

µ
↔
∂ µψR1 − χ

(
ψ̄L1φ1ψR1 + ψ̄R1φ

+
1 ψL1

)
+iψ̄L2γ

µ
↔
∂ µψL2 + iψ̄R2γ

µ
↔
∂ µψR2 − χ

(
ψ̄L2φ2ψR2 + ψ̄R2φ

+
2 ψL2

)
+iψ̄L3γ

µ
↔
∂ µψL3 + iψ̄R3γ

µ
↔
∂ µψR3 − χ

(
ψ̄L3φ3ψR3 + ψ̄R3φ

+
3 ψL3

)
, (101)

where γµ are Dirac matrices, ψ̄γµ
↔
∂ µψ ≡ 1

2 [ψ̄γ
µ(∂µψ)−(∂µψ̄)γ

µψ] is a differ-
ential operator, ψ̄ = ψ+γ0 is the Dirac conjugated bispinor; ψR = 1

2(1+γ
5)ψ

and ψL = 1
2(1 − γ5)ψ are the right-handed and the left-handed fields, re-

spectively, so that ψ = ψL + ψR; χ is the dimensionless coupling constant
between the corresponding Dirac field ψj and scalar field φj (Yukawa con-
stant). Thus, by analogy with the Higgs modes, we will call the states ψ1,
ψ2, ψ3 as the band states.

Due to the presence of the scalar fieldcondensate ⟨0|φ|0⟩ = φ0 e
iθ0 , the

Dirac fermion takes mass as follows. Let us consider a single-band case, then
the term of the interaction of the scalar field φ with the Dirac field ψ has
the following form:

UD = χ
(
ψ̄LφψR + ψ̄Rφ

+ψL

)
= χ|φ|

(
ψ̄LψR + ψ̄RψL

)
cos θ

+iχ|φ|
(
ψ̄LψR − ψ̄RψL

)
sin θ . (102)

Here, ψ̄LψR + ψ̄RψL is a scalar, but ψ̄LψR − ψ̄RψL is a pseudoscalar. Hence,
in order to obtain the Dirac mass of a fermion, we must choose the vacuum
so that θ0 = 0, that is mD = χφ0 cos θ

0 = χφ0. It should be noted that, in
the single-band system, this choice of phase is not principal, because, due
to the U(1)-symmetry, the phase θ can always be set as θ = 0. Then, the
Dirac term takes the form

UD = χ|φ|
(
ψ̄RψL + ψ̄RψL

)
= mD

(
ψ̄RψL + ψ̄RψL

)
+ χϕ

(
ψ̄RψL + ψ̄RψL

)
.

(103)
Thus, the initially massless fermion obtains the mass mD = χφ0, due to
interaction with the condensate φ0 =

√
−a
b of the scalar field φ. The cou-

pling χϕ is the interaction of the Dirac field ψ with small variations of the
modulus of the scalar field from its equilibrium value: |φ| = φ0 + ϕ, where
|ϕ| ≪ φ0, i.e. the interaction with the H-boson.
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However, in the three-band system (multi-band system), there are many
scalar fields: |φ1| eiθ1 , |φ2| eiθ2 , |φ3| eiθ3 , where the equilibrium phase dif-
ferences θ012, θ013, θ023 are determined by Eq. (40). In the case of repulsive
interband coupling ϵ > 0, we can have different phases: θ01 ̸= θ02 ̸= θ03,
see Fig. 5, for example, θ012 = θ023 = 2π

3 , θ
0
13 = 4π

3 for symmetrical bands
φ01 = φ02 = φ03. This means that even if we set θ01 = 0, the other phases
will be θ02 = θ012 ̸= 0, θ03 = θ013 ̸= 0. Hence, the coupling terms (101) cannot
be reduced to the Dirac mass term (103) due to the pseudoscalar contribu-
tion. On the contrary, in the case of attractive interband coupling ϵ < 0,
we have the same phases: θ01 = θ02 = θ03, see Fig. 5. This means that we
should assume θ01 = θ02 = θ03 = 0, then the coupling terms in Eq. (101) can
be reduced to the Dirac mass term (103)

L= iψ̄L1γ
µ
↔
∂ µψL1 + iψ̄R1γ

µ
↔
∂ µψR1 − χ|φ1|

(
ψ̄L1ψR1 + ψ̄R1ψL1

)
+iψ̄L2γ

µ
↔
∂ µψL2 + iψ̄R2γ

µ
↔
∂ µψR2 − χ|φ2|

(
ψ̄L2ψR2 + ψ̄R2ψL2

)
+iψ̄L3γ

µ
↔
∂ µψL3 + iψ̄R3γ

µ
↔
∂ µψR3 − χ|φ3|

(
ψ̄L3ψR3 + ψ̄R3ψL3

)
. (104)

Therefore, the masses of the Dirac fields ψ1, ψ2, ψ3 are determined by cou-
pling with the equilibrium module of the corresponding scalar fields φ01, φ02,
φ03

mD1 = χφ01 , mD2 = χφ02 , mD3 = χφ03 . (105)

Thus, only the attractive interband coupling

ϵ < 0 (106)

has a physical sense, unlike multi-band superconductivity, where the analog
of the interaction of Dirac spinors and scalar field (the superconducting order
parameter) is absent, therefore any interband couplings ϵik are allowed [74,
75]. From Fig. 5 we can see that at φ01,02 ≪ φ03 and ϵ > 0, and we can
assume that θ03 = 0, θ02 = θ02 = π (then we should change signs of two
Yukawa constants χ1 = χ2 = −χ3). However, such a system will have larger
ground-state energy compared to the ϵ < 0 case.

Let us consider the Dirac terms in Eq. (104)

UD = χφ01

(
ψ̄L1ψR1 + ψ̄R1ψL1

)
+ χϕ1

(
ψ̄L1ψR1 + ψ̄R1ψL1

)
+ χφ02

(
ψ̄L2ψR2 + ψ̄R2ψL2

)
+ χϕ2

(
ψ̄L2ψR2 + ψ̄R2ψL2

)
+ χφ03

(
ψ̄L3ψR3 + ψ̄R3ψL3

)
+ χϕ3

(
ψ̄L3ψR3 + ψ̄R3ψL3

)
. (107)

However, as we could see in Section 2, the fields ϕ1, ϕ2, ϕ3 are not normal
oscillations of the coupled scalar fields |φ1|, |φ2|, |φ3|. Eigen-frequencies (the
masses of H-bosons) have been found in Eq. (70), each normal oscillation
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mode involves all three scalar fields, see Eq. (71) and Fig. 7. Thus, we can
introduce the flavor states: each flavor state of the Dirac fields interacts only
with the corresponding normal mode ϕe, ϕµ, ϕτ of the scalar fields. At the
same time, in Section 2.3, we have seen that due to the weakness of interband
coupling |ϵ| ≪ α1,2,3 and the strong band asymmetry (69), the effective
diagonalization (73) can be realized. As a result, we obtain the flavor states
of condensates (77), in the sense that each normal mode ϕe, ϕµ, ϕτ is an
oscillation of the corresponding effective band (flavor) φe, φµ, φτ . Then we
can write

UDeµτ = χφ0e

(
ψ̄LeψRe + ψ̄ReψLe

)
+ χϕe

(
ψ̄LeψRe + ψ̄ReψLe

)
+χφ0µ

(
ψ̄LµψRµ + ψ̄RµψLµ

)
+ χϕµ

(
ψ̄LµψRµ + ψ̄RµψLµ

)
+χφ0τ

(
ψ̄LτψRτ + ψ̄RτψLτ

)
+ χϕτ

(
ψ̄LτψRτ + ψ̄RτψLτ

)
. (108)

Thus, the masses of the Dirac fields ψe, ψµ, ψτ are determined by coupling
with the equilibrium modules of the corresponding scalar fields φ0e, φ0µ, φ0τ

mDe = χφ0e , mDµ = χφ0µ , mDτ = χφ0τ . (109)

Since φ0e ≈ φ01, φ0µ ≈ φ02, φ0τ ≈ φ03 and ϕe ≈ ϕ1, ϕµ ≈ ϕ2, ϕτ ≈ ϕ3,
we can present the Yukawa couplings in Table 2, similarly to Table 1, for
2HDM or 3HDM models. Thus, unlike in 2HDM or 3HDM models, in the
three-band model, the Yukawa interactions with scalar fields are distributed
over generations of fermions, not over leptons and quarks apart.

Table 2. Yukawa interactions for three generations of fermions (charged leptons,
upper and bottom quarks).

e, u, d µ, c, s τ, t, b

φ1 φ2 φ3

However, unlike the exact diagonalization (78) for potential energy of
the excitations ϕ1,2,3 → ϕe,µ,τ of the coupled condensates (because it is a
quadratic form), the diagonalization (73) is approximate. Hence, the flavor
states must enter into the Lagrangian with some interflavor mixings, which
compensate the inaccuracy of diagonalization (73). Then, the potential en-
ergy term for the flavor states ψe, ψµ, ψτ takes the following form:

UDeµτ + Umix =
(
ψ̄Le, ψ̄Lµ, ψ̄Lτ

)mDe ζeµ ζeτ
ζeµ mDµ ζµτ
ζeτ ζµτ mDτ

 ψRe

ψRµ

ψRτ


+h.c. ≡ ⟨ψeµτ |Meµτ |ψeµτ ⟩ , (110)
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where ζik are the mixing parameters analogous to the interband coupling ϵ.
Thus, the coupling of “L” and “R” components ψ̄LiψRi + ψ̄RiψLi gives the
Dirac masses mDe,mDµ,mDτ , at the same time, the “L” and “R” components
are mixed with the corresponding “R” and “L” components of the other
flavors ψ̄LiψRk + ψ̄RkψLi. As a result of diagonalization of the matrix Meµτ :
M123 = diag(Meµτ ), we obtain the potential energy term in Lagrangian
(107) for the band states

UDeµτ + Umix = UD =
(
ψ̄L1, ψ̄L2, ψ̄L3

)mD1 0 0
0 mD2 0
0 0 mD3

 ψR1

ψR2

ψR3


+h.c. ≡ ⟨ψ123|M123|ψ123⟩ . (111)

Thus, we have the system of equations for the mixing parameters ζeµ, ζeτ , ζµτ∣∣∣∣∣∣
mDe −mDi ζeµ ζeτ

ζeµ mDµ −mDi ζµτ
ζeτ ζµτ mDτ −mDi

∣∣∣∣∣∣ = 0 , where i = 1, 2, 3 .

(112)
Obviously, mDe −mD1 ∼ mDµ −mD2 ∼ mDτ −mD3 ∼ ζeµ, ζeτ , ζµτ . Using
Eq. (70), we obtain

ζαβ ∼ mDi
ϵ2

m2
Hi∆m

2
Hij

, (113)

where ∆m2
Hij = m2

Hi − m2
Hj . Thus, the mixing parameters ζαβ are de-

termined by the interband coupling ϵ. If the interband coupling is weak
|ϵ| ≪ m2

H ,m
2
D, then the mixing parameter |ζ| ≪ mD.

It should be noted that in SM, we can write the mass matrix MSM
eµτ as

MSM
eµτ =

 mDe ζeµ ζeτ
ζeµ mDµ ζµτ
ζeτ ζµτ mDτ

 = φ0

 χee χeµ χeτ

χeµ χµµ χµτ

χeτ χµτ χττ

 . (114)

That is, both diagonal elements and off-diagonal elements are just Yukawa
constants χij due to the presence of the single-scalar field φ0. However, in
the three-band model, we have three scalar fields φ0e, φ0µ, φ0τ and Eq. (109),
hence we cannot write the mass matrix Meµτ in the form of Eq. (114). This
means that the mixing coefficients ζij are not off-diagonal Yukawa interac-
tion. The mixing coefficients ζij are the fermionic analog of the interband
Josephson coupling. This mixing takes place due to the interband Joseph-
son coupling of the scalar fields φ1, φ2, φ3; from Eq. (113), we can see that
ζαβ ∝ ϵ2.
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The band states and the flavor states are connected by an unitary trans-
formation |ψeµτ ⟩ = U |ψ123⟩, |ψ123⟩ = UT|ψeµτ ⟩, where U is an unitary
matrix U−1 = UT, which can be written via the mixing angles α12, α13, α23,
see Eqs. (79) and (80). The mixing angles can be found from Eq. (81). As-
suming the independent mixing for each pair of bands e↔ µ, e↔ τ, µ↔ τ ,
we obtain (for example, for e↔ µ via the mixing of the band states 1 and 2)

tan 2α12 =
2ζeµ

mDe −mDµ
, (115)

and moreover, the band masses mD1,mD2 and the flavor masses mDe,mDµ

are connected by the following way:

(mD1 −mD2)
2 = (mDe −mDµ)

2 + 4ζ2eµ ,

mDe +mDµ = mD1 +mD2 . (116)

In the case of weak interband coupling |ϵ| ≪ |a1|, |a2|, |a3| (hence, |ζik| ≪
mD1,mD2,mD3) and strongly asymmetrical bands φ01 ≪ φ02 ≪ φ03 (hence,
mD1 ≪ mD2 ≪ mD3), the mixing angles are very small | tanαik| ≪ 1, hence
the oscillations charged leptons (i.e. electron–muon–tauon) are negligible
and experimentally unobservable, unlike the neutrino oscillations.

Now, let us return to Eq. (102) again. Despite the fact that equilibrium
phases are θ01 = θ02 = θ03 = 0, phase oscillations (50) can take place. The full
interaction term has the form

UD = χ|φ1|
(
ψ̄L1ψR1 + ψ̄R1ψL1

)
+ χ|φ2|

(
ψ̄L2ψR2 + ψ̄R2ψL2

)
+χ|φ3|

(
ψ̄L3ψR3 + ψ̄R3ψL3

)
+iχφ01

(
ψ̄L1ψR1 − ψ̄R1ψL1

)
θ1 + iχφ02

(
ψ̄L2ψR2 − ψ̄R2ψL2

)
θ2

+iχφ03

(
ψ̄L3ψR3 − ψ̄R3ψL3

)
θ3 , (117)

where θ = θ(t, r) is small phase oscillations |θ| ≪ 1. Unlike the interac-
tion with the amplitudes of the scalar fields |φi|, the interaction with the
phase oscillations would have to violate the P -invariance. However, we can
see that the Dirac field ψi = ψLi + ψRi of each band interacts with the
corresponding phase of the scalar field θi. As have been demonstrated in
Section 3, the phase oscillations θi(t, r) are absorbed by the gauge fields Aµ

due to the Higgs mechanism, hence in Eq. (117), the phases are equal to
their equilibrium value θi = θ0i = 0.
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5. Spontaneous breaking of the SU(2)I gauge symmetry in
the three-band system with the Josephson couplings

Let the fields Ψ1, Ψ2, Ψ3 be isospinors, each of which has two complex
(four real) scalar components

Ψ =

(
φ(1)

φ(2)

)
, Ψ+ =

(
φ(1)∗, φ(2)∗ ) (118)

being transformed during the rotation in the isospace as

Ψ = SΨ ′, S = ei
τ⃗
2
ϑ⃗ =

(
τ0 cos

ϑ

2
+ i(n⃗τ⃗ ) sin

ϑ

2

)
, (119)

where τ⃗ = (τx, τy, τz) is a vector consisting of Pauli matrices, τ0 is an identity
matrix, ϑ⃗ = n⃗ϑ, where n⃗ is an unit vector in the direction of the axis
around which the rotation is made in the isospace. Thus, the isospinor
fields, corresponding to each band, can be represented in the following form:

Ψ1(x) = ei
τ⃗
2
ϑ⃗1(x)

(
0

φ1(x)

)
, Ψ2(x) = ei

τ⃗
2
ϑ⃗2(x)

(
0

φ2(x)

)
,

Ψ3(x) = ei
τ⃗
2
ϑ⃗3(x)

(
0

φ3(x)

)
, (120)

where φ1, φ2, φ3 are real and φ1, φ2, φ3 > 0. Thus, we assign the third
projection of the isospin as Iz = −1

2 to the scalar fields φi, then hypercharge
Y = 1 and the electrical charge Q = Iz + Y

2 = 0. At the same time,
the phases ϑ⃗i are characterized with zero charges Iz = Y = Q = 0. The
corresponding Lagrangian L is a sum of the gauge-invariant part (relative
to the SU(2) gauge symmetry) and the Josephson terms

L= ∂µΨ1∂
µΨ+

1 + ∂µΨ2∂
µΨ+

2 + ∂µΨ3∂
µΨ+

3

−a1Ψ1Ψ+
1 − a2Ψ2Ψ

+
2 − a3Ψ3Ψ

+
3

−b1
2

(
Ψ1Ψ

+
1

)2 − b2
2

(
Ψ2Ψ

+
2

)2 − b3
2

(
Ψ3Ψ

+
3

)2
−ϵ
(
Ψ+
1 Ψ2 + Ψ1Ψ

+
2

)
− ϵ
(
Ψ+
1 Ψ3 + Ψ1Ψ

+
3

)
− ϵ
(
Ψ+
2 Ψ3 + Ψ2Ψ

+
3

)
. (121)

The Josephson terms Ψ+
i Ψj +ΨjΨ

+
i are not invariant relatively to the SU(2)

gauge symmetry, however, these terms should depend on the phase differ-
ences ϑi − ϑj only: ΨiΨ

+
j + Ψ+

i Ψj = 2φiφj cos
ϑi−ϑj

2 , in order to have a
physical sense as interference between condensates Ψ1, Ψ2, Ψ3. To ensure
such a property, it is necessary

n⃗1 = n⃗2 = n⃗3 , (122)

that is the isospinors (120) must rotate around a common axis. Moreover,
it is not difficult to see that
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Ψ = ei
τ⃗
2
ϑ⃗

(
0
φ

)
=

(
[iφnx + φny] sin

ϑ
2

φ cos ϑ
2 − inzφ sin ϑ

2

)
, (123)

then
ΨkΨ

+
j + Ψ+

j Ψk =
(

[−iφjnx + φjny] sin
ϑj

2 , φj cos
ϑj

2 + inzφj sin
ϑj

2

)
×
(

[iφknx + φkny] sin
ϑk
2

φk cos
ϑk
2 − inzφk sin

ϑk
2

)
+
(

[−iφknx + φkny] sin
ϑk
2 , φk cos

ϑk
2 + inzφk sin

ϑk
2

)
×

(
[iφjnx + φjny] sin

ϑj

2

φj cos
ϑj

2 − inzφj sin
ϑj

2

)

= 2φjφk

[
cos

ϑj
2

cos
ϑk
2

+ n2z sin
ϑj
2

sin
ϑk
2

]
+2φjφk

[
n2x + n2y

]
sin

ϑj
2

sin
ϑk

2
. (124)

Therefore, it must be
nx = ny = 0 ⇒ nz = ±1 . (125)

Then, substituting representation (120) into Lagrangian (121), we obtain

L= ∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 + ∂µφ3∂
µφ3

+φ2
1∂µ

ϑ1
2
∂µ
ϑ1
2

+ φ2
2∂µ

ϑ2
2
∂µ
ϑ2
2

+ φ2
3∂µ

ϑ3
2
∂µ
ϑ3
2

−a1φ2
1 −

b1
2
φ4
1 − a2φ

2
2 −

b2
2
φ4
2 − a3φ

2
3 −

b3
2
φ4
3

−2ϵφ1φ2 cos
ϑ1−ϑ2

2
− 2ϵφ1φ3 cos

ϑ1−ϑ3
2

− 2ϵφ2φ3 cos
ϑ2−ϑ3

2
. (126)

Let us consider stationary and spatially homogeneous case, i.e. ∂tφ = 0,
∇φ = 0, ∂tϑ = 0, ∇ϑ = 0. Then we obtain equations for the equilibrium
values of the fields φ0i and ϑ0i − ϑ0j

a1φ01 + ϵφ02 cos
ϑ0
2−ϑ0

1
2 + ϵφ03 cos

ϑ0
3−ϑ0

1
2 + b1φ

3
01 = 0

a2φ02 + ϵφ01 cos
ϑ0
1−ϑ0

2
2 + ϵφ03 cos

ϑ0
3−ϑ0

2
2 + b1φ

3
02 = 0

a3φ03 + ϵφ01 cos
ϑ0
1−ϑ0

3
2 + ϵφ02 cos

ϑ0
2−ϑ0

3
2 + b1φ

3
03 = 0

φ02 sin
ϑ0
2−ϑ0

1
2 + φ03 sin

ϑ0
3−ϑ0

1
2 = 0

φ01 sin
ϑ0
1−ϑ0

2
2 + φ03 sin

ϑ0
3−ϑ0

2
2 = 0

φ01 sin
ϑ0
1−ϑ0

3
2 + φ02 sin

ϑ0
2−ϑ0

3
2 = 0


. (127)

If the interband coupling is weak, i.e. |ϵ| ≪ |a1|, |a2|, |a3|, then we can assume
φ0i =

√
ai
bi

.
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On the other hand, let us consider three Dirac spinor fields ψ1, ψ2, ψ3 as
we have considered them in Section 4. However, now Lagrangian (101) has
the form

L =
3∑

i=1

[
iψ̄Liγ

µ
↔
∂ µψLi + iψ̄Riγ

µ
↔
∂ µψRi − χ

(
ψ̄LiΨiψRi + ψ̄RiΨ

+
i ψLi

)]
.

(128)
For the terms of interaction of Dirac fields with isospinor fields UD =
χ(ψ̄LΨψR + ψ̄RΨ

+ψL) to take the form of the mass term of the Dirac type
UD = mD(ψ̄LψR + ψ̄RψL), the following conditions must be satisfied:

1. Since L must be a scalar and Ψ is a doublet (118), then the spinor ψL

must be a dublet (singlet) and ψR must be a singlet (dublet). That

is, for example, ψL =

(
νL
lL

)
and ψR = lR. This means the violation

of the spatial parity symmetry. Here, lL,R are electrically charged
leptons: QL = QR = −1, IzL = −1

2 , YL = −1, IzR = 0, YR = −2, at
the same time, νL are electrically neutral leptons (neutrinos): Q = 0,
IzL = 1

2 , YL = −1.

2. As in Section 4, the coupling terms UD in Eq. (128) can be reduced
to the Dirac mass terms, only when three condensates (118) have the
same equilibrium phases, which are assumed to be ϑ01 = ϑ02 = ϑ03 = 0.
This is possible only in the case of the attractive interband coupling
ϵ < 0.

3. If we use an isospinor Ψ=

(
φ(1)

φ(2)

)
, the coupling terms UD=χ(ψ̄LΨψR+

ψ̄RΨ
+ψL) take the form of UD = χ(ν̄Lφ

(1)lR+l̄Rφ
(1)+νL) +χ(l̄Lφ

(2)lR+

l̄Rφ
(2)+lL). We can see that we must suppose φ(1) = 0 to avoid mixing

of neutrinos with the charged leptons, and φ(2)+ = φ(2) > 0. This
corresponds to our selection of the vacuum as (125).

4. Neutrino masses are assumed to be zero mν1 = mν2 = mν3 = 0. We
postpone discussion of this issue until Section 7.

At the same time, except for the band states ψ1, ψ2, ψ3 (i.e. the states, which
interact with the corresponding isospinor fields), the flavor states ψe, ψµ, ψτ

(i.e. the states, which interact with normal oscillation modes of the coupled
isospinor fields) must exist

ψLe =

(
νLe
eL

)
, ψRe = eR , ψLµ =

(
νLµ
µL

)
, ψRµ = µR ,

ψLτ =

(
νLτ
τL

)
, ψRτ = τR . (129)
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The relationship between the band states and the flavor states (i.e. the
lepton oscillations) has been discussed in Section 4 and will be considered
again in Section 7.

Let us consider the movement of the phases ϑ1,2,3. The corresponding
Lagrange equations for Lagrangian (126) are

φ2
01∂µ∂

µϑ1 − 2φ01φ02ϵ sin
ϑ1 − ϑ2

2
− 2φ01φ03ϵ sin

ϑ1 − ϑ3
2

= 0 ,

φ2
02∂µ∂

µϑ2 + 2φ01φ02ϵ sin
ϑ1 − ϑ2

2
− 2φ02φ03ϵ sin

ϑ2 − ϑ3
2

= 0 ,

φ2
03∂µ∂

µϑ3 + 2φ01φ03ϵ sin
ϑ1 − ϑ3

2
+ 2φ02φ03ϵ sin

ϑ2 − ϑ3
2

= 0 . (130)

As we have seen above, the coupling terms UD in Eq. (128) can be reduced to
the Dirac mass terms, only when three condensates ⟨Ψ1⟩, ⟨Ψ2⟩, ⟨Ψ3⟩ have the
same equilibrium phases ϑ01 = ϑ02 = ϑ03 = 0. This is only possible in the case
of the attractive interband coupling ϵ < 0. Considering small variations, i.e.
|ϑ| ≪ π, we can linearize Eq. (130)

φ2
01∂µ∂

µϑ1 − φ01φ02ϵ(ϑ1 − ϑ2)− φ01φ03ϵ(ϑ1 − ϑ3) = 0 ,

φ2
02∂µ∂

µϑ2 + φ01φ02ϵ(ϑ1 − ϑ2)− φ02φ03ϵ(ϑ2 − ϑ3) = 0 ,

φ2
03∂µ∂

µϑ3 + φ01φ03ϵ(ϑ1 − ϑ3) + φ02φ03ϵ(ϑ2 − ϑ3) = 0 , (131)

which coincides with Eq. (51) for the phases θ1, θ2, θ3 when ϵ < 0, i.e.
all equilibrium phase differences are θ0ij = 0 ⇒ cos θ0ij = 1. Therefore,
the spectrum of Goldstone modes due to the spontaneous breaking of the
SU(2) gauge symmetry in the three-band system with the interband coupling
coincides with the spectrum (53) of Goldstone modes resulting from the
spontaneous breaking of the U(1) gauge symmetry in the three-band system
with the interband coupling.

Let us consider oscillations of φi only. Then, at ϵ < 0 (i.e. equilibrium
phase differences are ϑ0ij = 0), Lagrangian (126) takes the form

L = ∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 + ∂µφ3∂
µφ3

−a1φ2
1 −

b1
2
φ4
1 − a2φ

2
2 −

b2
2
φ4
2 − a3φ

2
3 −

b3
2
φ4
3

−2ϵφ1φ2 − 2ϵφ1φ3 − 2ϵφ2φ3 , (132)

which coincides with Lagrangian (41) for the fields |φ1|, |φ2|, |φ3| when ϵ < 0.
Therefore, the spectrum of Higgs modes due to the spontaneous breaking
of the SU(2) gauge symmetry in the three-band system with the interband
coupling coincides with the spectrum (66) of Higgs modes resulting from the
spontaneous breaking of the U(1) gauge symmetry in the three-band system
with the interband couplings.
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Let us consider the interaction of the isospinor fields Ψ1,2,3 (120), breaking
the gauge SU(2) symmetry each, with the gauge Yang–Mills field A⃗µ. The
corresponding gauge-invariant Lagrangian has the form

L = DµΨ1 (D
µΨ1)

+ +DµΨ2 (D
µΨ2)

+ +DµΨ3 (D
µΨ3)

+

−a1Ψ1Ψ+
1 − a2Ψ2Ψ

+
2 − a3Ψ3Ψ

+
3

−b1
2

(
Ψ1Ψ

+
1

)2 − b2
2

(
Ψ2Ψ

+
2

)2 − b3
2

(
Ψ3Ψ

+
3

)2
−ϵ
(
Ψ+
1 Ψ2 + Ψ1Ψ

+
2

)
− ϵ
(
Ψ+
1 Ψ3 + Ψ1Ψ

+
3

)
− ϵ
(
Ψ+
2 Ψ3 + Ψ2Ψ

+
3

)
− 1

16π
F⃗µνF⃗

µν , (133)

where
Dµ ≡ τ0∂µ − ig

τ⃗

2
A⃗µ (134)

is the covariant derivation,
F⃗µν = ∂µA⃗ν − ∂νA⃗µ + g

[
A⃗µ × A⃗ν

]
(135)

is the tensor of the Yang–Mills field. Using Eq. (120), from which we can
assume that |ϑ| ≪ 1 ⇒ S = τ0 + i τ⃗2 ϑ⃗, and using a property of the Pauli

matrixes −i
[
τ⃗
2 · ϑ⃗µ, τ⃗2 · A⃗µ

]
=
[
ϑ⃗× A⃗µ

]
· τ⃗
2 [1], Lagrangian (133) can be

rewritten in the following form:

L =

3∑
i=1

(
0, φi

)(
τ0∂

µ − i
τ⃗

2
∂µϑ⃗i + ig

τ⃗

2
A⃗µ + ig

[
τ⃗

2
× ϑ⃗i

]
A⃗µ

)
×
(
τ0∂µ + i

τ⃗

2
∂µϑ⃗i − ig

τ⃗

2
A⃗µ − ig

[
τ⃗

2
× ϑ⃗i

]
A⃗µ

)(
0
φi

)
−a1φ2

1 − a2φ
2
2 − a3φ

2
3 −

b1
2
φ4
1 −

b2
2
φ4
2 −

b3
2
φ4
3

−2ϵφ1φ2 cos
ϑ1 − ϑ2

2
− 2ϵφ1φ3 cos

ϑ1 − ϑ3
2

− 2ϵφ2φ3 cos
ϑ2 − ϑ3

2

− 1

16π
F⃗µνF⃗

µν . (136)

The corresponding Lagrange equation

∂ν
∂L

∂(∂νA⃗µ)
− ∂L
∂A⃗µ

= 0 (137)

with the Yang–Mills equation ∂νF⃗µν + g
[
A⃗ν × F⃗µν

]
= 4πJ⃗µ gives the cur-

rent

J⃗µ =
g

2

3∑
i=1

φ2
0i

(
∂µϑ⃗i − gA⃗µ − g

[
ϑ⃗i × A⃗µ

])
. (138)
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The gauge field can be transformed as

A⃗′
µ = A⃗µ − α

(
1

g
∂µϑ⃗1 −

[
ϑ⃗1 × A⃗µ

])
− β

(
1

g
∂µϑ⃗2 −

[
ϑ⃗2 × A⃗µ

])
−γ
(
1

g
∂µϑ⃗3 −

[
ϑ⃗3 × A⃗µ

])
, (139)

where

α =
φ2
01

φ2
01 + φ2

02 + φ2
03

, β =
φ2
02

φ2
01 + φ2

02 + φ2
03

,

γ =
φ2
03

φ2
01 + φ2

02 + φ2
03

, (140)

which are analogous to Eqs. (88) and (89). Then, neglecting the second order
of smallness in the phase ϑ∂µϑ, Eq. (138) can be reduced to the “London
law”

J⃗µ = −g
2

2

(
φ2
01 + φ2

02 + φ2
03

)
A⃗µ ≡ − 1

4πλ2
A⃗µ , (141)

where
λ =

1√
2πg2

(
φ2
01 + φ2

02 + φ2
03

) (142)

is the “penetration depth” — the length of interaction mediated by the gauge
bosons A⃗µ.

Applying the transformation (139), we can transform Lagrangian (133)
to the following form:

L = ∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 + ∂µφ3∂
µφ3 +

g2

4

(
φ2
1 + φ2

2 + φ2
3

)
A⃗µA⃗

µ

−2ϵφ1φ2 cos
ϑ1 − ϑ2

2
− 2ϵφ1φ3 cos

ϑ1 − ϑ3
2

− 2ϵφ2φ3 cos
ϑ2 − ϑ3

2

+
(
φ2
1β

2 + φ2
2α

2
)
∂µ
ϑ1 − ϑ2

2
∂µ
ϑ1 − ϑ2

2

+
(
φ2
1γ

2 + φ2
3α

2
)
∂µ
ϑ1 − ϑ3

2
∂µ
ϑ1 − ϑ3

2

+
(
φ2
2γ

2 + φ2
3β

2
)
∂µ
ϑ2 − ϑ3

2
∂µ
ϑ2 − ϑ3

2

−φ2
12γβ∂µ

ϑ1 − ϑ2
2

∂µ
ϑ1 − ϑ3

2
− φ2

22αγ∂µ
ϑ1 − ϑ2

2
∂µ
ϑ2 − ϑ3

2

−φ2
32αβ∂µ

ϑ1 − ϑ3
2

∂µ
ϑ2 − ϑ3

2

−a1φ2
1 − a2φ

2
2 − a3φ

2
3 −

b1
2
φ4
1 −

b2
2
φ4
2 −

b3
2
φ4
3 −

1

16π
F⃗µνF⃗

µν , (143)
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which is analogous to the calibrated Lagrangian (94) with the spontaneous
breaking of the U(1) symmetry. We can see that the phases ϑ1, ϑ2, ϑ3 have
been excluded from the Lagrangian individually leaving only their differ-
ences: ϑ1 −ϑ2, ϑ1 −ϑ3, ϑ2 −ϑ3. Thus, the gauge field A⃗µ absorbs the Gold-
stone boson (i.e. the common mode oscillations, where ∇ϑ1 = ∇ϑ2 = ∇ϑ3)
with the acoustic spectrum (55). At the same time, the Leggett bosons (i.e.
the oscillations of the relative phases ϑi − ϑj) with massive spectrum (56),
(57) “survive”.

Substituting the calibrated Lagrangian (143) into Eq. (137), we obtain
the equation for the field A⃗µ

∂νF⃗
νµ + g

[
A⃗ν × F⃗ νµ

]
+

1

λ2
A⃗µ = 0 , (144)

where
1

λ2
= 2πg2

(
φ2
01 + φ2

02 + φ2
03

)
≡ m2

A (145)

is the squared mass of the gauge boson A⃗µ, which is the squared reciprocal
“penetration depth” (142) in the “London law” (141).

6. Spontaneous breaking of the SU(2)I ⊗ U(1)Y gauge symmetry
in the three-band system with the Josephson couplings

It is not difficult to notice that the scalar product of the isospinors (118)
ΨΨ+ is invariant under both the SU(2) transition and the U(1) transition.
Thus, we can write by analogy with Eq. (120)

Ψ1(x) = eiθ1(x)ei
τ⃗
2
ϑ⃗1(x)

(
0

φ1(x)

)
, Ψ2(x) = eiθ2(x)ei

τ⃗
2
ϑ⃗2(x)

(
0

φ2(x)

)
,

Ψ3(x) = eiθ3(x)ei
τ⃗
2
ϑ⃗3(x)

(
0

φ3(x)

)
. (146)

Lagrangian (121) is a sum of the gauge-invariant part (relative to the SU(2)⊗
U(1) gauge symmetry) and the Josephson terms. As in the previous case,
the Josephson terms are not invariant relatively to this gauge symmetry
due to the terms Ψ+

i Ψj + ΨjΨ
+
i , however these terms depend on the phase

differences ϑi−ϑj and θi− θj only, but not on the single phases ϑi, θi, if the
conditions (122), (125) are satisfied. Then, substituting representation (146)
into Lagrangian (121) and considering (125), we obtain



Three-band Extension for the Glashow–Weinberg–Salam Model 8-A2.47

L=
3∑

i=1

[
∂µφi∂

µφi + φ2
i

(
∂µ
ϑi
2
∂µ
ϑi
2

+ ∂µθi∂
µθi

)
− aiφ

2
i −

bi
2
φ4
i

]
−2ϵφ1φ2

[
cos

ϑ1− ϑ2
2

cos(θ1− θ2) + nz sin
ϑ1− ϑ2

2
sin(θ1− θ2)

]
−2ϵφ1φ3

[
cos

ϑ1− ϑ3
2

cos(θ1− θ3) + nz sin
ϑ1− ϑ3

2
sin(θ1− θ3)

]
−2ϵφ2φ3

[
cos

ϑ2− ϑ3
2

cos(θ2− θ3) + nz sin
ϑ2− ϑ3

2
sin(θ2− θ3)

]
. (147)

Considering small variations of the phases from their equilibrium values
ϑ0i = θ0i = 0, we can rewrite this Lagrangian in the form

L=
3∑

i=1

[
∂µφi∂

µφi + φ2
i

(
∂µ
ϑi
2
∂µ
ϑi
2

+ ∂µθi∂
µθi

)
− aiφ

2
i −

bi
2
φ4
i

]
−2ϵφ1φ2

[
1− (ϑ1− ϑ2)

2

8
− (θ1− θ2)

2

2
+ nz

ϑ1− ϑ2
2

(θ1− θ2)

]
−2ϵφ1φ3

[
1− (ϑ1− ϑ3)

2

8
− (θ1− θ3)

2

2
+ nz

ϑ1− ϑ3
2

(θ1− θ3)

]
−2ϵφ2φ3

[
1− (ϑ2− ϑ3)

2

8
− (θ2− θ3)

2

2
+ nz

ϑ2− ϑ3
2

(θ2− θ3)

]
. (148)

We can see that the Goldstone modes corresponding to the U(1) gauge
symmetry (oscillations of the phases θ1, θ2, θ3) are coupled with the Gold-
stone modes corresponding to the SU(2) symmetry (oscillations of the phases
ϑ1, ϑ2, ϑ3) by the component nz = ±1 of the unit vector n⃗ = knz in the di-
rection of the axis around which the rotation is made in isospace ϑ⃗ = n⃗ϑ.

In the presence of the Abelian field Bµ, corresponding to the local gauge
U(1) symmetry, and the non-Abelian field A⃗µ, corresponding to the local
gauge SU(2) symmetry, we must apply the covariant derivative

Dµ ≡ τ0∂µ − iτ0
f

2
Bµ − ig

τ⃗

2
A⃗µ , (149)

where f and g are corresponding coupling constants. Using the gauge trans-
formations (88) and (139), Lagrangian (133) can be presented in the form
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L = ∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 + ∂µφ3∂
µφ3

+
(
φ2
1β

2 + φ2
2α

2
) [
∂µ
ϑ1 − ϑ2

2
∂µ
ϑ1 − ϑ2

2
+ ∂µ (θ1 − θ2) ∂

µ (θ1 − θ2)

]
+
(
φ2
1γ

2 + φ2
3α

2
) [
∂µ
ϑ1 − ϑ3

2
∂µ
ϑ1 − ϑ3

2
+ ∂µ (θ1 − θ3) ∂

µ (θ1 − θ3)

]
+
(
φ2
2γ

2 + φ2
3β

2
) [
∂µ
ϑ2 − ϑ3

2
∂µ
ϑ3 − ϑ3

2
+ ∂µ (θ2 − θ3) ∂

µ (θ2 − θ3)

]
−φ2

12γβ

[
∂µ
ϑ1 − ϑ2

2
∂µ
ϑ1 − ϑ3

2
+ ∂µ(θ1 − θ2)∂

µ(θ1 − θ3)

]
−φ2

22αγ

[
∂µ
ϑ1 − ϑ2

2
∂µ
ϑ2 − ϑ3

2
+ ∂µ(θ1 − θ2)∂

µ(θ2 − θ3)

]
−φ2

32αβ

[
∂µ
ϑ1 − ϑ3

2
∂µ
ϑ2 − ϑ3

2
+ ∂µ(θ1 − θ3)∂

µ(θ2 − θ3)

]
−2ϵφ1φ2

[
1− (ϑ1 − ϑ2)

2

8
− (θ1 − θ2)

2

2
+ nz

ϑ1 − ϑ2
2

(θ1 − θ2)

]
−2ϵφ1φ3

[
1− (ϑ1 − ϑ3)

2

8
− (θ1 − θ3)

2

2
+ nz

ϑ1 − ϑ3
2

(θ1 − θ3)

]
−2ϵφ2φ3

[
1− (ϑ2 − ϑ3)

2

8
− (θ2 − θ3)

2

2
+ nz

ϑ2 − ϑ3
2

(θ2 − θ3)

]
−a1φ2

1 − a2φ
2
2 − a3φ

2
3 −

b1
2
φ4
1 −

b2
2
φ4
2 −

b3
2
φ4
3

+
g2

4

(
φ2
1 + φ2

2 + φ2
3

)
(AxµA

µ
x +AyµA

µ
y )

+
1

4

(
φ2
1 + φ2

2 + φ2
3

) (
g2AzµA

µ
z + f2BµB

µ
)

− 1

16π
F⃗µνF⃗

µν − 1

16π
GµνG

µν , (150)

where
Gµν = ∂µBν − ∂νBµ (151)

is the field tensor for the Abelian gauge field Bµ. In the GWS theory, the
linear combinations

Wµ =
1√
2
(Axµ + iAyµ) , (152)

Zµ = Azµ cosα−Bµ sinα
Aµ = Azµ sinα+Bµ cosα

⇒ Azµ = Zµ cosα+Aµ sinα
Bµ = −Zµ sinα+Aµ cosα

, (153)
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where
cosα =

g

g̃
, sinα =

f

g̃
, g̃ =

√
g2 + f2 , (154)

allow us to make the transformation

g2

4

(
AxµA

µ
x+AyµA

µ
y

)
+

1

4

(
g2AzµA

µ
z+f

2BµB
µ
)
=
g2

2
WµW

∗µ+
g̃ 2

4
ZµZ

µ .

(155)
Thus, the masses of charged W -boson and neutral Z-boson are

mW = g
√
2π
(
φ2
01+φ

2
02+φ

2
03

)
, mZ = g̃

√
2π
(
φ2
01+φ

2
02+φ

2
03

)
=

mW

cosα
,

(156)
but the field Aµ (photon) remains massless (with the interaction constant
— electrical charge e = g sinα). However, separation of the components
Axµ, Ayµ from the component Azµ (which is mixed with the Abelian field
Bµ) takes place only in the London gauge, where we exclude the single
phases θ, ϑ from Lagrangian, see Eq. (150). Then, let us consider the gauge
transformation (139)

A⃗′
µ = A⃗µ−

1

g
∂µϑ⃗+

[
ϑ⃗× A⃗µ

]
= A⃗µ−

1

g
∂µϑ⃗+ϑ·

∣∣∣∣∣∣
i⃗ j⃗ k⃗
nx ny nz
Axµ Ayµ Azµ

∣∣∣∣∣∣ . (157)

We can see that the gauge transformation mixes the components Axµ and
Ayµ with the component Azµ. On the other hand, separating the field Wµ

(152) from the component Azµ makes physical sense if and only if the fields
Wµ = (Aµ1 + iAµ2)/

√
2 and Azµ are transformed by themselves. From

Eq. (157), we can see that it is possible only when nx = ny = 0

A′
xµ = Axµ + ϑnzAyµ

A′
yµ = Ayµ − ϑnzAxµ

, (158)

A′
zµ = Azµ − nz

1
g∂µϑ . (159)

Therefore, nz = ±1 which coincides with Eq. (125) as the condition for
interference of condensates Ψ1, Ψ2, Ψ3. Thus, separating of the field Wµ also
selects a direction in isospace. The spectrum of excitations depends only on
n2z, n

4
z, so the sign of nz is not important.

As before, we must assume that ϵ < 0, hence the equilibrium phases are
such that cos θij = cosϑij = 1. Then, from Lagrangian (147), we can see
that the spectrum of Higgs oscillations coincides with the spectrum (66). At
the same time, the spectrum of the Goldstone modes takes the form

(qµq
µ)4
(
(qµq

µ)2 + (qµq
µ) b+ c

)
= 0 , (160)
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where

b= 2ϵ
φ2
01(φ02+φ03)+φ

2
02(φ01+φ03)+φ

2
03(φ01+φ02)

φ01φ02φ03
,

c= 4ϵ2
φ3
01+φ

3
02+φ

3
03+φ

2
01(φ02+φ03)+φ

2
02(φ01+φ03)+φ

2
03(φ01+φ02)

φ01φ02φ03
.

(161)

From Eq. (160) we can see that one of the dispersion relations is qµqµ = 0.
This relation corresponds to the twofold degenerated common mode os-
cillations, which are absorbed by the gauge fields Wµ,W

∗
µ , Zµ and to the

twofold degenerated massless Leggett mode. The remaining quadratic equa-
tion determines two Leggett modes with massive spectra: m2

L1,2 = qµq
µ =

1
2(−b ∓

√
b2 − 4c). As we could see above, the L-bosons are not absorbed

by the gauge fields. Thus, if all bands are independent, i.e. ϵ = 0, then we
have two massless Goldstone modes per band (independent oscillations of
the phase ϑ and θ), a total of six independent Goldstone modes. Due to the
internal proximity effect, i.e. ϵ ̸= 0, the Goldstone modes from each band
transform to the following normal oscillations for all bands: twofold degen-
erated common mode oscillations with the acoustic spectrum, the twofold
degenerated massless Leggett mode, and two Leggett modes with the en-
ergy gaps. Squared masses of the L-bosons are proportional to the inter-
band coupling m2

L1,2 ∼ |ϵ|. For the symmetrical three-band system, i.e.
φ01 = φ02 = φ03, masses of both massive L-bosons are equal

mL1 = mL2 =
√
6|ϵ| . (162)

Thus, we can see that, unlike the cases of U(1) and SU(2) symmetries, for
the case of the SU(2)⊗U(1) symmetry, we have two massless L-bosons and
two massive L-bosons. However, the massless bosons, like relic photons,
lose their energy in the process of space expansion. Hence, the role of these
bosons can be neglected. In contrast to them, the massive L-bosons are able
to form stable gravitationally bound structures (clusters, halo). Moreover,
the L-bosons are sterile. Therefore, the massive L-bosons are a suitable
candidate for Dark Matter.

It should be noted that if we suppose the nonsymmetrical Josephson
coupling ϵ12 ̸= ϵ13 ̸= ϵ23 instead of the uniform coefficient ϵ, then the twofold
degenerated massless Leggett mode splits into one massless mode and one
massive mode. However, in what follows, we will consider only the minimal
model with the uniform coefficient ϵ.
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7. Lepton mixing and the mass states of neutrinos

From Eq. (128) we can see that the band states of the Dirac fields, i.e.
ψ1, ψ2, ψ3, are determined by the coupling between the corresponding Dirac
field ψj and the scalar field φj (isospinor field Ψj). Then, the gauge-invariant
Dirac Lagrangian for the lepton fields has the form

LD =

3∑
j=1

iψ̄Ljγ
µ
↔
D

A⃗,B

µ ψLj + iψ̄Rjγ
µ
↔
D

B

µ ψRj − χ
[
ψ̄LjΨjψRj + ψ̄RjΨ

+
j ψLj

]
,

(163)
where

DA⃗,B
µ ≡ τ0∂µ − ig

τ⃗

2
A⃗µ + iτ0

f

2
Bµ , DB

µ ≡ τ0∂µ + iτ0fBµ (164)

are covariant derivations. Thus, each band state ψ1, ψ2, ψ3, emitting or
absorbing the gauge bosons A⃗µ, Bµ, transforms only to itself, i.e. 1 ↔ 1,
2 ↔ 2, 3 ↔ 3. Analogously, for the flavor states ψe, ψµ, ψτ (129),

LD = iψ̄Leγ
µ
↔
D

A⃗,B

µ ψLe + iēRγ
µ
↔
D

B

µ eR − χ
[
ψ̄LΨeeR + ēRΨ

+
e ψL

]
+ Lµ + Lτ .

(165)
We can conditionally use e for the electron e and the electron neutrino νe,
µ for the muon µ and the muon neutrino νµ, τ for the tauon τ and the
tauon neutrino ντ . If me ≪ mµ ≪ mτ , then the bands should be strongly
asymmetrical: φ01 ≪ φ02 ≪ φ03. As for the band states, each flavor state
ψe, ψµ, ψτ emitting or absorbing the gauge bosons A⃗µ, Bµ, transforms only
to itself, i.e. e↔ e, µ↔ µ, τ ↔ τ .

As we could see in Section 4 each of “L” and “R” components should mix
with the corresponding “R” and “L” components of other flavors ψ̄LiψRk +
ψ̄RkψLi, which is the fermionic analog of the interband Josephson coupling,
unlike SM, where the mixing coefficients are off-diagonal Yukawa interac-
tions. Thus, we can take the SU(2)-symmetric mixing term for the Dirac
fields in the following form:

Umix = ψ̄Le

(
0
ζeµ

)
ψRµ + ψ̄Le

(
0
ζeτ

)
ψRτ + ψ̄Lµ

(
0
ζµτ

)
ψRτ + h.c. ,

(166)
where ζik are mixing parameters determined by the interband coupling ϵ of

the scalar fields, see Eq. (113), ψLe =

(
νeL
eL

)
is the left-handed bispinor,

ψRe = eR is the right-handed spinor. The band masses mD1,mD2,mD3 are
determined by the Yukawa interaction of the Dirac fields with the corre-
sponding band states of scalar fields φ01, φ02, φ03. In turn, the flavor masses
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mDe,mDµ,mDτ are determined by the Yukawa interaction of the Dirac fields
with the corresponding flavor states of scalar fields φ0e, φ0µ, φ0τ which are
result of the diagonalization (73). The mixing R ↔ L results in the tran-
sition from the flavor masses to the band masses via diagonalization of the
matrix Meµτ as demonstrated in Section 4

UDeµτ+Umix =
(
ēL, µ̄L, τ̄L

)mDe ζeµ ζeτ
ζeµ mDµ ζµτ
ζeτ ζµτ mDτ

 eR
µR
τR

+ h.c.

=
(
l̄1L, l̄2L, l̄3L

)mD1 0 0
0 mD2 0
0 0 mD3

 l1R
l2R
l2R

+ h.c.

(167)

The mixing takes place due to the interband Josephson coupling of the
scalar fields φ1, φ2, φ3: from Eq. (113) we can see that ζαβ ∝ ϵ2. As will be
demonstrated in Section 9, the interband coupling is extremely small ϵ ∼
10−40 eV2. Taking masses of H-bosons as ∆m2

H ∼ 102 GeV2 (see Section 8),
we can see that the mixing angles, determined by Eqs. (113), (115), are
extremely small: αij ∼ 10−100. Probability of interflavor transition is Pik ∼
sin2(2αik) [36–41], hence, for the massive leptons (electrons, muons, tauons),
the effect of mixing is negligible P ∼ 10−200. Thus, the mixing of charged
leptons is negligible and it lies beyond the sensitivity of any experiment.

In SM, masses of neutrinos are zero. However, observation of the neu-
trino oscillations in vacuum means the presence of mass of neutrinos [36–
41], and the differences in the squares of the masses have been measured:
|∆m2

23| ≡ |m2
3 −m2

2| ≈ 2.51× 10−3 eV2, |∆m2
12| ≈ 7.41× 10−5 eV2 [42, 43].

Formally, we can write the Dirac mass term (Yukawa interaction) for both
the charged lepton and the neutrino in the form (1), assigning neutrinos a
small but non-zero Yukawa constant χν and introducing the sterile right-
handed neutrino. Thus, the neutrino mass becomes similar to the mass of
charged leptons. However, in the proposed three-band model, the problem
of mass is fundamental. As we have seen, the interaction of Dirac fields with
the corresponding scalar fields leads to lepton oscillations as a consequence
of the Josephson coupling between scalar fields. Hence, the mixing angles
are extremely small: αij ∼ 10−100. At the same time, the experimental
mixing angles for neutrinos are large: α12 = 33.4◦, α23 = 42.2 . . . 49.5◦,
α13 = 8.6◦ [42, 43].

However, within the framework of the three-band model, the presence of
mixing alone, without interaction with scalar fields, can lead to mass genera-
tion. Let us suppose the existence of massless sterile right-handed neutrinos
νRe, νRµ, νRτ , i.e. which are characterized by zero isospin and hypercharge:
Iz = 0, Y = 0, unlike the active left-handed neutrinos νLe, νLµ, νLτ which
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are characterized by Iz = 1
2 , Y = −1. Then, the SU(2)-symmetric mixing

term for neutrinos should have the following form:

Uν
mix = ψ̄Le

(
ςeµ
0

)
νRµ+ψ̄Le

(
ςeτ
0

)
νRτ+ψ̄Lµ

(
ςµτ
0

)
νRτ+h.c. , (168)

where ςik ̸= ζik are mixing parameters specially for neutrinos, ψLe =

(
νeL
eL

)
is the left-handed bispinor, νRe is the right-handed neutrino. Then, the
corresponding neutrino Lagrangian has the form

Lν = i

(
ν̄Leγ

σ
↔
∂ σνLe + ν̄Lµγ

σ
↔
∂ σνLµ + ν̄Lτγ

σ
↔
∂ σνLτ

)
−ςeµ(ν̄LeνRµ+ν̄LµνRe)− ςeτ (ν̄LeνRτ+ν̄LτνRe)− ςµτ (ν̄LµνRτ+ν̄LτνRµ)

+i

(
ν̄Reγ

σ
↔
∂ σνRe+ν̄Rµγ

σ
↔
∂ σνRµ+ν̄Rτγ

σ
↔
∂ σνRτ

)
−ςeµ(ν̄ReνLµ+ν̄RµνLe)− ςeτ (ν̄ReνLτ+ν̄RτνLe)− ςµτ (ν̄RµνLτ+ν̄RτνLµ) .

(169)

We can diagonalize the matrix Meµτ as

(
ν̄Le, ν̄Lµ, ν̄Lτ

) 0 ςeµ ςeτ
ςeµ 0 ςµτ
ςeτ ςµτ 0

 νRe

νRµ

νRτ

+ h.c.

=
(
ν̄1L, ν̄2L, ν̄3L

) mν1 0 0
0 mν2 0
0 0 mν3

 ν1R
ν2R
ν2R

+ h.c. (170)

The corresponding characteristic equation is

m3
ν −

(
ς2eµ + ς2eτ + ς2µτ

)
mν − 2ςeµςeτ ςµτ = 0 . (171)

For the symmetrical interband mixing ςeµ = ςeτ = ςµτ ≡ ς, we obtain the
following solutions of Eq. (171):

mν1 = mν2 = −ς , mν3 = 2ς . (172)

Obviously, the right-handed (sterile) neutrinos and left-handed (active) neu-
trinos have exactly the same masses: mνRi = mνLi. We can see that neutrino
masses can take both the positive and the negative magnitudes. This means
that the mass states of neutrino ν1, ν2, ν3 are quasiparticles (unlike the band
state of charged leptons l1, l2, l3, which are determined by the Yukawa cou-
pling with the scalar fields of the corresponding bands). Respectively, the
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masses (172) are effective masses of the quasiparticles. Only the square root
of the squares of masses

√
m2

ν1,
√
m2

ν2,
√
m2

ν3 makes physical sense since
only the differences |∆m2

23| ≡ |m2
3 −m2

2|, |∆m2
12| ≡ |m2

2 −m2
1| are measured

in experiments regarding neutrino oscillations, and the upper limits of the
masses

√
m2

νe,
√
m2

νµ,
√
m2

ντ have been determined experimentally from the
β-decay of tritium, pion decay, τ -decays into multi-pion final states, respec-
tively, where the spectral distribution of leptons is determined by m2

ν , but

not by mν . Moreover, mνα =
√∑3

i=1 |Uαi|2m2
νi, where Uαi is the PMNS

matrix [38, 44, 45].
In view of the above, we should consider equations that include only

the squares of the effective masses. The Lagrange equations for Lagrangian
(169) are

iγσ∂σνLe − ςeµνRµ − ςeτνRτ = 0 ,

iγσ∂σνLµ − ςeµνRe − ςµτνRτ = 0 ,

iγσ∂σνLτ − ςeτνRe − ςµτνRµ = 0 ,

iγσ∂σνRe − ςeµνLµ − ςeτνLτ = 0 ,

iγσ∂σνRµ − ςeµνLe − ςµτνLτ = 0 ,

iγσ∂σνRτ − ςeτνLe − ςµτνLµ = 0 . (173)

Then Eq. (173) can be transformed to the system of the Klein–Gordon-like
equations for the left-handed fields separately

∂σ∂σνLe +
(
ς2eµ + ς2eτ

)
νLe + ςeτ ςµτνLµ + ςeµςµτνLτ = 0 ,

∂σ∂σνLµ + ςeτ ςµτνLe +
(
ς2eµ + ς2µτ

)
νLµ + ςeµςeτνLτ = 0 ,

∂σ∂σνLτ + ςeµςµτνLe + ςeτ ςeµνLµ +
(
ς2eτ + ς2µτ

)
νLτ = 0 , (174)

where we have used (γν∂ν)(γ
µ∂µ) = 1

2∂µ∂ν(γ
µγν + γνγµ) = 1

2∂µ∂ν2g
µν =

∂µ∂
µ. Thus, we obtain Lorentz-covariant equations of motion only for the

left-handed neutrinos νLe, νLµ, νLτ . Analogously, we can obtain such equa-
tions for the right-handed fields.

Let us consider the spinors νLe,µ,τ in the form of plane waves νe,µ,τ =
ue,µ,τ e

−ipσxσ , where ue,µ,τ are the corresponding spinor amplitudes. Then
Eq. (174) takes the form(

ς2eµ + ς2eτ − pσpσ
)
ue + ςeτ ςµτuµ + ςeµςµτuτ = 0 ,

ςeτ ςµτue +
(
ς2eµ + ς2µτ − pσpσ

)
uµ + ςeµςeτuτ = 0 ,

ςeµςµτue + ςeτ ςeµuµ +
(
ς2eτ + ς2µτ − pσpσ

)
uτ = 0 . (175)
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The corresponding characteristic equation is

(pσpσ)
3 −

(
2ς2eµ + 2ς2eτ + 2ς2µτ

)
(pσpσ)

2

+
(
ς4eµ + ς4eτ + ς4µτ + 2ς2eµς

2
eτ + 2ς2eµς

2
µτ + 2ς2eτ ς

2
µτ

)
(pσpσ)− 4ς2eµς

2
eτ ς

2
µτ = 0 .

(176)

This equation has three positive real solutions: m2
ν1 = (pσpσ)1, m2

ν2 =
(pσpσ)2, m2

ν3 = (pσpσ)3, which can be associated with the mass states of
neutrinos νL1, νL2, νL3

∂σ∂σνL1 +m2
ν1νL1 = 0 ,

∂σ∂σνL2 +m2
ν2νL2 = 0 ,

∂σ∂σνL3 +m2
ν3νL3 = 0 , (177)

and we can assume the hierarchy of the masses as m2
ν1 ≤ m2

ν2 ≤ m2
ν3. Thus,

for the symmetrical interband mixing ςeµ = ςeτ = ςµτ ≡ ς, we obtain the
following solutions of Eq. (176):

m2
ν1 = m2

ν2 = ς2 , m2
ν3 = 4ς2 . (178)

Thus, the effective masses of neutrinos are of order of the interband mixing
parameters. It should be noted that the masses mν1,mν2,mν3 are the result
of interband mixing, unlike the electron–muon–tauon masses, which are the
result of coupling with the corresponding scalar fields φe,µ,τ . Obviously, the
flavor states νLe, νLµ, νLτ must be linear combinations of the mass states
νL1, νL2, νL3 and vice versa, that can be written in the following way: νLe

νLµ
νLτ

 = U ·

 νL1
νL2
νL3

 ,

 νL1
νL2
νL3

 = UT ·

 νLe
νLµ
νLτ

 , (179)

where U and UT are mixing matrices (79), (80). Let us find a relation
that the angles α12, α13, α23 must satisfy. At first, let us introduce the
designations in Eq. (174)

∂σ∂σνLe +AνLe +BνLµ + CνLτ = 0 ,

∂σ∂σνLµ +BνLe + EνLµ +DνLτ = 0 ,

∂σ∂σνLτ + CνLe +DνLµ + FνLτ = 0 . (180)
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Using Eqs. (177), (179), we can write Eq. (180) as

c12c13m
2
1νL1 + c13s12m

2
2νL2 + s13m

2
3νL3 = AνLe +BνLµ + CνLτ ,

(−s13s23c12 − c23s12)m
2
1νL1 + (−s12s13s23 + c23c12)m

2
2νL2 + c13s23m

2
3νL3

= BνLe + EνLµ +DνLτ ,

(−c23c12s13 + s23s12)m
2
1νL1 + (−c23s12s13 − s23c12)m

2
2νL2 + c13c23m

2
3νL3

= CνLe +DνLµ + FνLτ .

(181)

The right-hand side can be transformed like this AνLe +BνLµ + CνLτ
BνLe + EνLµ +DνLτ
CνLe +DνLµ + FνLτ

 ≡

 A B C
B E D
C D F

 νLe
νLµ
νLτ


=

 A B C
B E D
C D F

 · Û ·

 νL1
νL2
νL3



=



[Ac13c12 −B(s23s13c12 + c23s12)− C(c23s13c12 − s23s12)]νL1
+[Ac13s12 −B(s23s13s12 − c23c12)− C(c23s13s12 + s23c12)]νL2

+[As13 +Bs23c13 + Cc23c13]νL3

[Bc13c12 − E(s23s13c12 + c23s12)−D(c23s13c12 − s23s12)]νL1
+[Bc13s12 − E(s23s13s12 − c23c12)−D(c23s13s12 + s23c12)]νL2

+[Bs13 + Es23c13 +Dc23c13]νL3

[Cc13c12 −D(s23s13c12 + c23s12)− F (c23s13c12 − s23s12)]νL1
+[Cc13s12 −D(s23s13s12 − c23c12)− F (c23s13s12 + s23c12)]νL2

+[Cs13 +Ds23c13 + Fc23c13]νL3


.

(182)

Then, the angles α12, α13, α23 satisfy the following equation:

∆ ≡

∣∣∣∣∣∣
∆11 ∆12 ∆13

∆21 ∆22 ∆23

∆31 ∆32 ∆33

∣∣∣∣∣∣ = 0 , (183)

where
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∆11 =
(
A−m2

1

)
c13c12 −B(s23s13c12 + c23s12)− C(c23s13c12 − s23s12) ,

∆12 =
(
A−m2

2

)
c13s12 −B(s23s13s12 − c23c12)− C(c23s13s12 + s23c12) ,

∆13 =
(
A−m2

3

)
s13 +Bs23c13 + Cc23c13 ,

∆21 = Bc13c12 −
(
E −m2

1

)
(s23s13c12 + c23s12)−D(c23s13c12 − s23s12) ,

∆22 = Bc13s12 −
(
E −m2

2

)
(s23s13s12 − c23c12)−D(c23s13s12 + s23c12) ,

∆23 = Bs13 +
(
E −m2

3

)
s23c13 +Dc23c13 ,

∆31 = Cc13c12 −D(s23s13c12 + c23s12)−
(
F −m2

1

)
(c23s13c12 − s23s12) ,

∆32 = Cc13s12 −D(s23s13s12 − c23c12)−
(
F −m2

2

)
(c23s13s12 + s23c12) ,

∆33 = Cs13 +Ds23c13 +
(
F −m2

3

)
c23c13 . (184)

It is noteworthy that for the case of two-band system, we obtain

iγσ∂σνLe − ςeµνRµ = 0
iγσ∂σνLµ − ςeµνRe = 0
iγσ∂σνRe − ςeµνLµ = 0
iγσ∂σνRµ − ςeµνLe = 0

⇒ ∂σ∂σνLe + ς2eµνLe = 0
∂σ∂σνLµ + ς2eµνLµ = 0

. (185)

Thus we can see that, unlike the three-band system, in the two-band system
the flavor states coincide with the mass states. This means that neutrino
oscillations in the two-band system are impossible.

We can see that the mixing of massive (charged) leptons and the mix-
ing of neutrinos have completely different nature. From Eq. (113), we can
see that the lepton mixing parameters ζαβ are determined by the inter-
band coupling ϵ, since the masses of the electron, muon, and tauon mDi

are determined by coupling the with scalar fields φ1, φ2, φ3, respectively, see
Eq. (105), and in turn, these scalar fields are mixed by the interband cou-
pling ϵ, see Eq. (73). Thus, if we turn off the interband interaction, i.e. ϵ = 0
is assumed, then the lepton mixing will be absent. On the contrary, neutrinos
do not interact with the scalar fields, therefore the neutrino mixing parame-
ters ςαβ are not determined by the interband coupling ϵ. Thus, the neutrino
mixing parameters ςαβ remain free parameters of the theory. Cosmological
data (anisotropy of cosmic microwave background radiation, formation of
structures, etc.) impose restrictions on the masses:

∑
ν mν < 0.19 eV [46],∑

ν mν < 0.28 eV [47]. Since mν ∼ |ς|, then |ς| ∼ 0.1 eV.
The matrix U (79), which is determined by the three mixing angles

α12, α13, α23, is unitary. The unitarity property is preserved in the presence
of one more parameter, the phase δ, so that
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νLτ

=

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

νL1νL2
νL3

 ,

(186)νL1νL2
νL3

=

c12 −s12 0
s12 c12 0
0 0 1

 c13 0 −s13e−iδ

0 1 0
s13e

iδ 0 c13

1 0 0
0 c23 −s23
0 s23 c23

νLeνLµ
νLτ

 ,

(187)

As is well known, the complex multipliers eiδ, e−iδ produce the violation of
CP-invariance [5, 8, 39–41]. Then, instead of Eqs. (183), (184), we obtain

∆ ≡

∣∣∣∣∣∣
∆11 ∆12 ∆13

∆21 ∆22 ∆23

∆31 ∆32 ∆33

∣∣∣∣∣∣ = Re(∆) + i Im(∆) = 0 =⇒
{

Re(∆) = 0
Im(∆) = 0

}
,

(188)

∆11 =
(
A−m2

1

)
c13c12−B(s23s13c12e

iδ+c23s12)−C(c23s13c12eiδ−s23s12) ,
∆12 =

(
A−m2

2

)
c13s12−B(s23s13s12e

iδ−c23c12)−C(c23s13s12eiδ+s23c12) ,
∆13 =

(
A−m2

3

)
s13e

−iδ+Bs23c13+Cc23c13 ,

∆21 = Bc13c12−
(
E−m2

1

)
(s23s13c12e

iδ+c23s12)−D(c23s13c12e
iδ−s23s12) ,

∆22 = Bc13s12−
(
E−m2

2

)
(s23s13s12e

iδ−c23c12)−D(c23s13s12e
iδ+s23c12) ,

∆23 = Bs13e
−iδ+

(
E−m2

3

)
s23c13+Dc23c13 ,

∆31 = Cc13c12−D
(
s23s13c12e

iδ+c23s12

)
−
(
F−m2

1

) (
c23s13c12e

iδ−s23s12
)
,

∆32 = Cc13s12−D(s23s13s12e
iδ−c23c12)−

(
F−m2

2

) (
c23s13s12e

iδ+s23c12

)
,

∆33 = Cs13e
−iδ+Ds23c13+

(
F−m2

3

)
c23c13 . (189)

In the case of symmetrical interband mixing ςeµ = ςeτ = ςµτ ≡ ς, it is not
difficult to see that any magnitudes of the mixing angles α12, α13, α23 and the
CP-violation phase δ satisfy Eq. (188). Thus, the asymmetry of interband
neutrino mixing selects values of the mixing angles αik and the CP-violation
phase δ.

At present, it is known from experiments that |∆m2
23| ≡ |m2

3 − m2
2| ≈

2.51×10−3 eV2, |∆m2
12| ≈ 7.41×10−5 eV2, α12 = 33.4◦, α23 = 42.2 . . . 49.5◦,

α13 = 8.6◦, δ/◦ = 195+51
−25 [42, 43]. Thus, to find masses of neutrinos, we

should solve an inverse problem: knowing the mixing angles αik, the CP-
violation phase δ, and the mass differences |∆m2

ik|, we can find the mixing
parameters ςeµ, ςeτ , ςµτ . However, such a problem is very difficult to calcu-
late. At the same time, we can see that the two angles α12, α23 are close to
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π/4, i.e. this mixing is close to full mixing. On the other hand, the mass
differences are strongly asymmetric ∆m2

12 ≪ ∆m2
23. In the case of symmet-

rical mixing, i.e. ςeµ = ςeτ = ςµτ ≡ ς, we have effective masses (178). We
can see that there is a tendency ∆m2

23 ≫ ∆m2
12 → 0. Thus, we can estimate

the mixing parameters as

ς2 ∼ 1

3
∆m2

23 ∼ 8.369× 10−4 eV2 . (190)

Hence, the band masses of neutrinos can be estimated as√
m2

ν1 ≈
√
m2

ν2 ≈ |ς| = 0.0289 eV ,
√
m2

ν3 ≈ 2|ς| = 0.0579 eV . (191)

Magnitudes of the band masses (191) are the result of a very rough approx-
imation of the symmetric mixing ςeµ = ςeτ = ςµτ , in reality, m2

ν1 ̸= m2
ν2,

although |∆m2
12| ≪ |∆m2

23|. Then, we can choose the mixing parame-
ters ςeµ, ςeτ , ςµτ to obtain the experimentally observed difference in squared
masses ∆m2

12,∆m
2
23 by slightly changing the parameter ς from Eq. (190)

(by module)

ςeµ = 2.988× 10−2 eV , ςeτ = ςµτ = 2.893× 10−2 eV . (192)

Then, using Eq. (176), the band masses of neutrinos can be estimated as√
m2

ν1 = 0.0286 eV ,
√
m2

ν2 = 0.0299 eV ,
√
m2

ν3 = 0.0585 eV . (193)

Unfortunately, Eq. (188) is extremely sensitive to the parameters mνi, cik, so
we can only make some estimations. Let us suppose α13 → 0 in Eqs. (188)
and (189), then we should take

α13 → 0 ⇒ α12 ≈ α23 ≈ 38◦ (194)

that is close to the tribimaximal mixing α12 = 35.3◦, α23 = 45◦, α13 = 0.
Then

√
m2

ν1 +
√
m2

ν2 +
√
m2

ν3 ≈ 0.12 eV, that is consistent with current
cosmological data

∑
ν mν < 0.19 eV [46, 47] (where all mν > 0).

8. Systematics of elementary particles, masses of Higgs bosons,
and Dark Matter

Summarizing the results of previous sections, we can make Table 3 of
elementary particles in the three-band GWS theory (excluding quarks). We
can see that, unlike the single-band theory, in the three-band case, we have
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Table 3. Elementary particles in the three-band GWS theory: leptons, Higgs bosons
(scalar), Leggett bosons (scalar), gauge bosons (vector). Each flavor of leptons can
interact with the Higgs field of only corresponding flavor. The Leggett bosons are
sterile particles, therefore the massive modes form the so-called “ultra-light Dark
Matter”. The sterile right-handed neutrinos have exactly the same effective masses
as the corresponding active left-handed neutrinos. Each charged lepton can be
both left- and right-handed.

Electron flavor Muon flavor Tauon flavor
Higgs bosons He Hµ Hτ

Charged leptons eL,R µL,R τL,R

Active neutrinos νLe νLµ νLτ

Sterile neutrinos νRe νRµ νRτ

Leggett bosons Gauge bosons
Massive L1 L2 Massive W± Z

Massless L3 ↔ L4 Massless γ

three H-bosons with somewhat different masses. In the limit of weak inter-
band coupling |ϵ| ≪ |a1,2,3|, we can write their flavor masses via the band
parameters

mHe =
√

2|a1| < mHµ =
√

2|a2| < mHτ =
√
2|a3| ∼ 100 GeV . (195)

All H-bosons have zero electrical charge Q = 0, zero lepton charges le, lµ,
lτ = 0, hypercharge Y = 1, and the third projection of isospin I3 = −1/2. At
the same time, the bosons He, Hµ, Hτ interact only with the corresponding
leptons e, µ, τ changing their chirality according to Eq. (108) as shown in
Fig. 8 (a). The masses of leptons are

me = χφ01 , mµ = χφ02 , mτ = χφ03 , (196)

where

φ01 =

√
|a1|
b1

=
mHe√
2b1

, φ02 =

√
|a2|
b2

=
mHµ√
2b2

, φ03 =

√
|a3|
b3

=
mHτ√
2b3
(197)

are the equilibrium values of the scalar fields, χ is the dimensionless cou-
pling constant between the corresponding Dirac fields and the scalar fields
(Yukawa coupling).
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eLeR

(b)

He

e e

H H He H He
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ZZ

He

WW

He

Fig. 8. The Higgs-lepton vertices (a), and the Higgs-gauge boson vertices (b).
Leptons of each flavor can only interact with the H-bosons of corresponding flavor.
W± and Z gauge bosons can interact with H-bosons of all flavors, but the photon γ
does not interact with the Higgs fields.

According to Eqs. (150), (155), and (156), the gauge fields W± and Z
interact with all scalar fields as shown in Fig. 8 (b). At the same time,
photon γ does not interact with the scalar fields and remains massless. The
masses of the charged W -boson and neutral Z-boson are

mW =
e

sinα

√
2π
(
φ2
01 + φ2

02 + φ2
03

)
=

e

sinα

√
2π
(
m2

e +m2
µ +m2

τ

) 1
χ
,

mZ =
mW

cosα
, (198)

where sinα = 0.4721 is the Weinberg angle, e = 1/
√
128 is the electro-

magnetic coupling constant at energy of ∼ 100 GeV. Using masses of the
gauge boson mW = 80.377 GeV, lepton masses me = 0.51 × 10−3 GeV,
mµ = 0.1057 GeV, mτ = 1.7768 GeV, we obtain the coupling constant χ

χ = 0.0104 , (199)
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and the amplitudes of the scalar fields φ0i = mi/χ

φ0e ≈ φ01 = 0.05 GeV , φ0µ ≈ φ02 = 10.17 GeV ,

φ0τ ≈ φ03 = 170.98 GeV . (200)

In the standard representation of the isospinor field Ψ = 1√
2

(
0
φ

)
, we

have φ0e = 0.07 GeV, φ0µ = 14.38 GeV, φ0τ = 241.80 GeV, so the effective

amplitude of the scalar field is φeff =
√(

φ2
01 + φ2

02 + φ2
03

)
= 242 GeV.

If we take the electromagnetic coupling constant at energy of ∼ 1 GeV:
e ≈ 1/

√
132, then we obtain φeff = 246 GeV.

Unfortunately, both the single-band GWS theory and the three-band
GWS theory do not allow us to calculate the masses of H-bosons (195).
We only know one H-boson with a mass of mH = 125.10 GeV. Since the
H-boson mediates interactions between leptons (as illustrated in Fig. 8 (a)),
these interactions are interactions of a common nature, characterized by the
same coupling constant (199) in our model. They should therefore have
approximately the same effective interaction constants ∼ χ2

m2
He

≈ χ2

m2
Hµ

≈
χ2

m2
Hτ

and radii ∼ 1
mHe

≈ 1
mHµ

≈ 1
mHτ

, similar to the weak interactions

which have approximately equal interaction constants ∼ g2

m2
W

≈ g̃2

m2
Z

and

radii ∼ 1
mW

≈ 1
mZ

, since the masses of mediators are of the same order:
mW = 80.4 GeV ∼ mZ = 91.2 GeV. Therefore, the masses of H-bosons
should be of the same order too: mHe ∼ mHµ ∼ mHτ . At the same time,
different Dirac masses of leptons me ≪ mµ ≪ mτ are caused by different
amplitudes of scalar fields φ01 ≪ φ02 ≪ φ03. The amplitudes of scalar fields
φ01, φ02, φ03 from Eqs. (197), (200) differ from each other by orders, namely
φ01 : φ02 : φ03 = me : mµ : mτ . Thus, the small changes in the mass of
H-bosons mHe < mHµ < mHτ should be accompanied by the significant
changes of the scalar fields φ01 ≪ φ02 ≪ φ03.

In a single-band case, the critical temperature is determined by the equi-
librium magnitude of the scalar field at T = 0: Tc = 2φ0, at the same time,
at nonzero temperatures, we have φ(T ) = φ(0)

√
1− T 2

T 2
c

[77]. Let us write
coefficients a(T ) and b in the following manner:

a = N
(
T 2

T 2
c

− 1

)
, b =

4N
T 2
c

. (201)
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Then, the coefficient N does not take part in the condensate density φ0(T ) =√
|a(T )|

b = Tc
2

√
1− T 2

T 2
c
. Since mH =

√
2|a| at T = 0, we have

N =
m2

H

2
. (202)

For the three-band system, we can write the coefficients a1,2,3 and b1,2,3 as

a1 = N1

(
T 2

T 2
c1

−1

)
, a2 = N2

(
T 2

T 2
c2

−1

)
, a3 = N3

(
T 2

T 2
c3

−1

)
,

(203)

b1 =
4N1

T 2
c1

, b2 =
4N2

T 2
c2

, b3 =
4N3

T 2
c3

.

(204)

Here, Tc1, Tc2, Tc3 are the critical temperatures of the corresponding bands,
if the bands were independent, i.e. ϵ = 0. In the presence of interband
coupling ϵ ̸= 0, the system is characterized by the single critical temperature
Tc, which can be calculated using the linearized Eq. (45) as the condition of
the existence of nonzero solutions at Tc∣∣∣∣∣∣
a1(Tc) ϵ ϵ
ϵ a2(Tc) ϵ
ϵ ϵ a3(Tc)

∣∣∣∣∣∣ = 0 ⇒ a1(Tc)a2(Tc)a3(Tc) + 2ϵ3 − ϵ2 (a1(Tc)

+a2(Tc) + a3(Tc)) = 0 . (205)

It should be noted that the coefficient d in Eq. (67) is such that d(Tc) = 0
(here αi(Tc) = ai(Tc) > 0 as follows from Eq. (63)). The solutions of
Eq. (45) are illustrated in Fig. 9 for the case of strongly asymmetrical bands
Tc1,c2 ≪ Tc3. The effect of interband coupling ϵ ̸= 0, even if the coupling
is weak |ϵ| ≪ |ai(0)|, is non-perturbative for the smaller scalar fields φ1,2

— applying the interband coupling drags the smaller amplitudes up to a
new critical temperature Tc ≫ Tc1,c2. At the same time, the effect on the
largest scalar fields φ3 is not so significant — applying the interband coupling
slightly increases only the critical temperature Tc ≳ Tc3. If the interband
coupling is weak, then the magnitude of the scalar fields φ01,02,03 at T = 0
changes very little [74, 75], for example,

φ01(0) =

√
|a1(0)|
b1

+
|ϵ|

|a1(0)|

√ |a2(0)|
b2

+

√
|a3(0)|
b3

 ≈

√
|a1(0)|
b1

, (206)

i.e. φ0i(0) is predominantly determined by the intraband coefficients ai(0), bi.
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02

03

Tc1 Tc
Tc3

01

Tc2

Fig. 9. The scalar fields φ01(T ), φ02(T ), φ03(T ) as solutions of Eq. (45), if the
interband coupling is absent, i.e. ϵ = 0 (dashed lines), and if the weak interband
interaction takes place, i.e. |ϵ| ≪ |ai(0)| (solid lines). Applying the weak interband
coupling drags the smaller parameters φ01,02 up to a new critical temperature
Tc ≫ Tc1,c2. The effect on the larger parameter φ03 is not so significant. The
magnitudes of the scalar fields φ01,02,03 at T = 0 change very little.

The coefficients N1,N2,N3, i.e. Higgs masses as a generalization of
Eq. (202) in a sense

m2
He = 2N1 , m2

Hµ = 2N2 , m2
Hτ = 2N3 (207)

cannot be calculated at the present time. In SM, the mass of H-boson
mH = 125.10 GeV is taken from experiment as a parameter of the theory. In
superconductors, the coefficient N plays role of the density of electron states
on the Fermi surface. The critical temperature Tc depends exponentially on
N , Tc ∼ φ0(0) ∼ Ω exp

(
− 1

gN

)
, at weak coupling, where Ω is the phonon

frequency and g is the constant of the electron–phonon interaction. The
larger the parameter N , the higher the critical temperature Tc. In our
model, N1 < N2 < N3 and φ01 ≪ φ02 ≪ φ03 mean that small changes to the
parameter N cause large (exponential) changes to the scalar field φ0. Then,
by analogy with the BCS theory, we can assume that the amplitudes of the
scalar fields φ0i at T = 0 are determined by the corresponding parameters
Ni
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φ01 = Ω exp

(
− 1

gN1

)
, φ02 = Ω exp

(
− 1

gN2

)
, φ03 = Ω exp

(
− 1

gN3

)
,

(208)
where the parameters g,Ω are some common parameters for all three bands.
Thus, the change in φ (Tc) is accompanied by the logarithmic change of N .
Moreover, if the “interaction constant” is zero, i.e. gN = 0, then the “con-
densate” is absent φ0 = 0. Thus, the scalar fields φi can be a result of
the Cooper pairing of some more fundamental fermions as, for example, in
models with the top-quark condensation [78, 79] or with the technicolor [80].

We can get rid of the parameter Ω

ln
φ02

φ01
=

1

g

(
1

N1
− 1

N2

)
, ln

φ03

φ01
=

1

g

(
1

N1
− 1

N3

)
,

ln
φ03

φ02
=

1

g

(
1

N2
− 1

N3

)
. (209)

By eleminating the parameter g, we obtain an expression connecting the
parameters N1,N2,N3 between themselves

N2 −N1

N3 −N1

N3

N2
=
A

B
⇒

m2
Hµ −m2

He

m2
Hτ −m2

He

m2
Hτ

m2
Hµ

=
A

B
, (210)

where we have used Eq. (207), mHe ̸= mHµ ̸= mHτ , and we have denoted

A ≡
ln φ02

φ01

ln φ03

φ02

= 1.89 , B ≡
ln φ03

φ01

ln φ03

φ02

= A+ 1 = 2.89 . (211)

Thus, due to the three-band system, the magnitudes of the Higgs masses
mHe < mHµ < mHτ are related by Eq. (210). We assume (as will be
demonstrated below) that the τ -Higgs boson coincides with the observed
H-boson of mass mH = 125.10 GeV, i.e. the masses of mHµ and mHe are
limited from the above by the mass 125.10 GeV. Using Eq. (210), we can
find mass of the lightest H-boson mHe as a function of the boson of medium
mass mHµ at known mass of the heaviest H-boson mHτ = 125.10 GeV

mHe = mHµ

√
Bm2

Hτ −Am2
Hτ

Bm2
Hτ −Am2

Hµ

, (212)

as illustrated in Fig. 10.
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Fig. 10. The mass of the e-Higgs boson mHe as a function of the mass of µ-Higgs
boson mHµ, which is limited above by the mass of the τ -Higgs boson mHτ =

125.10 GeV.

Thus, in the proposed model, we have H-bosons of three flavors (genera-
tions) He, Hµ, Hτ which should be characterized by quantum numbers sim-
ilar to, for example, lepton numbers or quark flavors. However, at present,
only one H-boson of mass 125 GeV is observed experimentally. Let us
consider the processes of the H-boson production [48–50]. These processes
can be categorized into two types: (a) production by the vector bosons —
Fig. 11 (a) due to interaction (100), (b) production by the heaviest quarks
(t and b) — Fig. 11 (b) due to the Yukawa interaction similar to Eq. (108).
First, let us compare the constants for coupling between gauge bosons and
H-bosons of each flavor (generation) from Eq. (100) using Eq. (200)

2e2φ0e : 2e
2φ0µ : 2e2φ0τ = 0.00028 : 0.059 : 1 . (213)

Thus, gauge bosons W±, Z most efficiently radiate Hτ bosons. Hµ and He

bosons must also be radiated, but they are extremely inefficient compared
with Hτ bosons.

Now, let us consider the production of H-bosons by quarks (or leptons).
We should calculate the constants of Yukawa coupling χ as χ = mi

φ0i
, where

an index i means flavor. The amplitudes of the scalar fields φ0i are taken
from Eq. (200). The results of this calculation are presented in Table 4.
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Fig. 11. Some processes of Higgs-boson production: (a) production by the vector
bosons W±, Z, (b) production by t and b quarks (here the blue lines g represent
gluons).

Table 4. Masses (experimental) and Yukawa constants of elementary fermions χ
calculated in the three-band GWS theory using amplitudes of the scalar fields φ0i

from Eq. (200) for the corresponding “flavors” (generations).

Electron flavor Muon flavor Tauon flavor

Scalar fields φ0e = 0.05GeV φ0µ = 10.51GeV φ0τ = 176.70GeV

Charged leptons me = 0.0005 GeV mµ = 0.1057 GeV mτ = 1.7768 GeV

χ = 0.010 χ = 0.010 χ = 0.010

Up quarks mu = 0.0023 GeV mc = 1.275 GeV mt = 173.210 GeV

χ = 0.046 χ = 0.121 χ = 0.975

Down quarks md = 0.0048 GeV ms = 0.095 GeV mb = 4.180 GeV

χ = 0.096 χ = 0.009 χ = 0.024
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The probability of producing or decaying of the H-bosons is Γ ∝ χ2. The
squared Yukawa constants related to the t-quark coupling constant: χ2/χ2

t

are shown in Fig. 12. For comparison, the Yukawa constants for SM χ2

χ2
t
= m2

m2
t

are shown in Fig. 13. In the single-band GWS theory (i.e. in SM), the masses
of fermions are controlled by χ only, because the scalar field φ is single.
In the multi-band GWS model, the masses of fermions are controlled by
both χ and the corresponding (for each generation) amplitudes of the scalar
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Fig. 12. Squared Yukawa constants related to the t-quark coupling constant: χ2

χ2
t

in
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fields φ0i. Thus, the differences between Yukawa constants for different
flavors are somewhat smoothed out, as we saw earlier for leptons of all
flavors χ = 0.01. However, from Table 4 and Fig. 12 (and also Fig. 13),
we can see that χt is giant, moreover mt > mH (but mc,b ≪ mH). This
means that Hτ -bosons are produced in the vast majority of cases, as in the
described above production, by the vector bosons W±, Z.

Let us consider the decays of the H-boson into quarks or leptons shown
in Fig. 2. According to SM, the H-boson should decay as H → bb̄ with
a probability of 57.5%, H → τ τ̄ with a probability of 6.30%, H → cc̄ with
a probability of 2.90%, and H → µµ̄ with a probability of ≲ 0.022% [50]. As
an illustration, the squared Yukawa constants for fermions of the second and
third generations (muon, tauon, s-quark, c-quark, b-quark) related to the
b-quark coupling constant χ2

χ2
b
= m2

m2
b

calculated in SM are shown in Fig. 14.
Thus, in SM, the H-boson interacts most strongly with the third generation,
which is the most massive, therefore the H → bb̄ and H → τ τ̄ decays are
dominant. However, the decays into the second-generation fermions H → cc̄
should also be noticeable.
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Fig. 14. Squared Yukawa constants for fermions of the second and third generations
(muon, tauon, s-quark, c-quark, b-quark) related to the b-quark coupling constant:
χ2

χ2
b
= m2

m2
b

in the single-band GWS theory (Standard Model).

At the same time, there has been no experimental evidence found in di-
rect searches by the ATLAS and CMS collaborations [51, 52] of the H-boson
decaying into charm quark–antiquark, into strange quark–antiquark, and
into electron–positron. The decay into muon–antimuon has been detected
with a significance of 3σ [53], which is clearly not enough for an experi-
mental fact (i.e. more than 5σ), moreover, there are similar decays such as
H → γµµ̄, γeē, which occur through many intermediate channels due to
various interactions (via virtual photon, Z-, W -bosons, quarks) with a sig-
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nificance of 3.2σ [54]. This fact (the absence of observations of decays of
H-bosons into fermions of the first and second generations) is usually asso-
ciated with the small Yukawa constants of the first and second generations.
However, from Fig. 14, we can see that the decay rate into a pair of c-quarks
is not much less than the decay rate into a pair of τ -leptons, i.e. χ2

c ≲ χ2
τ (the

decay probabilities are 2.9% and 6.4%, respectively). On the other hand,
such rare decays as two-photon decay H → γγ with probabilities of ≈ 0.2%
have been detected.

If we turn to the three-band GWS model, then we have the squared
Yukawa constants for fermions of the second and third generations (muon,
tauon, s-quark, c-quark, b-quark) related to the b-quark coupling constant:
χ2

χ2
b

shown in Fig. 15. Let us compare these relations with those in Fig. 14.
It is not difficult to see that

Γ (Hτ → τ τ̄)

Γ (Hτ → bb̄)
≈ Γ (H → τ τ̄)

Γ (H → bb̄)
≈ 0.2 . (214)

This means that the probability of decay of the Hτ -boson into τ -leptons
regarding the decay into b-quarks in the three-band GWS model and prob-
ability of decay of H-boson into τ -leptons regarding the decay into b-quarks
in SM model are almost equal. However, in the three-band model, the
Hτ → cc̄,Hτ → ss̄,Hτ → µµ̄ decays are prohibited. But theHµ → cc̄, ss̄, µµ̄
decays are allowed, with the Hµ → cc̄ decay dominating sharply. As have
been demonstrated previously, the Hµ-boson is emitted extremely ineffi-
ciently. Thus, due to the inefficiency of production of He and Hµ by gauge
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Fig. 15. Squared Yukawa constants for fermions of the second and third generations
(muon, tauon, s-quark, c-quark, b-quark) related to the b-quark coupling constant:
χ2
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in the three-band GWS model.
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bosons, the anomalously large Yukawa constant of the t-quark and the huge
background from QCD, searching for He and Hµ by hadron–hadron colli-
sions at the LHC requires to probe the Higgs decays to a deeper level with
sufficient accuracy. At the same time, there are plans to build the Future
Circular electron–positron Collider (FCC-ee) that would provide measure-
ments with unprecedented precision and potentially point the way to physics
beyond the SM [81]. It would allow us to look for He in direct e−e+ col-
lisions at high energies, since then the background from QCD should be
absent, electron–positron pairs can annihilate directly to He-bosons (simi-
larly to how muon–antimuon pairs can annihilate to Hµ-bosons and tauon–
antitauon pairs can annihilate to Hτ -bosons).

Proceeding from the aforesaid, we should identify Hτ -boson with exper-
imentally observed H-boson

Hτ ≡ Hobserved . (215)

Other generations (flavors) of H-bosons, Hµ and He, require detection.
Thus, the H-boson of the electron flavor (the first generation) should decay
as He → dd̄, uū, eē.

It should be noted that in recent years, the observation of so-called
“multi-lepton anomalies” [82, 83] at the Large Hadron Collider is inter-
preted (with a local significance of ≲ 3σ) as the existence of beyond the
SM Higgs bosons: a new scalar particle S with a mass of mS = 151 GeV,
produced from the decay of a new heavier scalar particle H (with a mass
of mH ⩾ 276 GeV) into a lighter one S and the SM Higgs h: H → Sh, SS
according to 2HDM + S model [84, 85]. However, the significance of this
anomaly is debatable [86]. The CMS and ATLAS collaborations reported
on the signal with the production cross section of the SM-like scalar ϕ
with a mass of ∼ 95 GeV which manifests itself as the diphoton decay
pp → ϕ → γγ [87–89] with a local significance of 1.7σ . . . 2.9σ. During
the search for additional Higgs bosons ϕ and vector leptoquarks in ττ final
states CMS found a 3.1σ excess of events for pp → ϕ → ττ at an invariant
mass mϕ ≃ 100 GeV and a 2.6σ at an invariant mass mϕ ≃ 95 GeV. Thus,
the low significance of these anomalies (≲ 3σ) does not make it possible to
interpret them as unambiguous confirmation of multi-HDM models. It is
possible that these recorded signals correspond to some very heavy meson
resonances or tetraquark resonances.

As we could see in Sections 2, 3, 5, 6, due to the interband coupling, the
Goldstone modes from each band (oscillations of θ and ϑ phases) transform
into the following normal modes of the system. The twofold degenerated
acoustic mode qµqµ = 0 is a common mode oscillations of the phases of the
isospinor fields Ψ1,2,3. The propagation of this mode is accompanied by the
current Jµ ̸= 0, hence this mode is absorbed by the gauge fields Wµ,W

∗
µ , Zµ.

Other modes are the Leggett modes, which are antiphase oscillations of
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the phases of the isospinor fields. The propagation of the L-modes is not
accompanied by the current Jµ = 0, hence they do not interact with the
gauge fields. Moreover, the Leggett modes do not interact with the Higgs
modes in the linear approximation if attractive interband coupling takes
place ϵ < 0. Furthermore, these modes do not interact with the Dirac fields
ψ1,2,3, unlike the Higgs modes. Thus, the Leggett modes do not interact
with any particles, i.e. they are sterile. These modes can only manifest
themselves through gravity on astrophysical scales. One of the L-modes is
the twofold degenerated acoustic mode qµqµ = 0, which we labeled L3 ↔ L4

in Table 3. However, the massless bosons lose their energy in the process of
space expansion, similarly to the relic photons. Moreover, ultrarelativistic
particles cannot be assembled into a self-gravitating halo. Therefore, such
particles do not contribute to DM. However, other two modes L1 and L2 are
massive with masses determined by the coefficient of the interband coupling
as qµqµ ∼ ϵ. The masses of L-bosons can be calculated using Eqs. (160),
(161), and (200)

mL1 = 5.83
√

|ϵ| , mL2 = 85.98
√

|ϵ| . (216)

Since the L-bosons do not take part in the electro-weak interaction, they
cannot decay, for example, into two photons, therefore the L-bosons are
stable particle. Obviously, the massive L-bosons are able to form stable
gravitationally bound structures (halo, clusters, etc.). Therefore, the mas-
sive L-bosons are suitable candidates for DM.

9. The masses of Leggett bosons and the cuspy halo problem

In Section 8, we found that the Leggett modes do not interact with any
particles, i.e. these modes are sterile and they can only manifest themselves
through gravity on astrophysical scales. Therefore, the massive L-bosons are
particles of so-called Dark Matter (massless, i.e. ultrarelativistic, L-bosons
cannot be accumulated in self-gravitating clusters). Masses of L-bosons are
determined by the coefficient of the interband coupling ϵ, see Eq. (216). This
coefficient can be arbitrary small because the effect of interband coupling is
nonperturbative.

Observation of DM density distributions (halo around a galaxy) seems to
prefer a central density as ρ ∼ r0. For example, the empirical core profiles
can be described by the following function with two parameters: a scale
radius r0 and a scale density ρ0 [25]:

ρ(r) =
ρ0

1 + ( r
r0
)2
. (217)

However, in the large-scale simulations using the collisionless cold Dark Mat-
ter model, the inner region of the halo shows a density distribution described
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by a power law ρ ∼ rα, where α = −1. Such behavior is now called a “cusp”.
One example is the Navarro–Frenk–White profile

ρ(r) =
ρ0

r
r0

(
1 + r

r0

)2 . (218)

Since the mass of L-bosons can be extremely small and the critical tem-
perature of BEC can be very high (because the coefficient |ϵ| can be arbi-
trarily small), then the Bose–Einstein condensate Dark Matter (BEC DM
or Scalar Field Dark Matter, Fuzzy, Wave, Ultra-light Dark Matter) can
form [25, 29, 31]. This means that the halo is described by the macroscopic
wave function √

Mψ(r) =
√
ρ(r, t) eiS(r,t) , (219)

where M = mN is the total mass of the DM halo, m is the DM particle
mass (mass of L-bosons, see Eq. (216)), N is the number of the particles in
the halo. Then the quantum Euler–Madelung equation for the stationary
case D(∇S(r,t))

Dt = 0 is

g − ∇p
ρ

+ σ∇T +
∇Q
m

= 0 , (220)

where g is the gravitational field strength

g = −4πGr

r3

r∫
0

ρ(r′)r′2dr′ . (221)

L-bosons do not interact with anything except through gravity, so we can
assume “dust” matter p = 0. In BEC at T → 0, the entropy can be supposed
σ = 0 or the profile can be suppose isothermal ∇T = 0. Q is a quantum
potential

Q =
ℏ2

2m

∆
√
ρ

√
ρ
, (222)

i.e. 1
m∇Q is the quantum pressure term.
Let us consider the central cusp of profile (218) in a form of ρ(r) = ρ0

r0
r .

Then the gravitational field strength is

g = −4πGρ0r0
r

r
, (223)

and the quantum pressure term takes the form

∇Q
m

=
ℏ2

2m2

1

r3
r

r
. (224)
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We can see that, while the field strength is finite, the quantum pressure is
singular at r = 0. Thus, the equilibrium cannot be achieved. Such a cusp
should be blurred by itself.

Now, let us consider the observed profile (217). At r → 0, we obtain

g = −4π

3
Gρ0r

r

r
,

∇Q
m

=
ℏ2

m2

6r

r40

r

r
, (225)

from which we can see that the Euler equation (220) can be satisfied when

4π

3
Gρ0 =

ℏ2

m2

6

r40
. (226)

Obviously, if ρ0r30 ∼M , then we have from Eq. (226)

ρ0 ∼ G3m
6M4

ℏ6
, r0 ∼

ℏ2

Gm2M
. (227)

Thus, due to the quantum pressure, the central density ρ(r → 0) is not
singular. From Eq. (227), we can see that the extremely small mass m =
mL ∼ 10−20 eV can ensure the small central density ρ0 and the large pro-
file width r0. At the same time, we can see that the spatial distribution
(217) does not give a finite mass of a self-gravitating Dark Matter halo:∫∞
0

r2dr
1+(r/r0)

2 = ∞. A good approximation would be the profile obtained in
Ref. [91] for a self-gravitating system

ρ(r) =
ρ0

cosh2
(

r
r0

) . (228)

This distribution becomes the profile (217) at r ≪ r0, at the same time, it
gives a finite mass of the halo: M = π3

3 ρ0r
3
0. Unfortunately, we cannot verify

(228) by direct substitution into Eq. (220) because the integral
∫ r
0

r2dr
cosh2(r/r0)

cannot be calculated analytically. However, we can verify it at another limit
r ≫ r0. Then we have

g = −GM
r2

r

r
,

∇Q
m

=
ℏ2

m2

1

r2r0

r

r
. (229)

Obviously, Eq. (220) is satisfied at r0= ℏ2
Gm2M

, which corresponds to Eq. (227).
Thus, the spatial distribution (228) can describe the DM halo.
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Using Eq. (227), the mass and radius of the DM halo of the Milky Way
M ∼ 1012M⊙ and r0 ∼ 120 kpc [11], we can estimate the mass of an
L-boson m = mL ∼

√
|ϵ|, and using Eq. (216), we can then estimate the

magnitude of the parameter of the interband coupling |ϵ| mL ∼ 10−25 eV ⇒
|ϵ| ∼ 10−54 eV2. However, numerical simulations demonstrate that the
DM halo has some structure: a core from BEC of a size of ∼ 1 kpc and
the above-condensate Bose gas behaving as the cold DM, then a mass of
∼ 10−22 . . . 10−20 eV [28–32] is assumed. Indeed, observations of the stellar
kinematics of dwarf galaxies give the mass of just ∼ 10−22 . . . 10−20 eV [33–
35]. Then, we can suppose

mL ∼ 10−20 eV ⇒ |ϵ| ∼ 10−44 eV2 . (230)

As mentioned above, the interband coupling is nonperturbative, therefore
even such a small magnitude of ϵ determines the symmetry and spectrum of
the system.

The L-bosons can appear due to vacuum decay after inflation and precip-
itate into the Bose-condensate. The temperature of the Bose condensation
is TBEC ∼ n

2/3
cr

h2

mkB
= ρ

2/3
cr

h2

m5/3kB
∼ 1031 K, where ρcr is the critical density

of the universe. Thus, TBEC is commensurable with the Plank temperature
TPlank ∼ 1032 K. Thus, the L-bosons are so light that TBEC ∼ TPlank which
means that the L-bosons should always be in BEC. This indicates a purely
condensate nature of the DM halo and not a two-component structure with
the condensate core of a size ≲ 1 kps and a cloud of above-condensate Bose
gas of a size ∼ 120 kps. L-bosons could condense in BEC during the early
years of the universe. Galaxies, galaxy clusters, and superclusters are im-
mersed in the Bose-condensate clouds of sterile massive L-bosons that create
the effect of Dark Matter.

Using Eq. (227), let us estimate the radius of the Dark Matter halo
r0 and the mass of the Milky Way (mass of Dark Matter) M ∼ 1012M⊙,
assuming mL ∼ 10−20 eV. Then we obtain r0 ∼ 10−5 pc, which is in no way
comparable to the radius of the DM halo being around R ∼ 120 kpc. In
connection with this fact, a hypothesis has been proposed [92, 93], regarding
the formation of Bose stars, a large number of which can form the dark halo.
However, we can propose another model. Let us compare the energy of the
halos with sizes r0 and R, respectively,

Er0 ∼ −GM
2

r0
∼ −1063 J , ER ∼ −GM

2

R
∼ −1053 J . (231)

These energies correspond to two different states of BEC — the ground
state ψr0 with energy Er0 and excited state ψR with energy ER, which are
solutions to the Gross–Pitaevskii equation
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− ℏ2

2m
∆ψ(r)−m

4πGM

r

r∫
0

|ψ(r′)|2r′2dr′ψ(r) = µψ(r) , (232)

where µ = E/N = E m
M . We can see that the Hamiltonian of the self-

gravitating system is determined by its eigen-state ψ. Thus, different states
(ground and excited) correspond to different Hamiltonians of one and the
same system. This means that the states corresponding to different energies
may not be orthogonal to each other, for example,

∫
ψr0ψ

+
Rd

3r ̸= 0. Suppose
we excite the system from the ground state ψr0 to an excited state ψR. Such
a transition stipulates the restructuring of the potential Ur0 → UR, so that
our excited states ψR become the ground state of the new potential UR as
demonstrated in Fig. 16.

R

r0

Ur0

UR

r0  

 

0

rR

R

r0

Fig. 16. Potentials Ur0 and UR for the ground state Ψr0 with energy Er0 = µr0
M
m

and an excited state ΨR with energy ER = µR
M
m , respectively. The corresponding

radii of the DM halos are r0 and R.
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Let us enlarge the radius of the system by n > 1 times, i.e. r0 → nr0,
where r0 is the “Bohr radius” for the self-gravitating system. The wave
functions for the ground and excited states have the corresponding forms

ψr0(r) ∼
√
3/π3

(r0)3/2
1

cosh
(

r
r0

) , (233)

ψR(r) ∼
√
3/π3

(nr0)3/2
1

cosh
(

r
nr0

) , n > 1 . (234)

Here, the value r0 plays the role of the Bohr radius, R ≡ r0n. The average
energy of a self-gravitating system in the state ψ is

E =
M

m

ℏ24π
2m

∞∫
0

(∇ψ)2r2dr − 16π2

3
GM2

∞∫
0

ψ4r4dr . (235)

Substituting the ground-state wave function (233) into Eq. (235), we obtain

E =
6ℏ2M
π2m2

0.607

r20
− 48

π4
GM2 0.249

r0
≡ A

r20
− B

r0
. (236)

Minimizing this energy by the radius r0, we obtain

r0 =
2A

B
= 2.44

π2

4

ℏ2

Gm2M
⇒ Er0 = −B

2

4A
= − B

2r0
= −5.98

π4
GM2

r0

= −9.80

π6
G2M3m2

ℏ2
. (237)

Substituting the excited-state wave function (234) into Eq. (235), we obtain

R = nr0 ⇒ E =
A

n2r20
− B

nr0
⇒ ER = Er0

(
2

n
− 1

n2

)
. (238)

For the highly excited states n≫ 1, we have ER =
2Er0
n , unlike the excited

energies of a hydrogen atom: En = E1
n2 .

Obviously, the self-gravitating system aspires to transition to an under-
lying state. To do so, the system must give somewhere the released energy
E(R1) − E(R2) > 0, where R2 < R1. Let us consider transition of the
system from a high “orbit” to a lower one. As a result, the cloud collapses
and heats up. However, as we could see above, the L-bosons are sterile par-
ticles, that is, they do not scatter with each other or with baryonic matter.
Hence, the above-mentioned mechanism of cloud collapse does not work.
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Then there is only one way: in order to make a transition from the state ψR

to the state ψr0 , it is necessary to radiate gravitation waves (since an atom
making a quantum transition from an exited state to an underlying state
radiates photons). The energy loss rate and the halo compression rate due
to gravitational radiation can be estimated using the two-particle attraction
problem according to Newton’s law [94]

dE

dt
∼ G4M5

c5R5
∼ 1021 J/s ,

dR

dt
∼ G3M3

c5R3
∼ 10−10 m/s , (239)

from where we obtain the relaxation time to the ground state ψr0

τ =

(
R4 − r40

)
c5

4G3M3
∼ 1032 s , (240)

which is incommensurably greater than the age of the universe 4 × 1017 s.
Thus, the DM halo of a galaxy is similar to Rydberg atoms (instead of the
Coulomb interaction — self-gravity, and instead of electro-magnetic radia-
tion — gravitational radiation, however instead of electrons — L-bosons). A
notable feature of Rydberg atoms is their very long lifetime compared to the
lifetime of low-excited states, so for the hydrogen atom τ(n = 2) ∼ 10−8 s
against τ(n = 1000) ∼ 1 s. As we could see above, the analogous situation
takes place for DM halos. Thus, the DM halo is a Rydberg, self-gravitating,
many-boson atom. It should be noted that we have proposed the simplest
model of the halo as an excited state of a self-gravitating many-boson sys-
tem. However, the excited states can also be much more complex structures.

10. Higgs modes at T = Tc

Let us consider a three-band system near the critical temperature Tc1,
Tc2, Tc3 < T < Tc. In this region, φ2

0i ∼ |ϵ|/bi [74]. Then we have from
Eq. (63)

αi(T ) = ai(T ) > 0 . (241)
Then coefficients a, b, d (67) in the dispersion equation (66) take the form

b(T ) = −a1 − a2 − a3 ,

c(T ) = a1a2 + a1a3 + a2a3 − 3ϵ2 , (242)
d(T ) = −a1a2a3 − 2ϵ3 + ϵ2(a1 + a2 + a3) ,

where we have accounted cos θik = 1. From the equation for critical temper-
ature (205), we have d(Tc) = 0. Then, from the dispersion equation (66),
we obtain the corresponding dispersion relations at the critical temperature

qµq
µ(Tc) = 0 , (243)

qµq
µ(Tc) =

(
−b±

√
b2 − 4c

)
/2 > 0 . (244)
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For the first mode (243) (i.e. for the common-mode oscillations, see Fig. 7)
the energy gap vanishes at the critical temperature, as it takes place in the
single-band model. At the same time, the energy gaps of the second and
third modes (244) (i.e. for the antiphase oscillations, see Fig. 7) do not vanish
at the critical temperature. Thus, for symmetrical bands α1 = α2 = α3 ≡ α,
the massive modes have the same spectrum (b2−4c = 0 taking into account
the condition d(Tc) = 0 ⇒ a(Tc) = 2|ϵ|)

qµq
µ(Tc) = 3|ϵ| ⇒ mH1,2(Tc) =

√
3|ϵ| . (245)

Thus, the energy gaps of the second and third Higgs modes are determined
by the interband coupling ϵ. At the same time, at T = Tc, the second-
order phase transition occurs: all equilibrium scalar fields become zero
φ01(Tc) = φ02(Tc) = φ03(Tc) = 0, see Fig. 9. Higgs bosons are oscilla-
tions of the modules |φ1|, |φ2|, |φ3| of the condensates. Since all φ0i(Tc) = 0,
then the nonzero energy gap qµq

µ(Tc) ̸= 0 of the Higgs modes at T = Tc
is a nonphysical property. In other words, at T ≥ Tc, there is nothing to
oscillate, there are only fluctuations, where ⟨φi⟩ = 0, ⟨φ2

i ⟩ ̸= 0 [95]. There-
fore, nonzero masses of Higgs bosons at T = Tc are incompatible with the
second-order phase transition.

In order to solve this problem, in Refs. [70, 74, 75], the intergradient
interaction in the form of ηik

(
∂µΨi∂

µΨ+
k + ∂µΨ+

i ∂µΨk
)

has been proposed.
With special choice of the coefficients ηik, we obtain a single Higgs mode with
the correct dispersion law qµq

µ(Tc) = 0 (but qµqµ(T < Tc) > 0) and single
Goldstone modes qµqµ = 0 (i.e. the Leggett modes are absent). However,
unlike in superconductivity, there is no restriction on the type of phase
transition in the field theory. Thus, the second-order phase transition can
be turned into the first-order phase transition by, for example, quantum
corrections to the Lagrangian of the scalar field which interacts with the
gauge fields [77]. Alternatively, we can use the effective potential [96] in the
following form:

U(φ, T ) =
1

2
N
(
T 2

T 2
−
− 1

)
φ2 − 1

3
cTφ3 +

1

4
bTφ4 , (246)

where T− is the lower spinodal temperature. Due to presence of the cubic
term cTφ3, the potential describes the first-order phase transition at the
critical temperature Tc =

T−√
1−2c2T 2

−/9bN
and the jump of the density of the

condensate ∆φ0(Tc)
Tc

= 3
2
c
b . Thus, the presence of the jump, i.e. φ0(Tc) ̸= 0,

allows for the existence of the nonzero energy gap qµqµ(Tc) ̸= 0 of the Higgs
modes at T = Tc. Any other options can be considered.
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11. Results

In this work, we proposed an extension of the Glashow–Weinberg–Salam
model of the electro-weak interaction using analogy involving three-band
superconductors with interband Josephson couplings. The proposed model
describes important phenomena formulated in Section 1:

— There are two ultra-light sterile bosons — the Leggett bosons, the
Bose–Einstein condensate of which plays the role of the Dark Matter
halo. The halo is in an excited yet stable quantum state. There is no a
central cusp due to the quantum pressure counteracting gravitational
compression. In order to obtain the L-boson, at least two bands are
required. In the case of the multi-band system, the attractive inter-
band coupling ϵ < 0 should take place in order for fermions to acquire
Dirac masses.

— Dirac neutrinos receive effective masses which manifest themselves in
the neutrino oscillations and β-decays. In order to obtain the neutrino
oscillations and violation of CP-invariance, at least three bands are
required. The mixing angles for charged leptons are negligibly small,
so the flavor oscillations of electron–muon–tauon cannot be observed.

— There are neutral Higgs bosons of three flavors: He, Hµ, Hτ . Each
interacts only with the corresponding generation of fermions, where the
heaviest bosonHτ is associated with the observedH-boson. Therefore,
decays of the H-boson into fermions of the second and first generations
through the Yukawa interaction are prohibited. Another more light
flavors He and Hµ require detection as an experimental test of the
proposed model. At the same time, these two additional H-bosons
interact very weakly with gauge and Dirac fields, which makes them
difficult to detect.

— The masses of each generation of fermions are determined by the
Yukawa couplings with the amplitudes of the corresponding conden-
sates φ0e, φ0µ, φ0τ of the scalar fields. The slight mass asymmetry
mHe < mHµ < mHτ leads to the strong band asymmetry φ0e ≪
φ0µ ≪ φ0τ . Therefore, the fermion masses differ by orders of magni-
tude me ≪ mµ ≪ mτ .

It should be noted that, unlike extensions of SM such as nHDM or nHDM+S,
the proposed model does not generate a large number of other particles (for
example, charged Higgs bosons), that can essentially interact with ordinary
matter. In addition, the proposed particle candidates for DM — the Leggett
bosons — are absolutely sterile, which means that they cannot even weakly
interact with matter (as neutrinos).
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Appendix A

Some symmetric 3HDM potentials

Following [65], a scalar 3HDM potential symmetric under group G can
be written as

V = V0 + VG , (A.1)

where

V0 =

3∑
i=1

ai |Ψi|2 +
bi
2
|Ψi|4 + b12|Ψ1|2|Ψ2|2 + b13|Ψ1|2|Ψ3|2 + b23|Ψ2|2|Ψ3|2

+b′12
(
Ψ+
1 Ψ2

) (
Ψ+
2 Ψ1

)
+ b′13

(
Ψ+
1 Ψ3

) (
Ψ+
3 Ψ1

)
+ b′23

(
Ψ+
2 Ψ3

) (
Ψ+
3 Ψ2

)
(A.2)

is invariant under the most general U(1) ⊗ U(1) gauge transformation and
VG is a collection of extra terms ensuring the symmetry group G. The
U(1)⊗U(1) group is generated by e−iα 0 0

0 eiα 0
0 0 1

 e−2iβ/3 0 0

0 eiβ/3 0

0 0 eiβ/3

 . (A.3)

However, in the present work, we use the minimal model, where bik =b′ik= 0.
A potential symmetric under the U(1) group is

VU(1) = V0 + λ123
[(
Ψ+
1 Ψ3

) (
Ψ+
2 Ψ3

)
+
(
Ψ1Ψ

+
3

) (
Ψ2Ψ

+
3

)]
. (A.4)

The U(1) group is generated by e−iα 0 0
0 eiα 0
0 0 1

 . (A.5)

A potential symmetric under the U(1)⊗ Z2 group is

VU(1)⊗Z2
= V0 + λ23

[(
Ψ+
2 Ψ3

)2
+
(
Ψ2Ψ

+
3

)2]
. (A.6)
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The U(1)⊗ Z2 group is generated by e−2iβ/3 0 0

0 eiβ/3 0

0 0 eiβ/3

 −1 0 0
0 −1 0
0 0 1

 . (A.7)

A potential symmetric under the Z2 group is

VZ2 = V0 + ϵ12
[
Ψ+
1 Ψ2 + Ψ1Ψ

+
2

]
+ λ12

[(
Ψ+
1 Ψ2

)2
+
(
Ψ1Ψ

+
2

)2]
+λ13

[(
Ψ+
1 Ψ3

)2
+ (Ψ1Ψ

+
3 )2

]
+ λ23

[(
Ψ+
2 Ψ3

)2
+
(
Ψ2Ψ

+
3

)2]
. (A.8)

The Z2 group is generated by −1 0 0
0 −1 0
0 0 1

 . (A.9)
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