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We investigate a manifestation of low-energy dipole collectivity in heavy
nuclei, known as clustering, using algebraic techniques. In the first step,
the connection of the nuclear vibron model to the U(10) algebra (spanned
by four types of bosons, within the interacting boson model I (IBM-I)) is
extended to other possible models through a detailed study of the U(10)
subalgebras. Subsequently, the ability of the vibron model to reproduce the
experimental data is extended to a wider region of heavy nuclei belonging
to the rare-earth and actinide regions. A more realistic irrep labelling has
been introduced to take into account the Wildermuth condition. In a second
step, we upgrade the model to the IBM-II level involving the U(20) algebra,
where a new G-spin and hybrid limits have been introduced.
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1. Introduction

The algebraic methods, which invoke symmetries of the nucleus and use
group theoretical approaches to handle the problem of nuclear structure,
have been widely investigated. In this way, the interacting boson model
has been introduced [1-5] by Iachello and Arima in terms of U(6) algebra.
In its simplest version, the basic idea of the IBM model is the assumption
that excited states in even—even nuclei can be described by a system of
s and d interacting bosons with angular momenta (and parity), respectively,
J™ = 0% and J™ = 2%. This model had a great success in describing low-
lying positive parity states in medium and heavy even—even nuclei. However,
in this version, the model does not account for all observed structure features,
and subsequent extensions were necessary.
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In a peculiar approach to the nuclear many-body problem, the nucleus
is reduced to a limited number of (interacting) clusters of nucleons. This
mapping to a few-body system is based on early data about alpha radioac-
tivity and the properties of light nuclei with even Z and A = 2 Z (like 12C
or 160). Indeed, the mean binding energy per nucleon shows local maxima
for such nuclei indicating the importance of a-clustering in these nuclei. In
1928, Gamow developed the theory of alpha decay with the assumption that
the alpha particle preexists in the nucleus. Subsequently, a model where the
nucleus is treated as a set of alpha particles has been introduced [6-8|.

In the cluster models, one is usually left with a system of two or three
bodies, a situation similar to the one that occurs in molecular spectroscopy.
Indeed, an algebraic approach was proposed to describe the roto-vibrational
structure of diatomic molecules [9-11], in terms of U(4) algebra using o and p
bosons (molecular vibron model), subsequently extended to linear tri- and
four-atomic molecules and certain non-linear triatomic molecules.

The previous analogy has been used to develop an algebraic-interacting
bosons-nuclear cluster model. The model was proposed to treat the motion of
« particles (clusters) in heavy nuclei, called the nuclear vibron model [12, 13].
It is used to describe the nucleus as a few-body system [14—18], consisting of
a heavy core on which oscillate alpha particles. The appropriate algebraic
structure of this model is U(6) ® U(4), its SU(3) limit describes the harmonic
vibration of the cluster in axially-deformed nuclei. It leads, at low energy,
to a spectrum which is a mixture of quadrupole and cluster states.

The aim of this paper is twofold. First, we reconsider the works on dipole
collectivity in heavy nuclei, either from the mathematical side or from the
extension of the comparison of the calculations with the experimental data.
Then we upgrade the model to a larger algebraic framework, taking into
account the distinction between the proton and the neutron bosons.

In Section 2, we discuss the possibility of the occurrence of clustering in
heavy nuclei. In Section 3, we introduce the U(10) as a symmetry algebra of
a variety of algebraic models related to the dipole-quadrupole excitations.
The approach to clustering based on U(6) ® U(4) subalgebra is described in
Section 4 in addition to the results of its application to heavy nuclei (energy
levels and transitions). In Section 5, we introduce an IBM-II version of the
nuclear vibron model. A summary and conclusions are given in Section 6.

2. Clustering phenomenon in heavy nuclei

Clustering is a known feature of light nuclei. There exists a rich literature
on the cluster models describing the spectral properties of these nuclei [19—
21].
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Whether clustering may manifest itself in the structure of heavy nuclei
has been a challenge. Alpha radioactivity is a well-known phenomenon in
heavy nuclei. Moreover, cluster radioactivity was predicted in 1980 [22]
and discovered experimentally [23] (emission of >C and '“C in the decay of
223Ra) four years later. In 1973, the theoretical work of Brink and Castro [24]
showed that a-clustering effects are important at a density of approximately
one third of the central nuclear density, suggesting the importance of such
correlation in the nuclear surface of heavy nuclei. Subsequently, it has been
suggested by lachello and Jackson [12] that alpha clustering may play an
important role in heavy nuclei. This assumption was based on experimental
data related to the energy levels and alpha decay. A corresponding model
has been developed by Daley and Iachello [13] and provides a complete
description of data in the actinides.

In a series of papers, a successful description of spectra and electromag-
netic decay properties of positive and negative parity rotational bands in
the actinide nuclei has been achieved by Buck, Merchant, and Perez [25-30].
The approach deals with a cluster—core system, whose energies are obtained
in a semi-classical way.

The hypothesis regarding clustering occurrence in heavy nuclei was con-
firmed experimentally in 2010. Indeed, cluster states have been observed
in 212Po by postulating a transfer using the 2°Pb(160,2C)212Po reaction.
The results are discussed in terms of an a-cluster structure (a+2°%Pb) [31].
One may assume that adding more as to the 2°8Pb core may exhibit sim-
ilar physics. Hence, complex structures are expected if the as move in-
dependently. In a recent paper on a-like quasi-molecules in heavy nuclei,
Delion et al. [32] confirmed that « clusters are born in the nuclear surface at
low density. Moreover, for nuclei of N > 126, the probability of clusteriza-
tion, including the picture of three cluster structures, is suggested to study
the properties of the nucleus [33].

Clustering as a reflection symmetry-breaking mode leads to collective
odd-parity states. Low-energy collective negative parity states have been
first observed in Ra and Th isotopes by the Berkeley group [34]. They have
been interpreted as a manifestation of a reflection asymmetric (pear) shape
of the nucleus [35].

These collective negative parity states have been described in the frame-
work of an extension of the original IBM model by naturally adding f
(J™ = 37) bosons (the sdf-IBM) [4, 36|]. The p boson (J™ = 17) has
been introduced by Morrison and Weise [37] to describe dipole states in nu-
clei. The obtained model is called the spdf-IBM model [36, 38-46], where
the f boson is the leading ingredient and the p boson has been shown to be
necessary from a mathematical point of view and due to the fact that it plays
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a crucial role in the calculation of E1 transitions [41, 42|. This p boson has
also been used to introduce the second (fundamentally different) mechanism
of reflection symmetry breaking: clustering [12].

3. The U(10) Lie algebra

In addition to the quadrupole degrees of freedom, described by the
s and d bosons (U(6) algebra), reproducing negative parity states (within
the clustering model) is achieved by the introduction of negative parity [ = 1
boson (p) and a second | = 0 boson (¢). Hence, the U(10) is the minimal
symmetry algebra of the problem. It will be restricted to a subalgebra (the
dynamical symmetries) relevant to our problem.

The algebraic realisation of the U(10) algebra is obtained by means of
the following operators:

aby = {shdl} . 1=02,  m=041,2, (1)

b = {ohpl},  1=01,  m=o0x1. 2)

The commutation relations are given by

[a,m,a}m,} S 0 - (3)

(@tms @) = [l @l | =0, ()

{blm,b;m,} — S (5)
and

(Bt biramr] = [b}m,b},m,} ~0. (6)

All a bosons commute with the b bosons.

3.1. The U (10) generators

The unitary algebra U(10) has 100 generators that can be written in
coupled form (of rank k and 2k + 1 components) as follows:

GO(ss) = [ST®§]O,
GR(dd) = [d%d}k, k=0,1,2,34,

Ps) = [dtes . GPsa)=[ded . (7)
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G%o0) = [UT ®&}0 ,

k
G'op) = [pleB| . k=012,
1 1
Glop) = [ot@p| . Gy = ples] (8)
and
r 0 0
GOs0) = |[sT@a]| GO<O'S):[0'T®§:| ,
- 1 1
Glsp) = [s'ep| . G's) = [pl@s
r 2 2
G2(0d) = aT®d} , G2(da)=[dT @5} ,
r k
Ghap) = [ates| . k=123,
- qk
GF(pd) = pT®d] . k=1,2,3. 9)

3.2. The U (10) subalgebras

There are five ways to combine the four bosons to obtain subalgebras
of U(10) (rows 1 and 2 of Table 1). If the sd or po bosons are completely
dropped from (7), then two other subalgebras appear: U(10) D Ugy(6) and
U(10) D Upe(4) [47]. The former does not generate negative parity states,
while the latter does not include the quadrupole degree of freedom.

The following levels of reduction include subalgebras that are either al-
ready widely known or given in [43].

Rows 1-3 of Table! 1 show the subalgebras resulting from the addition
of a second [ = 0 boson (¢ boson). This means that the Uggp,(10) model
is significantly richer than Ugg,(9), which justifies the introduction of the o
boson. In order to build a model describing quadruole—dipole activity using
a chain of subalgebras of U(10), it is necessary to make a compilation of the
different chains of subalgebras involved.

There are two kinds of maximal subalgebras; they are either regular or
irregular. The former (simple or non-simple) corresponds to the different
ways of grouping the different bosons: there are 5 if we consider s and o
bosons exchangeable, or 7 if not (rows 1 and 2 of Table 1). Among these
subalgebras the subalgebras of Up(3) ® Usgy(7) generate states with well-
defined parity.

We identified four dynamical symmetries (Figs. 1-4): the SUpq(3) limit
(Ia), the SUgpq(3) limit (Ib), the U,q(5) limit (II), and the SOp4(5) limit
(I11).
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Table 1. The different subalgebras of U(10).
Algebra Subalgebras
U(10) Uspa(9) ® Us(1) | Upa(8) ® Uso(2) | Usao(7) ® Up(3) | Usa(6) ® Upe(4)
Uspo (5) ® Ud(5)
SO, pao (10) SU(2) ® SU(5)
Upa(®) | Upa@®)®Ua(l) | Usa6) ®Up(3) | Ual5) ® Usp(4)
SO4pa(9) SU(3) ® SU(3)
Upa(8) | Up(3)® Ua(5) S0pa(8) SU(2) ©SU(1)
Usdao (7) Usa(6) ® Us(1) Uqg(5) ® Uso (2) SOsdo (7)
Usd(ﬁ) Ud(5) SUsd(3) Sosd(G)
Uq(5) S04(5)
Usop(5) Usp(4) ® Ug(1) Up(3) ® Uso (2) SOsps(5)
Usp(4) Up(3) SOop(4)
Up(3) S0p(3)

SO4pde(10) |SOp(3) ® SO44x(7) [SOG(5) @ SOsps(5) | SOpo (4) ® SOs4(6) | SOs6(2) ® SOpa(8)
SO4pa(9) | SOsp(4) ® SO4(3) | SOp(3) ® SO44(6) SO,4(8)
SOpd (8) SUpd(?)) SOp(3) ® SOd(5)

SOs40(7) | SOs6(2) ® SO4(5) SO,q(6)
S054(6) S04(5)

SOpso(5) | S040(2) ® SOL(3) | SOpe(4) ® SO (1)
S04(5) S04(3)

S0p0 (4) 50,(3)

$0,4(8)

u(10)

Uspa(9)

Upd(s)

SUpq(3)

|

$0pq(3)

Fig.1. The SU,4(3) limit (Ia).
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SU,,4(3)
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SOpa(3)

Fig.2. The SUpq(3) limit (Ib).

U(10)

v

Ud(5)®Usp0(5)

(Jsde'(5 )

v

SOspdc(S )

v
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Fig.3. The Upq(5) limit (II).
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u(10)

Ud(s) spo‘(s) Sospdo‘(1o)

S04(5)®S0spo(5)

S0, Y,(5)

sospdo—(s)

Fig. 4. The SOpq(5) limit (III).

4. Clustering in the framework of IBM-I
4.1. U(10)> U(6) ® U(4): coexistence of cluster configurations

Consider a heavy-deformed nucleus that can cluster into a core and an
alpha particle. The internal structure of the core is described by the U(6)
algebra (quadrupole deformation), and the cluster is assumed to be spherical
with excited levels occurring at very large energies in comparison to those
of interest.

The dynamics of the system is described by U(6) @ U(4). The U(6)
algebra has three possible chains of subalgebras [1]: the U(5) limit describing
vibrational nuclei [3], the SU(3) limit describing axially-deformed ones [4],
and the O(6) limit for y-unstable nuclei [5]. The U(4) algebra has two
dynamical symmetries [11], the U(3) limit associated with non-rigid vibrator
(harmonic motion) and SO(4) describes rigid vibrator.

This model was introduced by Daley and Iachello (1986) [18] based on
the Tkeda diagram presented in 1968 [48| for N = Z nuclei. In the Ikeda
diagram, a heavy nucleus may exhibit states described as a one cluster—
core system, where the cluster is made of zero, one or more alpha particles,
which we call horizontal subdivision (see [16], Fig. 2). One describes such a
situation as the coexistence of configurations.
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The Hamiltonian in this U(6) ® U(4) model describing both dipole col-
lectivities is given by the sum of two separate terms

0 0
Hyy = e, [s*@é} + &g [d*@d}

N Z %\/mCL HdT@)dT]L@ [J@J]L]o
L=0,2,4
+\}552 HdT@) dTr@) [d~®§r+ [dT®8T}2® [J@J}Q]o
+%,;0 “dT® dq2®[§®§]2+ {dT® dq2® [d@J}Q]o
0

Fus Hd*@ sT]2® [a?@ §HO+ %uo HST ® STT)@ [§®§]0] (10)

and

A~

10 f o0
HUpZEU |:0'T®0'] +&p [p ®p}

+ > gvara i [ er] s e

L=0,2

0

1~ o o 1°
+§1/0 HPT ® pq ® 66+ |:UT ® UT] ® [p®p]0]
/ ! ~ o ~11 ° 1 / 0 ~ ~10 ‘
" HpT® ot @ e ] + 5t Ha*@ ot @@l ] L (11)

The Hamiltonian in (10) and (11) can be written as a combination of the
Casimir operator of the chain of subalgebra of U(6) ® U(4). However, such
a Hamiltonian is still too general and a numerical treatment is necessary.
This work will be achieved mainly in the framework of the SU(3) dynamical
symmetry.

The SU(3) limit of U(6) ® U(4) corresponds to the chain of subalgebra

U(10) D U(6) ® U(4) D SU(3) @ Upy(3)
D SU,a(3) ® SU,(3) D SUpa(3) D SO4pa(3). (12)

The Hamiltonian expression in the SU(3) limit is

Hy = aCy[U(6)] 4+ bCo[U(4)] + kqCa[SUsa(3)]
+,Co[SUL(3)] + kCo[SUpa(3)] + krC2[SO4a(3)].  (13)
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The boson number Nt of the nucleus is half the number of its valence
nucleons. If we denote the number of « particles in the cluster by n,, then
the number of bosons in the remaining nucleus (called core) is N = Np—2n,,.
These variable numbers are defined as in [13, 16-18]. Two classes of states
will be considered: O« states and la states. The number of alpha particles
in the cluster is supposed to increase with the excitation energy [18| so that
Nt = N + 2n, is constant. The U(4) irreps are labelled M. In the work of
Daley [16], the total number of bosons is N, while the adopted expression
for M is M = 2n,,.

The Hamiltonian (13) is diagonal in the basis

’(NT)?Na M, (/\7M)sd, (Np70)7(/\>,u)vX7L>' (14)

The values (A, ) of SUg4(3) contained in a symmetric representation [N, 0]
of U(6) are

(A ) = [2N,0] & [2N — 4,2] @ [2N — 8,4] & ... (15)

The product of two SU(3) representations (A, it)sq @ (Np,0) is given by
O’Reilly [49]

(A1, 1) © (A2, p2) =
2, A1+p1 p1, 2, 1 +Hp1—k Ae—j+k,A1
Z Z Z M+ —j =20, +pe+i—j—2k).
k=0 Jj=0 1=0,j=p1+k
(16)

The U(4) to SU(3) reduction gives N, = 0, 1,... M. The step from SU(3)
to SO(3) is well known [1].
The eigenvalues of (13) are given by

Ey=C+ deQ()\, M)sd + Oépr(Np + 3) + ]{302()\, u) + kLL(L + 1) . (17)

The energy spectrum in the SU(3) limit is given in Table 2, where the
labels of Daley are adopted [16]. It can be summarised as follows:

(i) The case n, = 0 is trivial, since it corresponds to the spectrum of
a no clustered nucleus (O« cluster configuration) and can be described
using only the sd-IBM.

(ii) The value n, = 1 generates negative parity states and hence, it is
associated with a la cluster, since every alpha particle is considered
as a set of two bosons as it was proposed by Daley et al. Using Daley’s
labelling, the n, = 1(M = 2) case includes the previous spectrum (for
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N, = 0) and, at higher energy (N, = 1), a set of negative parity states
belonging to the bands: K™ = 07, 17, 27 and 3~. Moreover, for
N, = 2, it generates extra positive parity states. The exciting case is
the one with K™ =1t and L =1,2,...

The M = 0 and 2 configurations are the leading ones since they generate
the low-lying collective states. This situation is different from the case of
molecular spectroscopy, where M is large.

Table 2. Classification of zero- and one-alpha cluster bands, using Daley’s la-
bels [16].

(Aa/'b)é‘d (NP70) ()\,,LL) Kﬂ- Lﬂ-
Zero-alpha configurations M = 0
(2N, 0) (0,0) (2N, 0) 0t of, 2%,
(2Nt — 4,2) (0,0) (2Nt — 4,2) 2t ot 3f,
0t of, 2f,
One-alpha configurations M = 2
(2(NT - 2)5 0) (Oa 0) (2(NT - 2)? O) 0+ 0+7 2+7
(Q(NT - 2) - 43 2) (Ov 0) (Q(NT - 2) - 45 2) 2% 2+a 3+7
ot ot, 2%,
(2(Nt —2),0) (1,0) 2(Nt —2)+1,0) 0~ 17, 37,

(
(2(Np—2)—1,1) 17 17, 27,
(2(Nt —2) —4,2) (1,0) (2(Nt—2)—4+1,2) 2= 27, 37,
(2(Np —2)—4—1,3) 3~ 37, 4,
(2(Np—2)—4—1,1) 1~ 17, 27,
(

(2(Nt —2),0) (2,0) 2(Nt—2)+2,00 0t of, 2F,
(2(Nr —2),1) 1+ 1t 2t

(2(Nt —2)—2,2) 2t 2% 3F,

ot of, 2T,

4.2. Mixing of cluster configurations and symmetry breaking

Up till now, the treatment is carried out in the framework of the subalge-
bra U(6) ® U(4). It leads to configurations with a well-definite M (and N)
boson numbers separably, the ground band, for example, is associated with
M = 0. However, the alpha decay shows that the ground configuration
is actually contaminated by the la cluster configuration. Even more, the
cluster decay indicates the effect of ma configurations. This means that
the actual configurations are mixtures of the U(6) ® U(4) ones. This mixing
can be taken into account by terms beyond U(6) ® U(4). Indeed, the total
Hamiltonian having U(10) as a symmetry algebra includes a third expression



9-A3.12 A. MEKENTICHI, A. BOULDJEDRI

(called the mixing Hamiltonian) describing a mixing between the sd and op
bosons. Such expression will mix the previous configurations, and hence will
break the U(6) ® U(4) symmetry

0

He = wp Hs*@a*]O@ 525+ [a*@s*] ® [&@5]0]0

. ZwLm HdT®pT}L® [ci®ﬁr+ [pf®d1r® [~®4}L}o
=123

- 1
+wq st ® pq

® [d@ﬁ}lJr [p*@dTr@r@g]l]o
r 0

r 1 1
+ws sT®pT} ®[§®ﬁ]1+[pT® s*} ® | ®§]1}

Fwg :dT®aTr®[cZ®6r+[a*@d*f@[&@dﬂo. (18)

In his work [16], Daley considered only the first term in (18) that can be
written as

0 0 0
Voa—ta =7 Ha* 2ol @l@s)’+ |sfesl] o [&@5]“] . (19)
The calculated effect is given by Daley and Iachello [16]

1/2
AFE = {[AkLL(L +1)— A’af + gfﬂ gﬁ] , (20)

(LGN LN DGVEDIP g A, i the difer-
ence in energy between the two configurations.

The mixing occurs only between states of the same parity. Since the O«
states have a positive parity, the negative parity states (belonging to the la
cluster configuration) are not mixed if higher configurations are neglected.
The main effect on the levels is a differential shift of the 1o configuration
states with respect to O« ones.

where ¢ = |

4.3. Electromagnetic transitions

Electromagnetic transitions are a strong test of any nuclear model. Due
to the dipole feature of the nuclear cluster, one expects strong electric dipole
transitions (B(E1)). Indeed, an electric dipole moment appears because the
center of charge and the center of mass are separated. In the present work,
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we focused on the dipole transition in order to discuss the possible occurrence
of clustering in heavy nuclei

M
T(E1) = af [a* Rp+p @ 5] . (21)

The dipole reduced transition probabilities have been calculated, and ana-
lytical expressions are available and already used in the actinide region [18]

B(El;K=0,L—+K=0"L+1)=BEI;K=1,L—+K=0"L-1)

_ 20L+1)\ (A—L+1
(al)”(’<2L+1>< At 1 > (22)
B(El;K=0,L+K=0"L-1)=BElI;K=1,L—+K=0"L+1)
_ 2L A+L+2
2
= o . 2
(ay)"n <2L—|—1>< At1 > (23)

Ratios such as

R _ B(EL,K=0,L—-K=0",L+1) (L+1)(A-L+1) (24)
T BELK=0,L-K=0",L—-1) L (A+L+2)

and

B(EL;K=1",L—-K=0"L+1) L (A+L+2)
B(EL,K=1",L » K=0t,L—-1) L+1\A—-L+1)

R, = (25)

are used instead of absolute E1 transition rates which are very difficult to
measure. R;- and R/ _ expressions involve no parameters to be fitted.
Configuration mixing can be taken into account. However, as shown by
Daley [18], the effect on the electric transitions is small. Thus, it will not be
taken into account in our calculations.

4.4. Alternative models

The U(10) algebra allows us to propose alternative formulations derived
from the different chains of subalgebras. The motivation is to extend the
description of clustering into different regions of the isotopic chart. Indeed,
the U(6) ® U(4) model describes well clustering in deformed nuclei, while
the first experimental evidence occurred in a vibrational (spherical) nucleus.
It is then necessary to extend the study to other algebras. We will exclude
any case where the coupling occurs only at the level of SO(3).
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Class 1: deformed nuclei, SU(3) limits

There are two chains of subalgebras with an SU(3) limit. The difference
occurs in the reductions from U(10) to the product SU(3) ® SU(3) (Fig. 2)

U(10) D Uspa(9) D Usa(6) © Up(3) D SUsa(3) @ SUp(3) D SUpa(3)
> 804a(3), (26)
[INT]; [Nspa] [Nsa] [Np](As 1) p (A 1) sa(A, p) kL) - (27)

The U(10) to U(9) reduction is Ngpq = Nt,Np — 1, Nt —2,...0. The
reduction U(9) to U(6) ® U(3) is N, + Nsg = Ngpa

U(10) D Uggo(7) @ Up(3) D Uga(6) @ Up(3) D SUg4(3) @ SUR(3)

2 SUspd(?)) ) Sospd(g) > (28)

|[NT]; [Nsdo ] [Naal [Np] (X, 1) sa(As t)p (A, )R L) - (29)
Here, one deals with only one reduction U(10) D Uy, (7) ® Up(3) with the
rule NT = Np + Nsdo~

Class 2: vibrational nuclei, U(5) and SO(5) limits
The first model (Fig. 3) is based on algebra coupling at the level of U(5)

U(10) 5 Ug(5) ® Uspo(5) D Uspdo (5) D SOupir(5) D SO4par(3) . (30)

The obtained spectrum is the dipole—quadrupole states in the vibrational
spectrum, since the core is described by Ugy(5). The irreps can be written as

[ [N][Na)[Nspo], [n1,n2], (v1,v2), KL) . (31)
The eigenvalues are given by

E = A+ gNd(Nd + 4) + 5]Vsdo(]vsda + 4) + Q[nl(nl + 4) + nZ(nQ + 3)]
+vfvi(vr + 3) + va(ve + 1) + wL(L +1). (32)

The second possibility results from the coupling at the level of SO(5) (Fig. 4)

U(10) D Ug(5) ® Usgpa(5) D SO¢(5) ® SOsps(5) O SOspdo(5) D SOspas(3) ,
(33)

HN] [Nd] [Nspa]a [n17 O} [’l’LQ, 0]7 <v17 U?)? KL> . (34)
The eigenvalues are given here by

E = B+&Ny(Na+4) + 0Nsio(Nsao +4) + ¢gni(n1 + 3) + ona(n2 + 3)
+wlvi(v1 +3) +v2(ve + 1) + vL(L +1). (35)
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4.5. Result of calculation

The vibron model has been tested by Daley [18] in the actinide region.
In order to assess the accuracy of the model in other regions, a larger list
of nuclei was necessary. This led us to study the following: 196:158:160G,
and 234:236,23877  240py 248Cp 250Cf. Their EZ'/E;' ratios range from 3.23
(1%6Gd) to 3.321 (?°0Cf).

In his work [18], Daley considered the two leading bands K™ =0~ and
K™ =17 in 2247228Rq, 228-230T} 232-238(] and 238-240Py (the latter band
being missing in ??®Ra and 24°Pu).

In the present work, we investigated additional nuclei in the actinide
region and extended the calculations to the rare-earth regions. Moreover,
our calculations include the K™ = 2~ band for the first time. Additional
bands are indeed useful to test the coherence of Daley’s labelling. The
fit has been achieved using the least square technique, taking into account
Oa and la configuration mixing. Tables 3 and 4 show the optimised free
parameters and Figs. 5—8 give the corresponding results in comparison to
the experimental data [50| of the studied nuclei.

Table 3. The empirically determined parameters of the mixing energy (in keV).

’

Nucleus koo k1o Ak A, y
156Gd 14.828 10.541 4.287  860.579 176.063
1583d 13.252 13.205 0.047  980.85 193.48

160Gd 12.543  7.684 4.859 1131.294 215.63

By 7.249  6.118 1.131 664.124 131.001
By 7.54 6.308 1.232  753.72  143.70
By 7486  5.555 1.93 760.312  140.398
28py 7.344 5629 1.715 772 142.55

240py 7137 5.538 1.599  705.78  126.47
246Cm 7.14 5.058 2.082  963.27  159.238
20t 7.12 7.369 0.249  946.476 149.22
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Table 4. Free parameters (in keV) of the U(6) ® U(4) Hamiltonian.

Nucleus Qy, kq k kr, r.m.s.
156Gd 482.396 —3.995  2.519 10.541  32.2
158Gd 799.219 —8.125  4.199 13.204 4.4
160Gd 761.070 —0.989 —1.713  7.684 7.2

234y 438.154 8431 —9.390 6.118 1.2
23671 660.277 1.026 —3.761  6.308 2.9
2387 729.451 0.331 —3.087 5.555 2.1

8Py 473.964 3.016 —4.415  5.629 0.1
240py 1013.231 0.198 —-3.923  5.538 2.4
246Cm 807.349 —3.287 1.614  5.058 1.9
B0t 685.648 4.026 —5.177  7.369 21.5

We have calculated relative E1 transition probabilities, using equations
of Section 4. As already mentioned there, generally only the relative data
are available. The comparison of the theoretical and experimental data
could be achieved in '°6Gd,'*8Gd,'%0Gd, and 23¥U. Table 5 shows a good
theory—experiment agreement.

Table 5. Experimental [50-52] and theoretical ratios of B(E1) reduced transition
probabilities (for 1°6Gd, 158Gd, !%°Gd, and #3®U) using the SU(3) limit of the
U(6) ® U(4) model for (K™ =0~ — K™ =0").

156Gd 158Gd 160Gd 238U
exp. th. exp. th. exp. th. exp. th.
}:331 2.26(115) 1.78 1.83(87) 1.76 1.80739 1.74 1.57(79) 1.79
340 163(64)  1.01 1.377%5 0.99 087717 0.96 — 1.03
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Fig. 5. Theoretical spectrum of 1°6=169Gd compared to the experimental data [50].
The left side includes the mixing, while the right side shows a pure 1« configuration.
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Fig.6. The same as Fig. 5, but for

234—238U
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Fig. 7. The same as Fig. 5, but for 238-240py,

4.6. The problem of the algebra irrep labels and the Wildermuth condition

In the work of Daley [16], the adopted expression for M leads to values
of N, starting from zero and independent of the studied nucleus. From the
microscopic point of view, this feature represents a violation of the Pauli
exclusion principle. Indeed, if the cluster and the core were sufficiently far
apart, they could be regarded as two independent quantum systems, each
with its own set of occupied states. However, when the cluster approaches
the core closely enough to form a common system, the nucleon wave func-
tions begin to overlap significantly. In such a situation, identical nucleons
from the cluster and the core would, without the Pauli principle, be al-
lowed to occupy the same quantum states, which is forbidden in fermionic
systems. To heal this violation, it is then important to review the vibron
model to take into account the Wildermuth condition [53]. This condition
ensures that the relative motion between the cluster and the core contains
a sufficient number of oscillator quanta to prevent forbidden overlaps of nu-
cleon states, otherwise it is necessary the existence of a minimal value for
N, describing the relative motion of the cluster and the core.
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Fig.8. The same as Fig. 5, but for 246Cm and 2°°Cf.

A solution to this problem has been introduced by Cseh in the frame-
work of the semimicroscopic algebraic clustering model (SACM) [54, 55]. In
such an approach, the core is described by the SU(3) shell model, and the
Wildermuth condition, related to the Pauli principle, results from the distri-
bution of the nucleon over the harmonic oscillator major shells. The SACM
model has been mainly limited to light nuclei. In heavy nuclei, the situation
is more complicated, and the pseudo SU(3) symmetry is necessary [56].

In our work, investigating heavy nuclei, the core is described by a trun-
cated version of the shell model (IBM). Hence, we can improve the tradi-
tional vibron model by taking into account the Wildermuth condition, as is
done in the SACM model. If U(10) irreps are labelled Ny, the question is
how to express M and Njg as a function of n, and Np?

To solve this problem, we adopted a generalisation of Daley’s labelling
as follows:

M = no(Ny+k), k=0,1,...,
Nig = Nt +n.R. (36)
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The embedding in U(10) guarantees that Nig = N + M is constant. As
a result of Eq. (36), for n, = 0, one gets M = 0 and N = Np = Ny.
This situation corresponds to the absence of clustering. On the other hand,
for no = 1, one gets M = N, +k, N = Nr — 2, and Nig = Nt + R.
The Wildermuth condition is then fulfilled, providing that R > N, mi, and
hence, Nig > Nt + ]\fp7 min -

5. IBM-II formulation of clustering

Up till now, the algebraic treatment of clustering has been formulated
in IBM-I, where no distinction is made between the proton and the neutron
bosons. However, it is known that IBM-II is richer and more predictive. In
2000, an sdf-IBM-II model was introduced [57]. Later, in 2013, a work on
the IBM-II vibron model was published by Zouioueche and Bouldjedri [58],
where for p bosons, only one kind of bosons is considered. It has been shown
that without configuration mixing a non-zero f spin leads to both positive
and negative mixed symmetry states. More recently, an spdf-IBM-II model
was introduced by Vallejos and Barea [59] and applied to 2'47226Rn, but
without consideration of the corresponding dynamical symmetries.

In the present work, we will formulate the IBM-II version of the U(6) ®
U(4) model by generalising the work of [58] to Ugq(6)®@Usq . (6)@Ugp r(4)®
Usp(4).

In addition to the standard algebras, we also consider their conjugate al-
gebras (denoted with a bar), which arise naturally in the context of particle—
hole transformations. These conjugate algebras correspond to the same Lie
algebra but are realized in the dual representation. When a standard algebra
and a conjugate algebra are combined to form a single, coupled algebra, the
resulting algebra is typically denoted with a star (see, for example, [60]).

Thus, for the U(6) algebra, we have

UW(G) (6) 2 UTr—l—u( ) - SUW+V( ) 2 SOW_H,(?)), (37)
UW(G) ® U,/(G) 7r+u( ) 2 SU7r+I/(3) - SOW-H/(B) ) (38)

7(6) ® U, (6) D SUL(3) ® SU,(3) D SU;,,(3) D SOx4,(3), (39)
Ur(6) ® U, (6) D SUx(3) ®SUL(3) D SU%,,(3) D SOx4,(3), (40)

while for the U(4) algebra,

U (4) ® Uy(4) O Un i (4) D SUri0(3) O SO5s0(3), (41)
Ur(4) @ Uy(4) © SU(3) @ SUL(3) O SUnsn(3) O SOmsp(3). (42)

Thus, there are many possible couplings in comparison to the case where
only one kind of p boson is used.
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We have already mentioned that the number of bosons N in the core
is variable; only the total number of bosons is constant. This number N
decreases with the number of bosons in the cluster. The U(10) algebra
guarantees the constancy of the total number of bosons.

5.1. The U(20) algebra

To formulate the IBM-II version, four boson numbers are necessary: N,
N, ,M;, and M,. The boson number constancy is written now: Np =
Ny + N, + M;+ M, = N+ M. There are two ways of embedding: U(20) D
U(10) ® U(10) or U(20) D U(12) ® U(8).

The U(20) algebra has 400 generators that can be written in coupled
form as follows:

GY (spsp’) = —s;®s~/}
G* (dydy) = -dT®d~/r, k=0,1,2,3,4,

~ 12
L G (spdy) = [shedy| L (43)

G* (pppy) = :pj)@pﬂ} ., k=0,1,2,
G (o,py) = -U;®p~/]1 . G (poy) = [p}@apr o (44)
and

& (sp00) = [shoay] . (o) = [ohos] .

G (somy) = [shom] G (o) = [hosi]

G (0,dy) = :a;®d~/r, G (dyoy) = |db @ o]

G* (dppy) = _d}; ®p~/r . k=1,2,3,

G* (ppdy) = [ph @ dﬂ}k . k=1,2,3 (45)

with p,p/ =7 or v.
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5.2. F-G spin symmetric limit

Consider now the coupled algebras Uy, (6) and Ury,(4). For the sd
sector, we define the F' spin as usual
N, - M N — N,
e S Fh= |2 v

2 f7 0 9
with Np = N+M,F =N/2,N/2—1,...,Fy,and f =0,1,...min(N,, N).

For the p sector, we define a G spin as

M

G=% -9, Go=0 (47)

with M = 0, it is clear that ¢ = G = 0. In contrast, when M = 2, the
possible values of g are 0 and 1, which correspond, respectively, to G = 1
and G = 0.
For axisymmetric nuclei, the combined chain of subalgebras is
UW(G) ® UV(G) ® U7r(4) X Uu(4) 2 U(7r+1/)sd(6) ® U(7r+1/)pa(4) )
SU(7T+V)Sd(3) ® SU(W+V)pU(3) ) SU(ﬂ'-‘rV)Spd(3) ) So(ﬂ+u)spd(3) : (48)
The states are then characterised by the quantum numbers
’([NT])a [NW][NVHMﬂHMV]; [NT - M — f, f][M - 979]3
(A )sa(As w)pi (A, ) KL - (49)
We get four kinds of states:

F= (46)

1. f and g totally symmetric states (f = 0,9 = 0): they are in one-to-one
correspondence with the IBM-I states;

2. f mixed symmetry states (f # 0,g = 0): this corresponds to the work
in reference [58], since only the IBM-II formulation of the sd bosons is
taken into account;

3. g mixed symmetry states (f = 0,¢g = 1): this is the inverse of the
case 2. They have not been discussed before;

4. mixed symmetry states (f # 0 and g = 1): this is the general case,
that we will discuss here.

Another situation occurs when the proton bosons and the neutron bosons
have a different nature (particle or hole). As a result, the obtained spectrum
is significantly different from the first case and corresponds to a triaxial
nucleus. In such a case, a different chain is obtained
Ur(6) © Us(6) © Ur(4) © Us(4) 3 Uiy 0a(6) @ Upriap(4)
SUZ}_,'_V)Sd(:S) ® SU(F+V)p(3) D SU(7r+u)spd(3) D SO(TF+V)8pd(3) . (50)

The hole bosons are described by conjugate SU(3) irreps.
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5.8. The F-G spin non-symmetric limits

If the proton bosons and neutron bosons are both particles or holes, one
obtains the following chain of subalgebra:

Ux(6) @ Uy (6) @ Ur(4) @ Uy (4) DSUrsa(3) @ SU,4a(3) @SUrp(3) @SU,p(3)
) SU(7r+V)sd(3) ® SU(7T+V)p(3) ) SU(ﬂ—‘ru)spd(g) ) SO(’/T-H/)Spd(?)) : (51)

The eigenvectors of the Hamiltonian built from this chain are given by

|(INT]); [Nz [Ny [Mz][My]; (A 1) wsa(As 1) wsd(As 1) 7p (A, (1) vps
(Aau)sd()‘au)p; ()\,/A),KL) . (52)

If we consider both particle bosons and hole bosons (triaxial nuclei), then
another chain is possible

U,(6) ® U, (6) @ Ur(4) ® Uy (4) DSUea(3) @ SU,sa(3) @SUnp(3) ®SU,,(3)
D) SU?ﬂ+V)sd(3) & SU(HV)I,(S) D SU(7T+V)Spd(3) D SO(7r+V)spd(3) . (53)

The corresponding eigenvectors are

[([N)); INZIINO MM ]; (11 A msa X 1) s (A 1) mp (X 1)
()‘hu')sd()‘hu)P; (Avﬂ);KL> ) (54)

where [N°] = [N, N, N, N, N] and (p, \) is the conjugate representation of
U(3) [61].
5.4. The hybrid limits

In this paper, we introduce the hybrid limits resulting from the combi-
nation of the previous chains; there are four possible cases. Either we form
first Uz4,(6) and Uz4,(6)*, subsequently combined with U(4) ® U(4), or we
form first Uy, (4) which is then combined with U(6) ® U(6) or U(6) @ U(6).
The coupling occurs, in each case, at the level of SU(3)

Ux(6) @ U, (6) ® U, (4) ® Uy (4) O (Ur4(6) O SU(r41)5a(3)) ®
SUWP(?)) & SUVp(?)) D SU(WH,) 4d3)® SU(W+U)p(3) D

SU(7F+V)Spd( ) > S0 7r+u)spd( ) ) (55)

Un(6) @ Uy (6) ® U, (4) © Uy (4) S (U 1(6) D SUL,4,)04(3)) @
SUTrp<3) ® SUup(3) ) SU(ﬂ’+V)sd(3) ® SU(7T+V)p(3) )
SU(TF+V)Spd(3) ) SO(W-"-V)Spd(g) ) (56)
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Ur(6)@U,(6) @ U_(4) @ Uy(4) D SUrsa(3) ® SU,44(3) ®
(U7T+1/(4) ) SU(w—i-y)p(?’)) ) SU(w+u)sd(3) ® SU(TF+V)p(3) )
SU(TF+V)8pd(3) ) So(ﬂ+u)spd(3> > (57)

U,(6) @ U,(6) @ U_(4) ® Uy (4) D SU,sa(3) ® SU,4(3) ®
(UW+V(4) ) SU(W—‘,—V)p(S)) ) SU>(k7r+y)sd(3) ® SU(Tr—i—u)p(B) )
SU(TF+V)Spd(3) ) SO(7T+I/)Spd(3) : (58)

6. Summary and conclusions

We investigated the problem of dipole—quadrupole low-energy collectivity
in heavy nuclei. The mathematical framework in IBM-I, namely the U(10)
algebra, has been analysed and shown to have a significantly richer structure
than the U(9) algebra of the spd model. This large set of subalgebras is able
to describe a variety of collective phenomena with a dipole nature. As an
application, we studied the clustering in a set of heavy nuclei belonging to the
rare-earth and actinide regions in the framework of the U(6) ® U(4)-based
model.

In spite of the phenomenological nature of the nuclear vibron model, it
has been successful in describing the energy spectrum and the electric dipole
transition probabilities. Our study suggests a close connection between E1
strength and « clustering in heavy nuclei. Prior to our work, evidence of the
formation of an « cluster in rare-earth nuclei was claimed by Spieker et al.
[62] in studying the origin of low-lying E1 transitions. A possible extension
of this work is the study of the K™ = 3~ and K™ = 17 in these regions (see
Table 2).

In comparison to the SACM model, the nuclear vibron model has the
advantage of being able to describe the coexistence of different clustering
configuration and their mixing. Furthermore, the U(10) embedding pro-
vides the possibility to describe the clustering in vibrational nuclei. With
the proposed solution for the Wildermuth condition problem, the model is
expected to be more realistic in describing the experimental data. This
solution will be tested in a forthcoming paper.

In a different direction, the vibron model has been extended to IBM-II by
the introduction of the U(20) algebra. The resulting chains of subalgebras
have been classified using two kinds of spins: the F' and G spins (symmetric
or non-symmetric limits). A new kind of subalgebra chains has been intro-
duced: the hybrid limits. Hence, this extension triggers new motivation for
an experimental investigation proving, once more, the predictive power of
symmetry.
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