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The problem of ordering of radial versus orbital excitations is reviewed.
It is shown that the current quark models cannot explain the location of
the Roper resonance which is slightly lower than the lowest negative-parity
excitations. We also study some related spectral problems, such as the
dependence of the energies on the quark masses, and the possibility of
bound states in simple chromelectric models.
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1. Introduction

As far as [ remember, I always used the results of David Roper, espe-
cially the ones dealing with pion—nucleon and nucleon—nucleon scattering.
As a post-doc at Stony Brook, I was introduced to the pioneering remote
access to data and analyzing programs set-up by the group of Virginia Tech,
anticipating to a large extent the internet, with just an FT'S phone-network
and an acoustic interface between a phone and the local computer.

Somewhat later, I had the chance to visit my colleague and friend Tetsuro
Mizutani at Blacksburg, and to meet there David Roper and Richard Arndst.
With David, I had a long discussion on the Roper resonance and its much-
debated location in the spectrum. Richard showed me his devices for com-
puting the electromagnetic fields, drawing classical trajectories, estimating
bound states and phase-shifts in quantum mechanics, etc., custom-designed
for his students. These anticipated years ahead tools that are now offered
by personal computers and their handy mathematical softwares. 1 was fas-
cinated by the enthusiasm and innovative spirit of David and Richard.
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The famous Roper resonance [1] is the first excitation of the nucleon
spectrum, with the same quantum numbers 1/ 2" as the nucleon, a width
of about 180 MeV, and a mass 1440 MeV below the orbital excitations at
1520 MeV (1/27) and 1535 MeV (3/27). Its low mass has always been found

rather intriguing.

2. The quark model of baryons

The speculations on the composite nature of baryons started in the early
1960s or even earlier, see e.g., |2], and the first convincing evidence was
provided at the beginning of 1964 by the discovery of the 2~ baryon with
strangeness S = —3 at Brookhaven [3].

Explicit quark models were constructed, in particular by Morpurgo [4],
Greenberg [5], etc. The most comprehensive study was done by Dalitz [6],
and developed in the UK with his coworkers and emulators |7, 8]. The
harmonic oscillator (HO) model of Dalitz et al. was subsequently extended
and popularized by Isgur and Karl [9] and others, see, e.g., [10, 11].

The HO model, though extremely simple, accounts rather well for the
main features of the baryon spectrum. Most discrepancies can be cured by
various spin-independent and spin-dependent “anharmonicity corrections”
that are spelled out in the above references. A problem however remains:
the low mass of the first radial excitation, namely the Roper resonance. In a
pure HO model, the Roper comes above the ground state twice higher than
the first orbital excitation, while it is experimentally degenerate with the lat-
ter, or even slightly lighter. Isgur and Karl, Gromes and Stamatescu, Bowler
and Tynemouth [10, 12, 13], and others, following Dalitz et al., showed that
if the HO pair potential o 7"1-2]- is perturbed by some reasonable anharmonic
potential v(r;;), the N = 2 level is split into five states with [20, 1*] the high-
est and the Roper [56,07] the lowest, as shown in Fig. 1. The notation, that
looks a little cryptic today, associates the dimension of the SU(6) representa-
tion to the spin-parity J¥. Note that if the anharmonicity contains a 3-body

potential, the pattern of splittings of the upper levels [20,17], ... [70,07] is
20,1%
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Fig.1. Left: Splitting of the N = 2 level of the harmonic oscillator due to an
anharmonic correction v(r) of pairwise character treated to first order. Right:
A’ #£ A for the lowest splitting, if the perturbation contains a 3-body interaction.
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unchanged but the lowest splitting is different, with A" # A [10, 13].
could then be argued that the Roper becomes close to the orbital excitation,
though quantum mechanics textbooks tell us that the first-order perturba-
tion, to be valid, requires the correction to be smaller than the separation
of the unperturbed levels!

Indeed, any exact 3-body calculation in a typical pairwise interquark
potential shows that the Roper is obtained above the negative-parity ex-
citation, see, e.g., [14], and it can be checked that this result survives the
admixture of a large class of spin-independent 3-body components.

In the 2-body case, there are rigorous results about such ordering [15]. In
particular, if the quark—antiquark potential has a positive Laplacian, then
E(n,t) > E(n — 1,4+ 1) if E(n,f) denotes the energy of the level with
n nodes and orbital momentum £.

In the 3-body case, an almost rigorous proof of the ordering was provided
in [16]. Consider the 3-quark Hamiltonian

H= Z

where V' is symmetric and translatlon—lnvariant, not necessarily pairwise.
As the color degree of freedom endorses the antisymmetry requirement and
the spin—isospin wavefunction is symmetric, one can treat (1) as a model
for three bosons. In the hyperspherical formalism, the ground state and
its radial excitations can be expanded on the symmetric, scalar harmonics
P as

T2,T3), (1)

Vi) = M by (n) = M )+ o
L

where [L] denotes the grand orbital momentum L and its associated mag-
netic numbers. Here, p denotes the hyperradius given by p?> = 2 + y? in
terms of the Jacobi coordinates & = ro—r; and y = (2r3—r1—73)/v/3, and
the 5 angles of 25 include &, ¢, and tan~!(|y|/||). Similarly, the potential
energy V can itself be expanded into multipoles, say

V(ri,r2,m3) = Volp) + Va(p) Pa(£25) + - - (3)

The remarkable feature in Eqgs. (2)—(3) is that the first correction to the hy-
perscalar approximation starts only at L = 4, so that the single hyperradial
equation
) | 15u0(p)
m 4m p?

+ Vo(p) uo(p) = Eo uo(p) (4)

is an excellent approximation for the energy Epo of the ground state and
Ep,1 of the Roper excitation.
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Similarly, the first orbital excitations (in & or ¢) are well described in
the approximation of the lowest harmonics

w(p, 0) ") P 0), )

leading to the companion radial equation

s, oz (p) + Volp) i) = Brun(p), ©)

with, remarkably, the same hyperradial potential Vj(p) as in (4). Moreover,
this potential is obtained from the interquark potential by an averaging with
a positive weight that keeps the sign of the Laplacian. In particular, a pair
potential of the form v(r) = —a/r + br, with a, b > 0 builds a hypercentral
Volp) = —A/p+ Bp with A, B > 0, and a 3-body term with a positive
Laplacian also results in Vj(p) growing faster than —1/p. Then the theorems
on the level order derived for mesons with integer orbital momentum ¢ can
be applied to Egs. (4) and (6) with angular momentum ¢ = 3/2 and ¢ = 5/2,
respectively, i.e.,

AV >0 = E070 < E1,0 < E(),l , (7)

which expresses the Roper puzzle: in any local, symmetric potential growing
faster than a Coulombic interaction, the first radial excitation Ey 1 is above
the orbital one F1 .

Several ways out have been explored, such as: relativistic kinematics,
a spin-dependent interaction that acts differently on the orbital and radial
excitation, a 3-body force, 2-body and 3-body terms with components of
negative Laplacian, non-local terms arising from the coupling to the decay
channels, etc. See, e.g., [L7-19]. However, the effects are often simultaneous
in the models, and it is not clear which one is crucial for the proper level
ordering.

3. Splitting of other levels

The splitting pattern of Fig. 1 of the N = 2 level has been further studied
and extended to other states.
First of all, it was observed that the spacing A = E[56,27] — E[70,07]
is positive for any plausible potential. More precisely, it can be shown [20)]
that 474
v
——)20= A20 8
dr <r d7“> < s (®)
i.e., A > 0 if the pairwise perturbation ) v(r;;) corresponds to v(r) being
a convex or concave function of 72,
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For N = 3 and higher, analyzing the splitting patterns requires more
and more sophisticated algebraic and group-theoretical tools [11, 20-22].
Again, the perturbation around a pure HO interaction can be generalized to
perturbation around a purely hypercentral interaction.

4. Ordering as a function of the quark masses

So far, we have discussed the spectrum for given constituent masses.
When one introduces into the model strangeness and heavy flavors, another
question arises: how does the baryon mass evolve, when the constituents are
changed? We shall restrict ourselves to the case where the potential energy
does not depend on the quark masses, i.e., the case of flavor independence.

The Hamiltonian reads

3 2
H=3 Pt v(r,ram), 9)
=1 <"

where V is translation-invariant and independent of the m;. The ground-
state energy is denoted E(mj, ma, mg). Obviously, the energy E decreases,
when one of the masses m; increases, as the coefficient of 1/m; is a positive
operator. For instance,

E(mp,m,m) < E(me,m,m) < E(mg,m,m) if mg<m.<my. (10)

In the 2-body case, one can demonstrate that the energy is a concave function
of the 1/m;, in particular [15]

2M(m1,m2) ZM(ml,mg)—l—M(mg,mg), (11)

for any flavor-independent quark—antiquark potential, where M(mq, mso) =
E(mi,m2) + mq + mg is the mass of the meson made of the quark m; and
antiquark meo.

It is tempting to generalize (11) to baryons as [23, 24|

2 M(mq, ma,m > M(my,mg,m) + M(mg, ma,m), (12)

which, indeed, turns out to be true for any reasonable interquark potential.
However, as shown by Lieb [25] (see also [26]), the inequality is not true for
any flavor-independent interaction, as for some (unrealistic) sharp potentials
and mass ratios, the inequality is violated.

In short, the heavy quarks tend to cluster, benefiting from the maximal
chromoelectric interaction. This effect is often attenuated when one includes
the chromomagnetic interaction, which is maximal for pairs of light quarks.
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5. Ordering as a function of the number of constituents

Paradoxically, the quark model was developed in some detail first in the
case of baryons, with the pioneering work of Dalitz [6], while for mesons, it
was taken seriously only after the discovery of heavy quarkonia, see, e.g.,
[27]. It is, of course, crucial to understand the link between the meson and
the baryon sectors 28, 29].

Obviously, a baryon is heavier than a meson made of the same flavor,
e.g., in the strange sector

@(s5) < f2(sss), (13)
but slightly less trivial is
3p(ss) < 282(sss), (14)

as the constituent masses cancel out in the balance. Note that (14) and
its non-strange analog is well satisfied with e.g., ¢ ~ 1.02 GeV and 2 ~
1.67 GeV. It means that a quark is, on average, heavier in a baryon than in
a meson. A variant of (14) reads

3(qq) < (qq9) +(399) , (15)

which implies that the mere rearrangement of three quarks and three an-
tiquarks into three mesons is an allowed process for nucleon—antinucleon
annihilation.

Now, the simplest model of the internal baryon dynamics consists of a
pairwise interaction mediated by a color-octet exchange, which reads

V(ry,ro,r3) = % ZU(TU% (16)

i<j

where 7;; = |r; — r;|, sometimes dubbed as the “1/2 rule”. Then, (14) can
be easily demonstrated [30, 31| from the decomposition

1[pi P}
g_L|PL_ Py 17
5 [Qm—l— Qm—i—v(rm) + (17)

that expresses the equal-mass baryon Hamiltonian as a sum of three meson
Hamiltonians. To deduce (15), it is sufficient to remember than the minimum
of a sum is larger that the sum of minimal!

Note that the inequality (15) is far from saturation. The reason is that
in the decomposition (17), the energy of each bracket is merely bound by
its absolute minimum which occurs at rest. In fact, in a 3-body system,
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each 2-body pair has its own overall motion. This was noted years ago by
Hall and Post, and refined by Basdevant et al. For references, see, e.g., the
review [32]. There are somewhat overlapping results in this domain, as it
deals with different subfields: nuclear physics, stability of matter, hadron
spectroscopy, etc.

Some generalizations to unequal masses are possible [31, 33|, for instance,

(122) + (9233) + (a331) < 2(q19243) , (18)
but the inequality B o
3(Qq) < (QQAQ) + (9q9) (19)
that holds for moderate values of the quark mass ratio M (Q)/m(q), ceases
to be valid for large M/m. In this latter case, a triply heavy antibaryon
would not annihilate into ordinary matter. The critical mass ratio depends
on the potential.

The “1/2 rule” relating mesons and baryons can be generalized to multi-
quarks as

3. .
v(rij) = =162 AiVo(rig) (20)

where Vg denotes the quarkonium potential, and \;, the eight color operators
for the " quark. Then, a careful study of the 4-body problem shows that
the equal-mass tetraquark qqqq is not bound, namely,

2(qq) < (q9qq), (21)

As explained in Section 6, this result is at variance with respect to the case
of atomic physics, where it is established (annihilation is disregarded) that

(efeteme™) <2(efe) . (22)
The hierarchy (21) can be inverted for unequal masses, i.e.,

(QQq7) <2(Q7q), (23)

as pointed out years ago [30, 34| and reminded in the context of the discovery
of the T, state at the LHCD [35].

6. Ordering as a function of the spread of couplings

The problem of the instability of the tetraquark with equal masses, as
per (21), raises the following issue with:

4
{g} T’L]) Z 9ij = 2, (24)

1<i<y 1<i<j

HM.&
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as a 4-body Hamiltonian of given cumulated strength ) g;; = 2, where v(r)
is an attractive potential: how does the binding energy evolve when the set
of couplings g;; is varied?

For instance, for a set of two positronium atoms, g;; = 0 except for
g12 = g34 = 1, while for the positronium molecule Psy and an appropriate
numbering, gi2 = g34 = —1 and other g;; = +1. A rigorous result is that if
E[{g}] denotes the ground state of H[{g}],

El{g}] < El{g}], (25)

where {g} denotes the symmetric configuration, where g;; = 1/3 Vi, j. This
results immediately from the variational principle applied to H[{g}] with
the wavefunction of H[{g}] as a trial function.

A useful generalization consists of considering

{9} ={g} + Mg}, (26)

where 12 = g34 = —2 and other g;; = —1. As the real parameter, A enters
linearly the Hamiltonian, the corresponding ground-state energy E()) is a
concave function of A\. Then, as A = 0 points at the symmetric maximum,

0< A <X\ = E()\Q)
)\2 < )\1 <0 = E()\Q)

E(\) < E(0),

E(\) < E(0). (27)

<
<

Now, it can be reasonably expected that E(\) is nearly symmetric around
its maximum at A = 0, leading to the less rigorous result

’)\2‘ > ’)\1‘ = E()\Q) < E()\l) . (28)

The threshold made of two positronium atoms corresponds to A = 1/3, while
the positronium molecule Psy to A = —2/3. According to (28), it makes
the stability very plausible of Psy, which is, indeed, true. Of course, the
stability of Pss is not taught exactly this way in the textbooks on quantum
chemistry, but there is no contradiction: the spread of the coefficients {g}
in Psy explains why a configuration can favor the closeness of the pairs
with attraction and the remoteness of the other pairs, and thus polarizes
efficiently the two atoms and leads to their binding.

The above results can also be applied to the equal mass tetraquark with
a pure central potential. The color-octet exchange potential for a pure color
3-3 configuration corresponds to

1 1
G2 =931 =5, other g;; = 1 (29)
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i.e., A = 1/12 ~ 0.083 associated to a typical interquark potential v(r) =
—a/r+br, with a, b > 0, while the threshold made of two mesons is still at
A = 1/3. Tt follows from (27) that this 3-3 configuration cannot be stable
in such a simple chromoelectric model [36].

For a color 6-6 state, the coefficients are given by

1 5
J12 =934 =~ other g;; = 3 (30)
which gives a more favorable value of the asymmetry parameter A = —7/24 ~

0.29, but still smaller in absolute value than the one of the threshold. Indeed,
a pure 6-6 state is not bound. It is due to the smaller spread of strength
factors, i.e., the non-Abelian character of the color algebra, that penalizes
the tetraquark, as compared to the positronium molecule.

7. Outlook

The Roper resonance has stimulated many discussions about the dy-
namics of quarks within baryons. Interestingly, a more normal ordering
Ey1 > Eip is observed in the A(uds) and A.(udc) sectors. Lattice calcu-
lations are usually done first with a large pion mass, about 400 MeV, i.e.,
for a large light quark mass m, 4, and in the next steps, the pion mass is
decreased. One observes that the degeneracy Ep 1 ~ F1 o shows up only at a
very small pion mass [37]. It means that understanding the puzzle requires
accounting for the chiral dynamics. Nowadays, the quark model is a little
out of fashion, and it is more and more widely understood that a detailed
description of the hadron spectrum requires accounting for the coupling to
the real or virtual decay channels, either as a correction to the quark model
or as a new dynamical scheme. See, e.g. [17, 38-40] and references therein.
The paradox is that the physicist of David’s generation started with the
“bootstrap” theory [41] with all hadrons on the same footing, and then wel-
comed the quark model as a relief, providing a more systematic approach,
and now one witnesses a sort of comeback of bootstrap on new grounds.

I benefited for several decades from discussions about the baryon spec-
trum with Muhammad Asghar, Jean-Louis Basdevant, Veljko Dmitrasi-
novié, Sonia Fleck, Marco Genovese, Claude Gignoux, Dieter Gromes, Hall-
stein Hggaasen, Ronald Horgan, Nathan Isgur, Gabriel Karl, André Martin,
Willibald Plessas, Michel Fabre de la Ripelle, Winston Roberts, Elena San-
topinto, Bernard Silvestre-Brac, Paul Sorba, Ica Stancu, Pierre Stassart,
Alfredo Valcarce, Javier Vijande, Pierre Taxil, and Sami Zouzou.



2-A12.10 J.-M. RICHARD

1
2]

13
[4]
[5]
[6]

7]

18]
9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]

[19]

REFERENCES

L.D. Roper, «Evidence for a P1; Pion—Nucleon Resonance at 556 MeV»,
Phys. Rev. Lett. 12, 340 (1964).

G. Zweig, «Origins of the Quark Model», in: «Baryon 1980%, Proceedings of
4th International Conference on Baryon Resonances, Toronto, Canada, July
14-16, 1980.

V.E. Barnes, «Observation of a Hyperon with Strangeness Minus Three»,
Phys. Rev. Lett. 12, 204 (1964).

G. Morpurgo, «Is a non-relativistic approximation possible for the internal
dynamics of “elementary” particles?», Physics Physique Fizika 2, 95 (1965).
O.W. Greenberg, «Spin and Unitary-Spin Independence in a Paraquark
Model of Baryons and Mesons», Phys. Rev. Lett. 13, 598 (1964).

R.H. Dalitz, «Quark Models for the “Elementary Particles”s, in: «Physique
des Hautes Energies», Proceedings of the 1965 Les Houches Summer School
of Theoretical Physics, Les Houches, France 1965.

M. Jones, R.H. Dalitz, R.R. Horgan, «Re-analysis of the baryon mass
spectrum using the quark shell model», Nucl. Phys. B 129, 45 (1977).
A.J.G. Hey, R.L. Kelly, «Baryon spectroscopy», Phys. Rep. 96, 71 (1983).
N. Isgur, G. Karl, «Hadron spectroscopy and quarksy», Phys. Today 36, 36
(1983).

D. Gromes, 1.O. Stamatescu, «Baryon spectrum and the forces between
quarks», Z. Phys. C' 3, 43 (1979).

C.P. Forsyth, R.E. Cutkosky, «A quark model of baryons with natural
flavory, Z. Phys. C' 18, 219 (1983).

N. Isgur, G. Karl, «Positive-parity excited baryons in a quark model with
hyperfine interactionsy», Phys. Rev. D 19, 2653 (1979).

K.C. Bowler, B.F. Tynemouth, «Symmetry breaking in the
harmonic-oscillator quark modely, Phys. Rev. D 27, 662 (1983).

B. Silvestre-Brac, C. Gignoux, «Study of light baryons in the
three-quark-cluster model: Exact calculationsy, Phys. Rev. D 32, 743 (1985).
H. Grosse, A.J. Martin, «Particle Physics and the Schrodinger Equationy,
Cambridge Monographs on Particle Physics, Nuclear Physics, and
Cosmology, Cambridge Univ. 2005.

H. Hggaasen, J.-M. Richard, «Nucleon resonances and the quark model»,
Phys. Lett. B 124, 520 (1983).

M.B. Gavela et al., «Standard solution to Roper-resonance puzzles», Phys.
Rev. D 21, 182 (1980).

B. Desplanques et al., «The baryonic spectrum in a constituent quark model
including a three-body force», Z. Phys. A 343, 331 (1992).

R.F. Wagenbrunn, L.Y. Glozman, W. Plessas, K. Varga, «Extended
Goldstone-boson-exchange constituent quark model», Nucl. Phys. A
663—664, 703¢ (2000).


http://dx.doi.org/10.1103/PhysRevLett.12.340
http://dx.doi.org/10.1103/PhysRevLett.12.204
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.2.95
http://dx.doi.org/10.1103/PhysRevLett.13.598
http://dx.doi.org/10.1016/0550-3213(77)90019-0
http://dx.doi.org/10.1016/0370-1573(83)90114-X
http://dx.doi.org/10.1063/1.2915357
http://dx.doi.org/10.1063/1.2915357
http://dx.doi.org/10.1007/BF01577397
http://dx.doi.org/10.1007/BF01571363
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1103/PhysRevD.27.662
http://dx.doi.org/10.1103/PhysRevD.32.743
http://dx.doi.org/10.1016/0370-2693(83)91565-4
http://dx.doi.org/10.1103/PhysRevD.21.182
http://dx.doi.org/10.1103/PhysRevD.21.182
http://dx.doi.org/10.1007/BF01291532
http://dx.doi.org/10.1016/S0375-9474(99)00726-5
http://dx.doi.org/10.1016/S0375-9474(99)00726-5

Level Order of Quark Systems: The Puzzle of the Roper Resonance ... 2-A12.11

[20]
[21]
[22]
23]
[24]
[25]
[26]
[27]
28]
[29]
[30]

[31]
[32]

[33]
[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

J.-M. Richard, P. Taxil, «The ordering of low-lying bound states of three
identical particlesy, Nucl. Phys. B 329, 310 (1990).

F. Stancu, P. Stassart, «Negative parity non-strange baryons», Phys. Lett. B
269, 243 (1991).

V. Dmitraginovié, I. Salom, «O(6) algebraic theory of three nonrelativistic
quarks bound by spin-independent interactions», Phys. Rev. D 97, 094011
(2018).

S. Nussinov, «Mass Inequalities in QCD», Phys. Rev. Lett. 52, 966 (1984).
J.-M. Richard, P. Taxil, «Comment on the convexity properties of the
baryon spectrumy», Phys. Rev. Lett. 54, 847 (1985).

E.H. Lieb, «Baryon Mass Inequalities in Quark Models», Phys. Rev. Lett.
54, 1987 (1985).

A. Martin, J.-M. Richard, P. Taxil, «About convexity properties of the
baryon mass spectrumy», Phys. Lett. B 176, 224 (1986).

C. Quigg, J.L. Rosner, «Quantum mechanics with applications to
quarkoniumy, Phys. Rep. 56, 167 (1979).

H.J. Lipkin, «A unified description of mesons, baryons and baryoniumsy,
Phys. Lett. B 74, 399 (1978).

D.P. Stanley, D. Robson, «Do Quarks Interact Pairwise and Satisfy the
Color Hypothesis?», Phys. Rev. Lett. 45, 235 (1980).

J.-P. Ader, J.-M. Richard, P. Taxil, «Do narrow heavy multi-quark states
exist?», Phys. Rev. D 25, 2370 (1982).

S. Nussinov, M.A. Lampert, «QCD inequalities», Phys. Rep. 362, 193 (2002).
J.-M. Richard, A. Valcarce, J. Vijande, «Hall-Post inequalities: Review and
application to molecules and tetraquarks», Ann. Phys. 412, 168009 (2020).
J.-M. Richard, «On the masses of mesons and baryons in potential modelsy,
Phys. Lett. B 139, 408 (1984).

J. Carlson, L. Heller, J.A. Tjon, «Stability of dimesons», Phys. Rev. D 37,
744 (1988).

LHCb Collaboration (R. Aaij), «Observation of an exotic narrow doubly
charmed tetraquark», Nature Phys. 18, 751 (2022).

J.-M. Richard, A. Valcarce, J. Vijande, «Few-body quark dynamics for
doubly heavy baryons and tetraquarks», Phys. Rev. C' 97, 035211 (2018).
N. Mathur et al., «<Roper resonance and S11(1535) from lattice QCD», Phys.
Lett. B 605, 137 (2005).

V.D. Burkert, C.D. Roberts, «Colloquium: Roper resonance: Toward a
solution to the fifty year puzzle», Rev. Mod. Phys. 91, 011003 (2019).

B. Golli, H. Osmanovi¢, S. Sirca, A. Svarc, «Genuine quark state versus
dynamically generated structure for the Roper resonance», Phys. Rev. C 97,
035204 (2018).

S. Owa, D.B. Leinweber, A.W. Thomas, «Nucleon resonance structure to

2 GeV and the nature of the Roper», Phys. Rev. D 111, 116002 (2025).

G.F. Chew, «S-Matrix Theory of Strong Interactions without Elementary
Particles», Rev. Mod. Phys. 34, 394 (1962).


http://dx.doi.org/10.1016/0550-3213(90)90144-3
http://dx.doi.org/10.1016/0370-2693(91)90163-K
http://dx.doi.org/10.1016/0370-2693(91)90163-K
http://dx.doi.org/10.1103/PhysRevD.97.094011
http://dx.doi.org/10.1103/PhysRevD.97.094011
http://dx.doi.org/10.1103/PhysRevLett.52.966
http://dx.doi.org/10.1103/PhysRevLett.54.847
http://dx.doi.org/10.1103/PhysRevLett.54.1987
http://dx.doi.org/10.1103/PhysRevLett.54.1987
http://dx.doi.org/10.1016/0370-2693(86)90954-8
http://dx.doi.org/10.1016/0370-1573(79)90095-4
http://dx.doi.org/10.1016/0370-2693(78)90689-5
http://dx.doi.org/10.1103/PhysRevLett.45.235
http://dx.doi.org/10.1103/PhysRevD.25.2370
http://dx.doi.org/10.1016/S0370-1573(01)00091-6
http://dx.doi.org/10.1016/j.aop.2019.168009
http://dx.doi.org/10.1016/0370-2693(84)91841-0
http://dx.doi.org/10.1103/PhysRevD.37.744
http://dx.doi.org/10.1103/PhysRevD.37.744
http://dx.doi.org/10.1038/s41567-022-01614-y
http://dx.doi.org/10.1103/PhysRevC.97.035211
http://dx.doi.org/10.1016/j.physletb.2004.11.010
http://dx.doi.org/10.1016/j.physletb.2004.11.010
http://dx.doi.org/10.1103/RevModPhys.91.011003
http://dx.doi.org/10.1103/PhysRevC.97.035204
http://dx.doi.org/10.1103/PhysRevC.97.035204
http://dx.doi.org/10.1103/tt7s-p9gj
http://dx.doi.org/10.1103/RevModPhys.34.394

	1 Introduction
	2 The quark model of baryons
	3 Splitting of other levels
	4 Ordering as a function of the quark masses
	5 Ordering as a function of the number of constituents
	6 Ordering as a function of the spread of couplings
	7 Outlook

