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We study higher-order rogue wave patterns for the well-known Boussi-
nesq equation for the cases where the solution parameters are large. We
show that these consist of a collection of individual fundamental rogue
waves arranged in circles. The radii of these circles are found from the ze-
roes of certain polynomials. Finally, we briefly compare the patterns found
with those of higher-order rogue wave patterns of the nonlinear-Schrédinger
(NLS) and other equations.
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1. Principle

The Boussinesq equation was derived by Boussinesq in the 1870s [1, 2],
to get a better description of water waves by including a nonlinear part. It
applies to weakly nonlinear and reasonably long waves, e.g. in shallow seas
and harbours.

Rogue waves supported by this equation are presented in [3], where it
was shown that the ‘volume’ [4] contained by a rogue wave of order n can
be conveniently defined. When the solutions are real functions having zero
background, there is no need to subtract out any ‘background’ in order to
specify a finite integral over all 2d space.

The Boussinesq equation can be normalized in various ways. In keeping
with [3], etc., we use

1
Utt + Ugy — (uz)xx - g Ugzazr = 0, (1)

where u is the free surface elevation of the water, ¢ is the time, and z is the
transverse direction.

(9-A1.1)
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It supports solitons

L oo 2 2 2 4b?
u=6(4b —3)(0—1)+2bsech b ?—lct—bx ,

for b > /3 /2. When ¢ = 1, this gives the zero-background soliton.

2. Boussinesq equation rogue waves and link with breathers

This equation is significantly different from the NLS in that its solutions
are real and also in that it can have rogue waves with zero background,
while the NLS cannot support these. Boussinesq equation breathers have
been studied in some papers [5—7]. The basic breather can be written as

2 fCOS(pl') -« (2)

= 2
U = Mot 2 e s D)

where the background is ug,

2 1
f = /r cosh <u+ptw%+1—2uo+§log(r)) ,

5 4p® + 3 — Bug
p2+3—6u0 '

and

Here, o, i1, and frequency p are free parameters, and we need p? + 3 > 6uq,
ensuring r > 0. An example is shown in Fig. 1.

Fig. 1. Boussinesq equation n = 1 breather. Here, p=p=a =1; ug = 1/2.
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Now, setting u = —% log(r) allows the maximum to occur at ¢ = 0. As
p decreases, the peaks move further apart, and, in the limit of small p, we
have the rogue wave
4(2u0 — 1) [£2(1 — 2up)? — (1 — 2ug)2? + 1]
[t2(1 — 2ug)? + (1 — 2ug)a? + 1]

Up = Uy —

; (3)

assuming that ug < %, so the solution is finite everywhere. Also, ug can be
negative. Here, the background level, ug, also scales the dimensions of the
rogue wave. The maximum value is u(0,0) = 4 — Tug. As ug increases to
1/2, this maximum value falls to 1/2. An example is shown in Fig. 2.

Fig. 2. Boussinesq equation n = 1 rogue wave. Here, background uy = 1/3. The
maximum value is u;(0,0) = 5/3.

Indeed,
0? ~
u(z,t) =dy + 2@ log [Fl (t,x)} ,
where di = mﬁi and Fy = t2(1 — 2ug)? + (1 — 2ug)z? + 1.

Further, if ug = 0, then d, = 0, fcos(pr) — a ~ %pQ (t2 — 2%+ 1), and
f—acos(pz) = %pz (t2 + 22+ 1), so from Eq. (3), we have

412 —22+1 02 .
uUp = uUp = (—xg) = 2—2 log |:F1(t,$)] 5
(12 + 22 +1) Ox

where Fy = 1+ 22+ t2, and this coincides with the regular zero-background
first-order rogue wave [3]. We note the NLS rogue wave cannot have zero
background [13], while such rogue waves do exist for the Boussinesq equation.
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In fact, the n'"-order solution can be written as

= 2;; log [ Fu(t, )] = ;2 {Fnﬁ,fg - (F,;)Q] , (@)

n

where F, can include solution parameters. Thus, the entire solution 8]
depends on the single function F,. However, for the NLS, the intensity
depends on a single function but the entire solution cannot be found from
it. This occurs because the NLS solutions are complex and have phase
information, while the Boussinesq solutions are real and do not have phase.
Clearly, the component rogue waves will appear when the function F), has
a small value, and so this is the function to be considered.

We note that each solution with zero background has a quantized value
for its ‘volume’ [3| defined as

oo oo
1 1
Vn:&r/ /uidtdxzzn(nﬂ):c)n. (5)
o o0
Here, @, = (1,3,6,10,...) is the n'™ triangle number. Furthermore,

1 o o
Wn:8/ /uidtdxzn(nﬂ):mn. (6)
s

—00 —00

We can define a related integrand, using

52 .
Up = _28:1: 5 log [Fn(t,a:)] . (7)
Then
1//vdtda:—(n+1)—1Q (8)
En= g 3

These are proved in [3]. For example, for the fundamental (n = 1) rogue
wave, derived from F1 =1422+t?, wehave Vi =1, W; =2, and E; = 1/3.

For the nonzero background wo(< 1/2), we need to subtract off the
background before integrating. We find

;7 7(u1—u0)2dtdx:m- o)

—00 —00
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Also,

1 o0 o0
Wy = 3 / / (uy — up)® dt de = 2(1 — 2ug)>/?. (10)
T

—00 —00

Knowing the volume (or W7) from experimental measurements can allow
us to determine the background level, ug.

These quantizations of the volumes apply for any values of the parame-
ters included in the solutions [§], and show the special nature of the Boussi-
nesq rogue waves. By measuring the total volume of a rogue wave structure
in an experiment that is governed by the Boussinesq equation, one could
infer the order, n, of the formation.

For high values of the free parameters, the approximations become asymp-
totically exact.

2.1. Second-order (n = 2) Boussinesq

Taking the free (real) parameters to be (a,b), we now write the form of
the second-order (n = 2) Boussinesq rogue wave from |[3]:

Fy = Fy + 2atPy + 2bxQ1 + (a® + b?) Fy, (11)
with Fy = 1.
Then
B= (2 +2%)° + % [51¢ + 5¢% (542° + 95) + 25 (32" — 5a® + 25)]
while
P = 3x2—t2+g,
1
Q1 = :c2f3t2f§,

and Fy = 1. It is easy to verify that Vo = 3, Wy = 6, and Fy = 1. We plot
an example of the exact result in Figs. 3 and 4. The overall maximum of 5.5
occurs for a =0, b= 7.5 at t =0, x = —1.8. This is an asymmetric case. If
a = b = 0, the solution is clearly symmetric in (z,t); the maximum of 4.85
occurs at t =0, x = £+1.33.
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Fig.3. Exact second-order (n = 2) case, using equations (4) and (11). Here,
a = 2000 and b = 2000.
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Fig. 4. Exact contours (z,t) for the second-order (n = 2) case. Here, a = b = 2000.
Thus, the (un-normalized) radius of the circle should be (a? + b?)*/6 ~ 14.1421.
This plot shows that this is correct.

Here, retaining only high-order terms (of order 6, noting that a, b are of
order 3), the required form is

By ~a® = 2at (£ — 32%) + b + 2bx (% — 3%) + (2 +22)° .

Taking z = —M;;#Z, r = (24 2%)/2, t = (2 — 2%)/(2i), and retaining
terms of order 6 only (noting a,b are each of order 3), we find

1

(27 +4) [(Z*)?’ + 4] (a®>+b*) =0.
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Hence, JJ* = 0, so J = Z3 + ¢3 = 0, with co = 2 and the formation
consists of 3 individual basic rogue waves on a circle of radius |Z| = |Z;] =
22/3 ~ 1.5874, as above. This is a Yablonskii-Vorob’ev polynomial, viz.
le) = Z3 + 4. Such polynomials are related to the Painlevé equations [8—

10]. Its zeros are plotted in Fig. 5. In un-normalized co-ordinates, we have
the radius as r = |z| = 272/3|a — ib|'/?| Z,| = (a® 4 b*)1/S.

Qg)zeros
Zj
>

Fig.5. Second-order (n = 2) case. Zeros of QS) = Z3 + 4, shown as red dots, with
Z = Z, +iZ;. The circle radius is |Z;| = 2%/ ~ 1.5874. The individual rogue
wave positions match those in the exact plots, as seen in Figs. 3 and 4.

2.2. Third-order (n=3) Boussinesq triangle formation
Here, we take a = b = 0. We obtain the exact results using the procedure
from [11] (not repeated here). It is easy to verify that V3 = 6, W3 = 12, and
E35 = 2. We plot an example in Figs. 6 (3d format) and 7 (contour format).
Now, we retain only the high-order terms (of order 12), noting that the
parameters are of order 3. Then, for high values of the parameters (g, h),
the function F3 is proportional to
—25¢* + 5097 t (t* — 32%) — 5¢% [10h? — 10hz (2 — 3t2)
+3t% + 45t*2? — 15622 + 725 — 10t (¢* — 32?)
X [—5h2 — 4hx (x2 — 3t2) + (t2 + xQ)S}
—25h* + 50R°x (2® — 3t%) — 5h* (7t° — 15t*2? + 45¢%2" + 32°)
—10hx (22 - 3t%) (12 + 22)° — (2 +2?)° .
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Fig. 6. Third-order (n = 3) ‘triangle’ case. This is plotted using the exact results.
Here, g = h = 1000, while the other 2 solution parameters are zero. The positions of
the individual rogue wave components match those of the YVP polynomial zeroes,
as seen in Fig. 8.

—20 —10 (0] 10 20
Fig.7. Exact contours (z,t) for the third-order (n = 3) ‘triangle’ case. Here,
g = h = 1000, while the other 2 parameters are zero. Thus, the (un-normalized)

radius of the inner circle should be | Z;|(g? +h?)1/6/22/3 ~ 10.65, while that of the

outer circle should be |Z5|(g? + h?)'/¢/22/3 ~ 20.23. This plot shows that these
are correct.

Now, setting
_iZ(g+ih)'/3
= 92/3 ’
and v = (2 + 2%)/2, t = (z — 2%) /(2i), we get
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1
256

so that PP* = 0, where P = Z%4 2023 —80 and this is the polynomial Qél).
The 6 zeros of this polynomial occur on 2 circles. Normalized radii | Z; |
and |Zs| are given in the caption of Fig. 8. Thus, the (un-normalized) radii
are found, from equation (12), as |z| = | Z|(g* + h?)'/6/22/3.
Then, the radius of the inner circle should be |Z;|(g? + h?)1/6/22/3 ~
10.65, while that of the outer circle should be | Z3|(g? +h?)/6/22/3 ~ 20.23.
These agree with the values seen in Fig. 6.

(2° +207° - 80) [(2)° +20(2")* = 80| (9% + 1%)" =0,

Qg)zeros
Zj
3 -

Fig.8. Third-order (n = 3) case. Zeros of le) = 75 +2023 — 80, are shown as red
dots, with Z = Z,. + i Z;. The positions of the individual rogue wave components
match those of the exact results, as seen in Figs. 6 and 7. The circles have radii
|Z1| = [2(3V/5 — 5)]'/3 ~ 1.50611 and |Zy| = [2(3v/5 + 5)]'/% ~ 2.86093. The
individual rogue wave positions match those in the exact plots, as seen in Figs. 6
and 7.

2.8. Third-order (n = 3) Boussinesq ring formation

Here, we take ¢ = h = 0 and plot the exact results in Figs. 9 and 10,
using [3]. It is easy to verify that V3 = 6, W3 = 12, and E3 = 2. Thus,

F3 = F3 + 2atPy + 2b2Qs + (a® + b?) Fy .
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Fig.9. Third-order (n = 3) ‘ring’ case (exact). Here, a = b =5 x 105 and the other
2 parameters are zero.

—20 —10 (o} 10 20

Fig. 10. Exact contours for third order (n = 3) ‘ring’ case. Here a = b =5 x 10°
and the other 2 parameters are zero. Here, the circle radius is 23.437.

Now, retaining only high-order terms (of order 12, noting that a,b are each
of order 5)

F3 ~ (t2 +w2)6 ,

while

1%

Py
Q2

(#? + 2%) (¢* — 10£22% + 5a*) |
(t2 + mQ) (5t4 — 106222 + x4) ,

Q

and
Fy "&“t2+£E2.
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Then

}3’3 ~ (t2 + x2) [az + 2at (t4 —10t%2% + 59:4)
624 2w (51— 101207 + o) + (2 + )’
iZ(a—ib)'/>

Taking z = — =555 and © = (2 +2%)/2, t = (2 — 2")/(2i), and
retaining terms of order 6 only, as above, we get

1Z[2(Z° — 144) [(Z*)f’ . 144} = 0.

Hence KK* = 0, with K = Z(Z° — %) = 0, where c3 = 12, and the
formation consists of 5 individual basic rogue waves on a circle of radius
|Z3| = 2%/53%/5 ~ 2.70192, and one as a nucleus in the centre. This is the
YVP [12]

QY = 7 (7° — 144) . (13)

Its zeros are plotted in Fig. 11. In un-normalized co-ordinates, we have

. _ipl1/5 2 2\1/10
the radius as r = |z| = % = ‘Zg’% = (a® 4+ b*)Y/19. For the

plotted case, a = b =5 x 10°, this radius is 23.437. (See Figs. 9 and 10.)

2
Q(S)zeros
Zj
o
e
2t
o
. 3 ik \
-3 -2 -1 4 1 2 ,?Zr
i
.\
Ll 4
-

Fig.11. Third-order (n = 3) case. Zeros of Q:(f) = Z(Z% — 144). The (normalized)
radius is 24/°3%/° ~ 2.7. The individual rogue wave positions match those in the
exact plots, as seen in Figs. 9 and 10.
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2.4. Fourth-order (n = /) Boussinesq

The fourth order (n = 4) Boussinesq rogue wave is found from [3]. Now
F4 = Fy + 2atP3; + 2bxQ3 + (02 + 62) Fy.

Here, retaining only high-order terms (of order 20, noting that a, b are each
of order 7)

Fy = (t2 +x2)10 ,

while
Py~ — (2 + gg2)3 (t° — 21¢*2® 4 35t%2* — 72°) |
Qs ~ — (1 +22)° (765 — 35t%2 + 21422 — &) |
and
Py~ (2 +2%)° .
Then

By~ (2 +2%)° [a® = 2at (10 — 212 + 35¢%0* — 72°)
+b° + 2bz (—7t° 4 35t12” — 217" + 2°) + (£ + xQ)q :

iZ(a—ib)t/7

Taking Z = T T96/7152/7

r=(z42%)/2,t=(z—2")/(2i), and writing out

Qﬂa)zeros
Zj

Fig. 12. Fourth-order (n = 4) case. Zeros of QEE’) = Z3(Z" +14400). The (normal-
ized) radius is 26/715%/7 ~ 3.926.
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Fy, we find that KK* = 0, with K = Z3(Z7 + ¢3) = 0, where ¢4 = 120, and
the formation consists of 7 individual basic rogue waves on a circle of radius

|Z| = 26/715%/7 ~ 3.92692, and 3 as a (large) nucleus in the centre, as seen
in Fig. 12. This is the YVP Z3(Z7 + 14400) = Q¥ [8]. In un-normalized
la—ib|"/7|Z] _ (a®+b?)'/M*|Z]

co-ordinates, we have the radius as r = |z| = Sgmmm = 5o 57

2.5. Fifth- and higher-order Boussinesq rogues

The fifth-order (n = 5) Boussinesq rogue wave is found from [3]. Now
F5 = F5 + 2at Py + 2bx Q4 + (a2 + b2) Fs.
Here, retaining only high-order terms (of order 30, noting that a, b are each

of order 9)

Fy ~ (t2 +x2)15 ,

while
Py~ (82 42°)° (¢° — 361%2% + 126t'2* — 841220 4 92%) |
Qi ~ (82 +22)° (9% — 84152 + 126t2* — 361%2° + 2°)

and, as above,

Q

F3 ~ (t2 —|—x2)6 .
Then
By o~ (2 +2%)° [a® + 2a (£ — 36t72? + 126t72* — 84325 + 9ta®)
+b? 4 2b (9t8z — 84¢%2% + 126t2° — 36t%27 + 27) + (£ + m2)9} :

We note that Py + Q4 ~ 2(t2 + 22)* Q.

. i 7 (a—ib) 1/ . .
Taking z = —%, x=(z+2%)/2,t = (2 — 2%)/(2i), and writing

out F, we find that KK* = 0, with K = Z%(Z% — ¢2) = 0, where ¢5 = 1680
and the formation consists of 9 individual basic rogue waves on a circle of
radius |Z| = 28/9105%/9 ~ 5.20877, and 6 as a (large) nucleus in the centre.
This is the YVP Z6(Z9 — 2822400) = Q'Y [8]. It is plotted in Fig. 13. It
is the same equation as in the corresponding NLS case, even though the
equations are quite different. In un-normalized co-ordinates, we have the
. —ib|1/9Z
radius as r = |z] = W = (a® 4 b?)'/18,
The n = 6 and n = 7 cases are given in Figs. 14 and 15.
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Q(54)Zeros

Fig.13. Fifth-order (n = 5) case. Zeros of le) = 75(Z° — ¢2), where c5 = 1680.
The circle radius is |Z| = 28/9105%/? ~ 5.20877.

Qg)zeros

Fig. 14. Sixth-order (n = 6) case. Zeros of ng) = Z10(Z1 1 ¢2), where c¢g = 30240.
The circle radius is |Z| = 2'/1136/11352/11 ~ 6.526.
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Fig.15. Seventh-order (n = 7) case. Zeros of Qgﬁ) = Z¥(Z13 — ¢2), where ¢; =
665280.

2.6. Boussinesq rogue waves summary

We are considering high-order ring-type rogue waves where the parame-
ters are large, e.g. a® 4+ b> > 1. Then F, ~ (t* + 22)z("+1),

For a given n, with n > 2, the integer appearing in the YVP len_l) is
(—=1)"c2, where

ns

2(n—1)]! I'(2n—1)

T 1) ()
where I is the Gamma function. Thus, ¢,+1 = 2(2n—1)c, and ¢, = 2(2n—3)
cn—1. Here, the ¢, coefficients are called ‘quadruple factorial numbers’.
In fact, the YVP relevant for the n'"-order single-ring rogue wave is

len—l) _ Z%(n—l)(n—2) [ZZn—l + (*1)”62] .

n

Hence, the normalized radius is

2

R=1Z| =¢x"" =~ 1.238n —0.963

in this range of n.

Thus, there are (n —1)(n —2) quanta in the nucleus and 2n — 1 quanta
in the ring, making a total of §(n + 1) quanta. These are the triangle
numbers [4].

Orders are summarized in Table 1, while coeflicients and radii are given
in Table 2.
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Table 1. Order of solution parameters O(a,b), order of polynomials P,Q :
O(P,,Qn), order of polynomial (F},), integer coeflicient ¢,, that relates to the num-
ber (—1)" ¢2 appearing in the YVP QY.

n | Ola,b)  O(Py,Qu, Fr, Fy) Cn (—=1)"c2
2 3 6 2 4

3 5 12 12 —144

4 7 20 120 14400

5 9 30 1680  —2822400
6 11 42 30240 914457600
n| 2n—1 n(n+1) o3t

Table 2. Values of n, ¢, and then ¢,/ ¢,_1, normalized radius for the single ring,
as a fraction and then as a decimal number. In fact, in this range, the normalized
radius is roughly 1.238n — 0.963.

n Cn en/ Cn-1 Radius Radius
2 2 2 22/3 1.5874
3 12 6 24/532/5 2.70192
4 120 10 26/7152/7 3.92692
5| 1680 14 28/91052/9 5.20877
6 | 30240 18 210/1136/11352/11 6 59606
n | Bl=il a(2n - 3)

3. Comparison with high-order rogue waves of the NLS equation

3.1. NLS principle

The NLS,

. 1
MWy + = U

2

i+ |u]2u =0,

(14)

is significantly different as its solutions are complex, while those of the

Boussinesq equation are real.

The NLS describes the envelope (not the

wave height directly) of weakly nonlinear deep water waves.
Furthermore, the Boussinesq equation rogue waves can have zero back-
ground, while NLS equation rogue waves always have nonzero background

3, 13].
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We look at the NLS solutions to make a brief comparison with the main
(Boussinesq) part of this paper. We show up similarities and differences.
A rogue wave of n'!' order of the NLS can be written as [13]

Gn(x,t) +iHy(z,t)

Dz d) + (=) e'®. (15)

Yn(x,t) =

In fact, the intensity relative to the background depends only on the denom-
inator term

[Yn (@, 1) = 1 = [log(Dn)],, -

We note that such a relation only gives the intensity, while for the Boussinesq
equation, the similar relation, equation (4), gives the full solution. The
volume of the NLS rogue wave can be defined [4], but 42 in equation (5) is
replaced by (|1,|2 — 1)2. However, the NLS does not have integer relations
corresponding to equations (6) and (8) (i.e. W,, and E,,) of the Boussinesq
equation.

Now, (z,t) are real and D, is never zero, so the solutions are finite
everywhere. The intensity is only high when D,, is near to zero, and we can
find these positions by studying D,, and only keeping high-order terms, with
z =z +1it.

Indeed, these positions generally turn out to occur on circles and the
radius is then given by r = |z] = V22 + t2. Some solutions can be viewed
as triangular formations [14], but it can be more convenient to view all as
consisting of circles.

3.2. Second order (n=2)

For 19, the denominator Dy, with free parameters 3,7, is given in [15].

In Dy, we then just retain large terms (order 6), i.e. those of order 25,

noting that terms 3,~ are taken as 3¢ order. This then reduces to
Dy = 8% — 168t (t2 — 3m2) +~% — 16792 (x2 — 3t2) + 64 (t2 + x2)3 .

We call this function Dy because it approximates Dy for large 3,7. Let

x=(2+4+2%/2,t= (zgf*), so that z = x + it, as noted above. Of course,
. . . ; iy 1/3
z increases with 3, . To normalize, we let z = —%. Then

Dy ~ % (82 +4%) (2 +4) [(2*)* +4] .
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The positions of the individual rogue waves correspond to zeros of the

function P = Z3 4 4. In fact, this is the YVP le), matching the function
found in Section 2.1. The 3 basic rogue waves thus appear at the positions
of the zeros on a circle of radius |Z| = 22/3, as plotted in Fig. 5.

With the normalized form, the radius of the circle is always |Z| = 2%/% ~
1.5874, i.e. it is independent of the free parameters. In un-normalized co-
ordinates, we have the radius as r = |z| = 27%/3|8+iv|'/3|Z| = %(52—|—72)1/6,
agreeing with [15].

3.8. Third order (n=23) — Nucleus with 1 ring

In D3, we just retain large terms, i.e. those of order z!? (with 8 = 0,
v = 0 and taking parameters as, and as; to be 5th order). We call this

function 153 because it approximates Dj for large as, and as;. Then
Dy = 4096 (1 + 2?) [2025a2, + 90as; (5t*z — 10¢%* + 2°)

+20250, + 90as, (7 — 108%2% + 5ta) + (£ +2%)° |

Then with z = (z + 2*)/2 and ¢ = 252 to normalize, we define

i5L/5 .
z= 15 Z (ag, — 2a5i)1/5 ,

and then D3 factors to
Dy =100 10%° (a3, + a2,)"" |22 (2° — 144) [(2*)° — 144] .
This can be written as JJ* = 0, where
J =7 (2°—-144) .

This is the same polynomial as in equation (13) in Section 2.3.

Thus, D3 = 0 means that J = 0, where J = Z(Z° — 144). This is Q:(a2) =
Z(Z5 —144), and its zeros are plotted in Fig. 11. It is the same equation as
in the corresponding Boussinesq case, even though the equations are quite
different. Thus, one basic rogue wave will appear at the origin (Z = 0),
while another 5 will be equi-spaced on a circle of radius 24/°32/5 ~ 2.70192.
In fact, an example is given in [4]. This one resembles the Boussinesq ring
formation studied above in Section 2.3.

In un-normalized co-ordinates, we have the radius as r = |z| = %(a%r +

az;)'/1°|Z] = 455 (a3, + aZ;) /1.
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3.4. Third-order (n=3) 2 rings case

Here, we keep only high (12") order terms (taking 3 and v to be 3' order
and a5, = 0, as; = 0). We call this function D3 because it approximates Ds
for large 5 and v. We get

Dy = 253% +4008° (3 — 3tz?) + 108* [57* — 407 (3t°z — 2?)
+32 (3% + 45t*2% — 15¢%2* + 72%)]
~808t (12 — 30%) | =592 + 32ya (2% — 31%) + 64 (2 + 2?)°|
+257% — 4007* (3t°z — 2®) + 320~* (7¢° — 15t"2” + 45t%2" + 32°)
—51207a (? — 3t%) (¢ + 22)° + 4096 (2 + 22)° .

Let @ = (z + 2%)/2, t = 252, and set

7

Thus,

- (52+72)2

Dy =~ (20 +202° — 80) [(Z*)6 +20(2*) — 80| .

Setting this to zero implies that KK* = 0 with K = Z5 + 2023 — 80.
Hence
7% +202% -80=0

is needed for the positions of the individual rogue waves. This is le), and
its zeros are plotted in Fig. 8. It is the same function as in the corresponding
Boussinesq case, Section 2.2, even though the equations are quite different.
There are 2 circles, of radii |Z;] = [2(3v/5 — 5)]'/3 ~ 1.50611 and |Zs| =
2(3v/5 + 5)]'/3 ~ 2.86093, each with 3 zeros on them. Thus, there are 6
individual fundamental rogue waves.

In un-normalized co-ordinates, we have the radii as rio = |z12] &

275/3|ﬂ+i,7|1/3’2172‘ — 275/3(52 +")/2)1/6‘Z172‘. Then
—5/3 (a2 2)1/6 1/3
ria 27 (8244302 (3vE5) |

so that 71 ~ 0.474395 (8% + v2)1/6, while 75 ~ 0.901135 (8% 4+ +2)/6.
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4. Relation to other physical equations

More general equations have been considered in [16-19], such as

1 1
gt guntulfutiy (Jufu), +i(u=27)u ([u?),+ 5 (1=7)(p=27)ul*v = 0.
(16)
If v = 0, it reduces to the Kundu—Eckhaus equation. If y is also zero,
it gives the NLS, Eq. (14). The Chen—Lee—Liu equation arises when v = p.
The Kaup—Newell (KN) equation is the v = /2 case. Further, u = 0 gives
the Gerdjikov—-Ivanov equation that has applications in photonic crystal fi-
bres and nonlinear fibre optics. Characteristics of rogue waves of these equa-
tions have been presented in [17]. Similar patterns for some large-parameter
rogue waves for such integrable systems are shown in [18].
Taking the KN equation in the form given in [20], retaining only the
large terms in the denominator, we have

D/16 = 96 {mt [(1 —128%) t* — 128tz — 327
+n (26t + ) [(432 - 3) t2 + 4Btz + x2] }
+256 [(482 + 1) 2 + 48tz + %] + 9 (m® +n?) |

where we have transformed z — 2z to preserve circles in the reduction
(8 = 0) to the NLS form. As 3 increases up to 0.4, say, the 3 component
first-order rogue waves are still approximately on circles, but their centres
are no longer the origin. The radius is still proportional to (m? + n?)'/S.

5. Conclusion

We have derived higher-order rogue wave patterns for the Boussinesq
equation, where the solution parameters are large and shown that these
consist of at least one ring of individual fundamental rogue waves, where the
radii of these circles are determined from the zeroes of Yablonskii—Vorob’ev
polynomials.

We have briefly compared these results with other equations occurring
in physics, pointing out similarities and differences.
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