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The first-forbidden AJ = 0, £+2 transitions are analyzed by using a
self-consistent effective potential within the framework of proton—neutron
quasi-particle random phase approximation (pn-QRPA) method. The self-
consistency arises from the fact that the particle-hole and particle—particle
strength parameters can be found analytically within the present approxi-
mation. The beta (/) decay matrix elements and log ft values are computed
and compared with the corresponding experimental data. The present ap-
proximation is usually successful in reproducing the experimental data.
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1. Introduction

It is well known that charge-exchange spin—spin (Gamow—Teller) tran-
sitions play a significant role in understanding the nuclear structure. For
medium-heavy and heavy nuclei, the first-forbidden transitions become more
important than the Gamow-Teller (GT) transitions.

In our opinion, the literature related to the weak interaction processes
needs more experimental and theoretical results concerning the first-forbid-
den transitions. The [-decay strength for the transitions between the ini-
tial and final ground states was calculated for both the allowed and first-
forbidden cases [1]. In this work, the S-decay properties of odd-odd nuclei
to the excited states of the neighboring even—even nuclei were defined us-
ing the QRPA method. The first-forbidden beta transitions for AJ = 0,
+2 were studied using the RPA method for two different quasi-particle

(9-A2.1)


https://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=56&aid=9-A2
https://orcid.org/0000-0001-8650-9454

9-A2.2 S. UNLU, H. BirCAN, N. CAKMAK

excitations [2]. Here, the relativistic f-moment was assumed to be pro-
portional to the matrix element of the non-relativistic one. For AJ = 0
transitions, the calculated ft values show a good consistency with the cor-
responding experimental values. For the unique first-forbidden transitions
(AJ = +£2), the re-normalization effects improved the theoretical values.
The unique first-forbidden (U1F) transitions were calculated within the pn-
QRPA method |3, 4]. The calculations clearly proved the effect of the U1F
transitions on the total transition strength [3]. The pn-QRPA method was
modified to calculate the ULF decay rates in stellar matter [5]. The QRPA
studies based on the Fayans energy functional theory were extended for a
consistent treatment of the allowed and first-forbidden contributions to r-
process half-lives [6]. It was clearly seen that the dominant contribution to
the total decay half-life comes from the first-forbidden transitions, mostly
for the nuclei having closed shells. The half-lives for r-process waiting-point
nuclei were calculated within a large-scale shell model (LSSM) considering
first-forbidden contributions [7].

The pn-QRPA method was used to study 0T < 0~ beta transitions
for 90 < A < 214 nuclei [8]. The calculated results are in good consis-
tency with the corresponding experimental data. The [-decay half-lives of
N = 126 isotones were calculated by considering both the Gamow—Teller
and first-forbidden transitions within the shell model [9]. It was shown that
the consideration of the first-forbidden contributions leads to a remarkable
reduction in the decay half-lives. The relativistic version of the pn-QRPA
method was used to obtain the [-decay half-lives and p-delayed neutron
emission probabilities for many nuclei [10]. The calculated results showed
that the first-forbidden transitions make a significant contribution to the
total decay probability. The allowed and unique first-forbidden transitions
for both spherical and deformed nuclei were calculated within the pn-QRPA
method with a schematic separable interaction [11]. The inclusion of the
first-forbidden contributions ensures a reliable comparison between the cal-
culated and experimental 8-decay half-lives. The influences of the quenching
of the weak axial-vector coupling constant on the Gamow—Teller and for-
bidden S-decays were investigated [12]. The LSSM calculations incorporate
different quenching values ranging from 0.38 to 1.266 [7]|. The first-forbidden
B-decay logft values for Z = (82-126) and N = (126-184) nuclei were stud-
ied using the shell model [13].

In the present work, the first-forbidden AJ = 0, £2 transitions are cal-
culated by using Pyatov’s restoration procedure in the framework of the
pn-QRPA method. The §-decay properties are defined without using any
adjustable interaction parameter. The calculated -decay quantities within
the present approximation usually show good agreement with the corre-
sponding experimental data. We divide our script into four sections. The
mathematical procedure related to our calculations is described in Section 2.



First-forbidden AJ = 0, £2 B-decays Within a Self-consistent . .. 9-A2.3

Our calculated results and their comparison with the previous theoretical
and measured data are presented in Section 3. Conclusions are stated in
Section 4.

2. Method
2.1. Motivation

The theoretical investigations on charge-exchange collective excitations
in nuclei are usually performed using approximations that contain at least
one free parameter. However, there are some self-consistent approximations
to define f-decay properties [10, 14-16]. Surely, these self-consistent ap-
proximations make important contributions to the theoretical explanation
of B-decay properties. Nevertheless, they contain a fitting procedure to ob-
tain the decay properties. At this point, we try to define S-decay properties
without any fitting procedure by means of Pyatov’s restoration method.

Pyatov’s restoration method is an effective way to study the charge-
exchange collective vibrations in nuclei without using any adjustable pa-
rameter [17]. According to this method, the strength parameter of the effec-
tive interaction potential can be determined from a commutator correlation
between the Hamiltonian operator and the decay operator. The correspond-
ing commutator correlation for super-allowed Fermi transitions is defined as
follows:

= Vo, 7,] =0,

where H , VC, and 7, (p = £) are the operator representations for the total
Hamiltonian, Coulomb potential, and raising (+) or lowering (—) isospin,
respectively. The decay operator for the allowed Gamow—Teller transitions
can commute with the central part of the nuclear Hamiltonian as

(= Vo = Vig, 67, ] =0,

where V4 is the operator representation for spin-orbit potential and &, (n =
0,+1) is the Pauli spin operator.

The above commutator conditions are violated in the mean-field level
of approximation. Then, Pyatov’s method can be used to restore these vi-
olations in the commutator conditions. Thus, the super-allowed (Fermi)
and allowed spin—isospin (Gamow—Teller) transitions have been investigated
using this method and the experimental data have been successfully repro-
duced [18-28|.

Investigation of the weak interaction processes also makes a serious con-
tribution to the explanation of the astrophysical processes such as nuclear
synthesis [29] and supernova explosions |6, 30]. Especially, a correct defini-
tion of B-decay properties for neutron-rich nuclei plays a key role in r-process
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investigations. For neutron-rich nuclei, the first-forbidden transitions are
favored mainly due to the phase-space amplification for these transitions.
Hence, the determination of the first-forbidden decay properties as being
free of the effective interaction strength parameter becomes a prominent
issue.

The corresponding decay operator for the first-forbidden transitions does
not commute with the total nucleus Hamiltonian due to the Coulomb, spin—
orbit, and kinetic energy terms

[ Ve~ 7, _p2/2m,r(ﬁ®a)jp] =0, (A=0,1,2),

where P is a linear momentum operator. This commutator condition is
broken in the mean-field (MF) approximation as follows:

| fur = Ve = Vi = P2/2m,r (Vi @ &);p} £0.

At this point, the nucleon—nucleon effective interaction potential can be
added in such a way that the broken commutator condition is restored

[itvip + b= Vo = Vi~ P2/2m,r (Vi ©6) 5] = 0.

Thus, the strength constant of the effective interaction potential can be de-
termined from this commutator condition. A summary of the mathematical
procedure is given in the next subsection. The detailed formalism related to
the restoration of the broken commutator condition is available in [31].

2.2. Mathematical procedure

The single quasi-particle Hamiltonian for a system of nucleons in a spher-
ical symmetric average field with pairing forces is given by

I;[qu = Z Ej (T) &;m (T) djm (T) ’ T=n,p, (1)
jm

T

where djm and &, are one quasi-particle creation and annihilation opera-
tors, respectively. The pairing forces between nucleons are included utilizing
Bogolyubov’s quasi-particle transformations [32].

The commutator correlation between charge-exchange spin—dipole and
Hamiltonian operators is broken in the single quasi-particle level of approx-
imation as follows:

[ﬁ[sqp ~ Vo — Vi — P?/2m, E{, | #0. 2)
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Here, Ff u is the charge-exchange spin—dipole operator consisting of a com-
bination of BT and 8~ decay operators in the following form:

: L/ At purfr—
B =5 (Th+p-0MT5 ) . =2 (3)
The &) decay operators are defined as

T = bap(NCh, () + (=) by (W) Cp(X, — 1)
tr = (77)'
Ap ( )\/,L) )

where C’T];p (M) (Crp(Ap)) is one quasi-boson creation (annihilation) opera-
tor, A and p are the corresponding nuclear spin (A™ = 0~ or 27) for the
transition and its projection, respectively. The reduced matrix elements are

given as
- B <‘7” [ (YI@UHA#‘

bun(Y) 2A+1)

’U/n’Up I

(=l

A
bup(A) = Zl(v;upvn,
where v and u are single-particle and hole amplitudes, respectively.

The remaining part of the single quasi-particle Hamiltonian, besides the
Coulomb, spin—orbit, and kinetic energy terms, consists of iso-scalar and iso-
vector terms. The iso-vector term (V}) causes the commutator correlation
to be violated

VB, ] # 0. 4

Hence, the nucleon—nucleon effective interaction potential should be consid-
ered in such a way that the broken commutator correlation is restored

[f/l +h, Ffu] ~0. (5)

The effective interaction potential consists of particle-hole (ph) and
particle—particle (pp) terms and is defined within Pyatov’s restoration method

D OMUE A M%Lh
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As seen in Eq. (6), the commutator correlation in Eq. (5) contains two un-
known strength parameters. Therefore, the particle-hole (’ygh) and particle—

particle (75p) strength parameters can be determined analytically from two
different commutator correlations as follows:

1~ . .
[2v1 +hph,F§M] 0, (7)
10 . .
[2%44%WEQ]——0, ®)

fiph —Z Z [Vl’ M} [Vl’ “} ph’
Bpp = Z 4% Z [%’F;\)#Kp' [Vhﬁfu}pp

The following expressions for particle-hole and particle—particle strength
parameters are found using the commutator correlations in Egs. (7) and (8),

respectively,
=0 (o [[11 g, 2 |o) 0

st =0 (o [[11.25,) a5, |o) (10

The collective Hamiltonian for the first-forbidden transitions can be de-
fined as follows:

H=Hyp+h. (11)

The following equation is solved to determine the corresponding energies
and wave functions for the first-forbidden excitations in the neighboring
odd—-odd nuclei

1,01 )] 10) = wi@f () 10). (12)

The first-forbidden excitations in odd—odd nuclei are represented by a
phonon-creation operator in the following form:

QT A:u ’O anp Anp ( 1))\—’—# (Pnponp()\ :u) <13)

Generally, the S-decay probabilities are given by the following formula:

1

Bi= M) =557

|Mgs (N = A, )| (14)
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The B-decay matrix elements are usually defined as follows:
Mgs (i = e, ) = (A ’Tf;‘ A (15)

The decay rates for the first-forbidden AJ = 0, +2 transitions are given
by the following expressions [33]:

D
t(A=0) = 16
ki ) (9a/9v)*ATB(A — A, A =0) (16)
3 D
t((A=2) = - 17
=2 4 (ga/gv)? 4m BN —= A, A =2) 1
with
1
B()\i—))\f,AZO):Q)\i+1

x (A HiM(A —0) - imgch(n — 1A= o)H >\1>2 ,
(18)
B = A A =2) = 2A11+ : <AfHMi (k=1,A=2,p) ’ )\i>2 , (19)

where the constants are taken as D = 6250 sec, ga/gy = —1.24 [34]. The
decay matrix elements for AJ = 0 transitions are calculated within the
&-approximation. According to this approximation, the Coulomb energy
may be represented by the dimensionless parameter

Ze? 1
£=%

2R m.c?

~ 1.2214_1/37

where the Coulomb radius is taken as R ~ 1.2A4Y/3 and the conditions are
defined as & > chz and £ > 1. In the &-approximation, the terms of
relative order ¢ 1Q/me.c? and ¢! are neglected.

The §-decay multipole operators are given as

MO =0) = —— 3" ia(k) (G i) -

4re P’

Mk=1,A=0) = Zfi(k:)rk(Yl(fk)Uk)o,
k

M(k=1,A=2p) = Y te(k)re(Y1(Fr)ow)p -
k
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3. Results and discussions

The calculated results related to the first-forbidden AJ = 0, £2 transi-
tions are presented in this section. The Woods—Saxon potential with the
Chepurnov parametrization is used to define a single-particle basis [35].
The proton and neutron pairing gaps are defined as A, = C,/ VA and
A, = Cn/VA, respectively [33]. The pairing strength parameters (Cp and
C,,) are fixed so that the experimental pairing gaps [36] are reproduced.

3.1. Matrix elements for AJ = 0 transitions

The charge-exchange 0~ <+ 07 transition probabilities are computed by
using the {-approximation [33] in which the decay amplitude consists of
relativistic and non-relativistic terms as seen in Eq. (18). Table 1 shows the
values of the £ parameter and () energies for the nuclei under consideration.
The calculated values for the relativistic and non-relativistic contributions
are shown in Table 2. Also, a comparison of the calculated non-relativistic
matrix elements with the correlated RPA results [2] and the corresponding
experimental data [37] is given for a total of 10 nuclei with the mass range
of 96 < A < 214.

Table 1. The values of the £ parameter and decay energies for AJ = 0 transitions.

Transition Q [MeV] £

Y (07) — 9Zr(0*) 7.096  10.22
120Xe(0F) — 1207(07) 1.870  13.14
149Ba(0t) — M9La(0~)  0.466  12.94
Ce(0t) — Pr(0-)  0.319  13.28
Hipr(0~) — M4Nd(0t) 2998  13.51
206Hg(0+) — 206T1(07) 1.308  16.25
206T1(07) — 206Pb(0*)  1.532  16.46
210ph(0t) — 210Bi(07) 0.017  16.55
212ph(0t) — 22Bi(07) 0.331  16.50
214ph(0t) — 2MBi(07) 0.666  16.45

The correlated RPA results given in the fifth column of Table 2 were
obtained using a separable residual interaction potential, which contains an
adjustable parameter. The reduced matrix elements in the last column are
extracted from experimental logft values [37]. For the '9Ba — 140La, 144Pr
— 14Nd, and "4Ce — ""Pr transitions, the present matrix elements are in
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Table 2. Calculated values of relativistic and non-relativistic matrix elements
within the &-approximation for AJ = 0 transitions. The present non-relativistic
matrix elements can be compared with the correlated RPA results and the corre-
sponding experimental data. The 2°¢ column shows the calculated energies of the
0~ states in odd—odd nuclei.

Transition Energy M(A=0) M(k=1,A=0) RPA [2] Exp. [37]
[MeV] [fm] [fm] [fm] [fm]

%Y (07) — *°zZr(07)  0.973 0.0299 0.7418 0.3920 40.8686

120xe(0%) — 201(07) 7.309  —0.0114 —0.4565 0.3691  +0.1967
1M0Ba(0t) — M0La(0™)  2.109 0.0052 0.1434 0.1142  +0.1484
MiCe(0h) — *Pr(07)  1.788 0.0066 —0.1039 0.1355  40.0923
M4pr(07) — Nd(0T) 3.509  —0.0409 —0.2136 0.7617  40.2528
206Hg(0") — 2°°T1(07) 1.912  —0.0199 0.6651 1.3104  £0.7539
206T1(07) — 2°Pb(0T)  0.358 0.0217 —0.5811 1.1993  £0.9873
20ph(01) — 2°Bi(07)  1.036 0.0377 0.8331 0.6011  40.6751
22pp(0T) — 2Bi(07)  1.689 0.0358 0.7935 0.8710  40.9678
2pKH(ot) — 2MBi(07)  1.885 0.0383 0.8559 1.0526  +1.1406

good agreement with the corresponding experimental data. The calculated
matrix elements for the *Y — %9Zr and 2°Hg — 206T1 transitions are closer
to the experimental values than the correlated RPA results. The correlated
RPA calculations give better results than the present approximation for the
206] 5 206pY and 210:212.214pp _y 210.212.214B5 transitions. This case may
be attributed to the semi-magic structure of Pb isotopes in which the pairing
correlations between nucleons are negligible. The disagreement between the
calculated results and the experimental value for the 129Xe — 20T transition
may stem from the permanent deformation effects.

3.2. Matriz elements for AJ = 2 transitions

We have performed the calculations for a total of 29 nuclei with the
mass range of 72 < A < 204. The theoretical and experimental reduced
nuclear matrix elements for the unique first-forbidden transitions are shown
in Table 3. The first column shows the transitions under consideration. The
calculated reduced matrix elements are presented in the third column. The
fourth and fifth columns show the other calculated results. The experimental
matrix elements, which were extracted from experimental logft values [37],
are given in the last column. It can be said that the present approximation
is usually successful in reproducing the experimental matrix elements except
for a few nuclei. For these nuclei, the inconsistency between the theoretical



9-A2.10 S. UNLU, H. BiRcAN, N. CAKMAK

and experimental results may be attributed to the permanent deformation
effects in nuclear structure. It is significant to reproduce the experimental
matrix elements for the U1F transitions due to the effects of these transitions
on the total decay probability and the astrophysical processes.

Table 3. A comparison of the calculated reduced matrix elements with the other
calculations and the experimental data for AJ = +2 transitions. The 2" column
shows the calculated energies of the 27 states in odd—odd nuclei.

e |l Mk =1,X=2,p) [| Ji) [fm]

Transition Energy [MeV]| This work RPA [2] pn-QRPA(WS) [11] Exp. [37]
T2As(27) — 72Ge(07) 0.212 —0.1756  0.4254 0.1720 +0.2029
82Br(27) — 82Kr(01) 2.423 0.5131  1.9297 0.5287 +0.5988
84Br(27) — ®4Kr(01) 0.373 0.2871  1.3480 0.4404 +0.3106
84Rb(27) — 84Sr(07) 2.541 —0.2547  2.0324 0.5478 +0.3445
84Rb(27) — B34Kr(01) 0.565 —0.3088  1.5500 0.3501 +0.3036
86Rb(27) — 86Sr(07) 1.499 —0.3019  1.4530 0.4552 +0.3367
86Br(2-) — 86Kr(01) 0.599 0.3236  0.9642 0.4086 +0.3001
88Rb(27) — ®8Sr(071) 0.335 0.3742  0.5150 0.4238 +0.4239
88Kr(0t) — 88Rb(27) 2.530 0.1618  0.0937 0.8365 +0.1690
90Y(2 ) — 99Zr(0%) 1.319 0.3876  1.2113 0.5330 +0.4239

92y (27) — 92zr(0t) 0.547 0.3263  1.1722 0.4365 +0.3938
9y (27) — %zZr(ot) 0.014 0.4624  1.0989 0.5136 +0.3778
208r(0t) — 99Y(27) 2.625 0.1463  0.2395 0.1194 +0.1506
928r(0t) — 92Y(27) 2.647 0.3719  0.3422 0.1788 +0.5995
102Rh(27) — 102Ru(07) 0.494 0.2645  0.4271 0.2111 +0.5588
102Rh(27) — 102Pd(0t) 1.320 0.3711  1.0570 0.3438 +0.2439
1207(27) — 120Te(07) 0.398 0.3091  1.8610 0.3720 +0.3778
1228h(27) — 1228n(0t) 2.158 —0.5947  3.2304 0.6453 +0.5988
1228h(27) — 122Te(07) 3.293 0.2467  1.7336 0.4680 +0.2674
1241(27) — 124Te(0) 2.479 0.3430  2.7326 0.6150 +0.3778
1261(27) — 126Te(07) 1.385 —0.6687  3.1254 0.7230 +0.4594
182La(27) — 132Ba(0t) 1.373 0.2032  2.0986 0.4540 +0.3001
1361(27) — 136Xe(0t) 0.396 —0.1575  2.3621 0.4520 +0.1487
140Ba(0t) — 1409La(27) 2.370 0.2696  0.1944 0.4060 +0.2936
142pr(27) — 142Nd(0%) 1.063 0.5656  1.4403 0.4600 +0.5987
198 Au(27) — 198Hg(0t) 0.487 —0.0083  0.0777 0.1880 +0.0119
1981(27) — 198Hg(0t) 0.135 0.1041  1.8409 0.4730 +0.1893
204Au(27) — 204Hg(0t) 0.868 0.9562  0.3660 0.6370 +0.9489
204T1(27) — 204pb(0t) 1.184 0.1235  0.8894 0.3370 +0.1513
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3.3. Log(ft) values for AJ =0 and AJ = 2 transitions

A comparison of the calculated log ft values for the first-forbidden AJ =0,
42 transitions with the corresponding experimental values is presented in
Figs. 1 and 3, respectively. We have performed our Pyatov’s restoration cal-
culations based on the shell model calculation, one with a quenching factor
and one without a quenching factor. As given in Ref. |2], we have taken
(9a/gv)%s = 0.7(ga/gv)? as the quenching factor effect describing the rela-
tionship between the effective and free axial weak couplings. In these figures,
the * sign indicates the present results calculated with the quenching fac-

8

--m - This Study
- #- This Study*
®. —a— Exp. [37]

Fig. 1. Calculated and experimental logft values [37] for the first-forbidden AJ =0
transitions. The horizontal axis shows the transitions which are ordered in the same
way as in Tables 1 and 2.

®  without quenching factor (gf)
® with quenching factor

This Study
(o]
T
)

n e
oo
e

e
o O

y = 0.7288x + 1.7433 (without qf)
R? = 0.8285

y =0.7288x +2.0533 (with qf)
R?=0.8285
4 1 1 1
4 5 6 7 8
Exp. [37]

Fig.2. The R-squared values for the first forbidden AJ = 0 transitions.
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tor. For AJ = 42 transitions, the experimental values usually lie between
the theoretical results obtained with and without the quenching factor. In
other words, it can be said that the calculated results without the quenching
factor can reproduce the experimental data as well as the results calculated
with the quenching factor. For AJ = 0 transitions, the calculated results
without quenching factor are closer to the experimental data in comparison
with the results obtained with the quenching factor. However, it can be
said that the calculated results for AJ = 0 transitions are not as successful
in reproducing the corresponding experimental data as the calculations for
AJ = 2 transitions. For AJ = 0 transitions, the reason for the deviation of
the calculated results from the experimental data can be attributed to the
&-approximation used to obtain decay probabilities.

The R-squared values are compiled as the proportion of the variation
in the present calculations both without a quenching factor and with a
quenching factor that is predictable from the experimental values for the
first-forbidden AJ = 0, £2 transitions, see Figs. 2 and 4.

= This Study
--eo-- This Study* L]
—— Exp. [37] .

Fig. 3. Calculated and experimental logft values [37] for the first-forbidden AJ = 2
transitions. The horizontal axis shows the transitions which are ordered in the same
way as in Table 3.
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This Study
>

B without quenching factor (qf)

® with quenching

factor

y = 1.0877x - 1.0225 (without qf)
R?=0.8796

y =1.0877x-0.7125 (with qf)
R?=0.8796

10 1 12

Exp. [37]

9-A2.13

Fig.4. The R-squared values for the first forbidden AJ = 2 transitions.

Table 4 shows a comparison of the calculated log ft values for a few decays
with the shell model results in which a quenching factor was used [38]. For
the %Y (07) —% Zr(0") transition, the present result is more successful
in reproducing the corresponding experimental data than the shell model
calculations. Also, the present calculations need a lower quenching value
than ¢ = 0.7 in order to reproduce the experimental data related to the
88Rb(27) =88 Sr(0*) transition. However, the projected shell model result
for the %Y (27) =% Zr(0%") transition shows a better agreement with the
corresponding experimental data in comparison with the present result.

Table 4. A comparison of the present logft values with other calculations and
experimental data for a few decay transitions.

Present Present
Transition (without  (with quenching SM [38] PSM [38] Exp [37]
quenching) q=0.7)
%y (07) — °zZr(0™) 5.56 5.87 7.90 5.70
88Rb(27) — ®8Sr(0™) 9.00 9.31 8.87 9.20
"y (27) — %7Zr(0™) 8.81 9.12 9.13 9.30
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4. Conclusion

The first-forbidden 0~ and 2~ excited states in odd—odd nuclei are ob-
tained being free of the effective interaction strength parameters within
the framework of the pn-QRPA formalism. Pyatov’s restoration method
is used to determine the effective interaction parameters. In this respect,
the broken commutator correlation between the total nucleus Hamiltonian
and the charge exchange spin—dipole operator is restored. This method
was originally introduced to restore the broken Galilean invariance of pair-
ing interaction and then extended to the restoration of broken symmetries.
The investigation of the super-allowed Fermi transitions is related to the
isospin invariance of nuclear Hamiltonian. The allowed spin—isospin transi-
tions are sensitive to the violations in SU(4) symmetry property. Therefore,
the restoration of SU(4) symmetry violations is very important in the def-
inition of Gamow—Teller transition properties. The charge exchange spin—
dipole transitions are affected by the violations in SU(4) symmetry and
translational invariance, but there is no exact symmetry that is defined for
these transitions. In other words, the restoration of the broken commuta-
tor condition for charge-exchange spin—dipole transitions does not mean any
symmetry property. However, it should be emphasized that the goal here
is not the restoration of any symmetry property, but the definition of the
first-forbidden transitions without using any adjustable interaction parame-
ter. The present effective potential is consistent with the phenomenological
single-particle basis. Hence, the selected parametrization for the mean-field
potential naturally affects the S-decay quantities. Nevertheless, it should be
noted that the parameters of the mean-field potential are fixed to determine
the single-particle energies and wave functions.

The present calculations are generally successful in reproducing the ex-
perimental log ft values. However, an effective comparison with the exper-
imental data can be made by removing the kinematical effects from the
calculated results. In this respect, the comparison should be made using
the nuclear matrix elements. Such a comparison between theory and exper-
iment gives us an opportunity to check the reliability of our wave functions.
Thus, the present matrix elements generally show good agreement with the
corresponding experimental data.

It is well known that the theoretical description of the unique first-
forbidden decay (0" <> 27) probabilities for neutron-rich nuclei plays a key
role in the study of astrophysical processes. We think that the present results
make an important contribution to understanding the S-decay properties of
neutron-rich nuclei.

In the present work, we have focused on [-decay matrix elements and
logft values. Let us emphasize that we are planning to study the S-decay
strength distributions and charge-exchange spin dipole resonance in the near
future.
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