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The first baryon resonance was discovered in the early 1950s. The
Roper resonance joined the collection ten years later. Today, many baryon
resonances are known and more are being discovered. As baryons, these
states are the most fundamental three-body systems in Nature. They must
all be understood, not just the isolated ground-state nucleon. This con-
tribution sketches applications of continuum Schwinger function methods
to the baryon resonance problem. Whilst spectroscopy is of value, partic-
ular emphasis is placed on resonance electroproduction because transition
form factors extracted from electroproduction data provide a keen tool for
revealing resonance structure.
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1. Introduction

Around forty years ago, it was common for practitioners to judge that
(constituent) quark potential models were providing a realistic picture of the
baryon spectrum; indeed, that they were a phenomenal phenomenological
success [1]. Moreover, there was a perception [1] that: Although there may
still be some weakly coupled resonances lurking around the noise level or
background of partial-wave analyses, it seems clear that the major features
of the spectrum are known. It is not at all clear that we will ever have
much more than, at best, a rudimentary outline of charmed or bottom baryon
spectroscopy and it is probable that we have now identified over 90% of the
resonant states that we shall ever disentangle from the experimental data.
Indeed, given present experimental trends, it seems probable also that little
more, if any, new experimental data relevant to the baryon spectrum will
be forthcoming. Now we know that such conclusions were premature. This
is made clear by the continuing discovery of new baryon resonances [2, 3]
and states considered to be tetraquark or pentaquark systems that contain
heavy valence quarks [4, 5]. Today, therefore, the study of the nucleon and
its resonances is an active area of research in both experiment and theory.

That is rightly the case because baryons and their resonances play a cen-
tral role in the existence of our universe and ourselves; and therefore [6]: . . .
they must be at the center of any discussion of why the world we actually ex-
perience has the character it does. Baryons are the most fundamental three-
body systems in Nature. They are supposed to be described by quantum
chromodynamics (QCD) [7]. Yet, fifty years after the introduction of QCD,
it is impossible to claim that we even understand proton and neutron struc-
ture; and the number and structure of nucleon resonances remains a topic
that attracts much debate. (The picture for pions and kaons, Nature’s most
fundamental Nambu–Goldstone bosons, is more parlous still [8, 9]. This is
recognised and the goal of revealing pion and kaon structure is becoming an
intense focus of new experiments [9–12].)

Considering baryon resonances constituted from some three-body com-
bination of u, d, s valence quarks, the quark model spectroscopic labelling
convention is still popular, namely, cataloguing hadrons as n 2s+1ℓJ systems,
where n, s, ℓ are radial, spin, and orbital angular momentum quantum num-
bers, with ℓ + s = J and J being the total angular momentum. In fact, it
is sometimes/often reported that [13, Ch. 15]: (a) The spectrum of baryons
and mesons exhibits a high degree of regularity. (b) The organisational prin-
ciple which best categorizes this regularity is encoded in the quark model.
(c) All descriptions of strongly interacting states use the language of the
quark model.
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Point (a) is debatable. Many baryons are known, but the perceived de-
gree of regularity is practitioner-dependent, e.g., the existence and/or char-
acter of Regge trajectories is certain for some practitioners but tenuous for
others [14, 15]. In this connection, the perspective in Ref. [16] is valuable:
In time the Regge trajectories thus became the cradle of string theory. Nowa-
days the Regge trajectories have largely disappeared, not in the least because
these higher spin bound states are hard to find experimentally. At the peak
of the Regge fashion (around 1970) theoretical physics produced many papers
containing families of Regge trajectories, with the various (hypothetically
straight) lines based on one or two points only ! These observations remain
pertinent to contemporary models that support Regge trajectories.

Given that (a) is questionable, then (b) is merely the perspective of an
embedded community.

Point (c) is false: Poincaré-covariant treatments of the baryon spectrum
need not make any reference to the quark model language. Indeed, since u, d,
s valence quarks are light, even the concept of a QCD-connected “potential”
with any relation to Schrödinger equation quantum mechanics is unsound,
so no such potential model labelling scheme is admitted.

To these remarks, one should add that Poincaré covariance itself, re-
quired for any QCD-connectable treatment of bound states seeded by light
valence quarks, entails that every hadron contains orbital angular momen-
tum, e.g., even the ground-state pion contains two S-wave and two P -wave
components [17, 18]. Thus, Nature’s pion cannot be a 1 1S0 state in any
sense. Moreover, no system is simply a radial excitation of another: in
a Poincaré-covariant wave function, there are simply too many degrees of
freedom for that to be the case. On top of these things, whilst J is Poincaré-
invariant — so, truly an observable — any separation of J into orbital an-
gular momentum plus spin, J = L+ S, is frame-dependent, i.e., subjective.
Continuing along this line, it should be borne in mind that, in quantum
field theory, orbital angular momentum and parity are unconnected. This
is plain because parity is a Poincaré-invariant quantum number, whereas L
is not; and no observable can properly be defined by a subjective quantity.
Consequently, negative-parity states cannot simply be orbital angular mo-
mentum excitations of positive-parity ground states. These features of the
Poincaré-covariant treatment of baryons are detailed elsewhere; see, e.g.,
Refs. [19–26], and some will be reiterated below.

2. Roper resonance

Many (most) readers of this contribution will know that the Roper res-
onance was discovered in 1963 [27–31]; and a large subset of that group will
acknowledge that the Roper’s characteristics have been the source of great
puzzlement since that time.
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Here, it is therefore appropriate to state the simplest of these characteris-
tics; namely, the Roper is a spin-half, positive-parity resonance, JP = 1/2+,
with pole mass ≈ 1.37GeV and width ≈ 0.18GeV [32]. In the spectrum of
nucleon-like states, i.e., baryons with isospin I = 1/2, the Roper resonance
lies about 0.4GeV above the ground-state nucleon and 0.15GeV below the
first spin-half negative-parity state, JP = 1/2−, which has roughly the same
width. Today, the levels in this spectrum are labelled thus: N(mass) JP ;
and hence the ground-state nucleon is denoted N(940) 1/2+, the Roper res-
onance is N(1440) 1/2+, and the negative-parity state described above is
N(1535) 1/2−.

The first Poincaré-covariant treatment of the Roper resonance was com-
pleted ten years ago [33]. It employed a continuum approach to the three
valence-quark bound-state problem in relativistic quantum field theory to
predict a range of properties of the proton’s radial excitation and thereby
unify them with those of numerous other hadrons. The analysis indicated
that the Roper resonance should be identified with the nucleon’s first ra-
dial excitation. Moreover, structurally, the resonance is built from a core of
three dressed quarks, which expresses its valence-quark content and whose
charge radius is 80% larger than the proton analogue; and that quark core
is complemented by a meson cloud, which reduces the observed Roper mass
by roughly 20% [34]. The meson cloud materially affects long-wavelength
characteristics of the Roper electroproduction amplitudes but the quark core
is revealed to probes with Q2 ≳ 2m2

N , where mN is the nucleon mass.
It was only possible for the Ref. [33] study to reach this conclusion fol-

lowing the accumulation and analysis of high-precision N(940) → N(1440)
electroproduction data by the CLAS Collaboration at Jefferson Laboratory
(JLab). As explained in Refs. [35, 36], spectroscopy alone cannot reveal
structural features of any given set of bound states: for instance, no one
would claim to know and understand proton structure merely because they
had arrived at a value of its mass. Notwithstanding these things, some
groups, which focus on spectroscopy, still suggest that an alternative (me-
son+nucleon molecule) explanation of Roper structure is viable, without
having tested their picture against electroproduction data. Herein, there-
fore, it is natural to recapitulate and expand on some of the key points
developed in Ref. [33].

In QCD, the properties of the proton (nucleon) and its resonances can
be studied in any approach that provides access to the three-quark six-
point Schwinger function [37, 38]. In this connection, continuum Schwinger
function methods (CSMs) provide a widely used and insightful calculational
scheme [8, 19, 39, 40]. Many such studies use a quark+dynamical diquark
— q(qq) — picture of baryons because it vastly simplifies the problem [23].
This was the approach employed in Ref. [33].
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The q(qq) picture of baryon structure was introduced in Refs. [41–43],
which exploited the pairing capacity of fermions as a way to simplify the
three-valence-quark bound state problem. The analyses therein lead to a
Faddeev equation that describes dressed quarks and fully-interacting diquark
correlations built therefrom, which bind together into a baryon, at least
in part, owing to the continual exchange of roles between the spectator
and diquark-participant quarks. The associated bound-state equation is
sketched in Fig. 1, which explicitly shows the action of diquark breakup
and reformation in the kernel. First solutions of the q(qq) Faddeev equation
were described in Ref. [44]. Since then, the approach has evolved into a
sophisticated tool that has been used to predict many baryon observables;
see, e.g., Refs. [45–47]. The most refined version of the approach can be
found in Ref. [48].

Ψ
ΓΓ

Ψ
Ppd

pq

pd

pq

kd

kq

q
=

P

Fig. 1. Linear, homogeneous integral equation for Ψ , the Poincaré-covariant
matrix-valued function (Faddeev amplitude) for a baryon with total momentum
P = pq + pd = kq + kd constituted from three valence quarks, two of which are
paired in a fully-interacting nonpointlike diquark correlation. Ψ expresses the rel-
ative momentum correlation between the dressed quarks and diquarks. Legend:
Shaded box — Faddeev kernel, which explicitly shows the quark exchange bind-
ing mechanism; single line — dressed-quark propagator; Γ — diquark correlation
amplitude; and double line — diquark propagator.

Since calculational details are recorded in Refs. [33, 48], we turn immedi-
ately here to a discussion of the nucleon and Roper Poincaré-covariant wave
functions. The first thing to note is the diquark content. The analyses in
Refs. [33, 49] reveal that isoscalar–scalar and isovector–axialvector diquarks
are necessary to complete a stable (mass-converged) solution of the Faddeev
equation. Regarding their relative contributions to the canonical normali-
sations, both the scalar and axialvector are significant in the nucleon and
Roper wave functions. In fact, the (I = 0, 0+) diquark contributes approxi-
mately 60–70% to the normalisation and the (1, 1+) diquark, both directly
and through constructive interference with the (0, 0+) correlation, provides
the remaining 30–40%. For the proton, this is illustrated in Fig. 2 (left) and
for the Roper, in Fig. 2 (right): plainly, their diquark substructure is very
similar. (The canonical normalisation constant is fixed by the requirement
that the Q2 = 0 value of the charge form factors associated with electri-
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cally charged members of a given hadron multiplet deliver the observed
charge. For the proton and charged Roper, this condition is expressed as
F1(Q

2 = 0) = 1, where F1 is the Dirac form factor of the proton or charged-
Roper.)

Fig. 2. Left: Proton. Diquark component breakdown of the canonical normalisation
of the proton’s Poincaré-covariant nucleon Faddeev wave function. The [ud]0+

isoscalar–scalar diquark (SC) is dominant, but material contributions also owe
to the {uu}1+ , {ud}1+ isovector–axialvector correlations (AV). SC⊗ SC — 60%;
SC⊗AV — 15%; AV⊗AV — 25%. Right: Analogous image for the first 1/2+

excitation of the ground-state nucleon. SC⊗ SC — 67%; SC⊗AV — 15%; AV⊗AV
— 18%.

Fig. 3. Legend for interpretation of J = 1/2 baryon rest-frame quark+diquark
angular momentum decompositions, which also identifies interference between the
distinct orbital angular momentum basis components. The axes labels refer to
distinct components of the q(qq) wave function, which are explicitly detailed in
Ref. [49, Eq. (11)].
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Of particular additional interest are pictures of the rest-frame angular
momentum structure of the nucleon and Roper resonance. Referring to the
legend in Fig. 3, these decompositions are drawn in Fig. 4. Figure 4 (upper
left) displays the proton case. Plainly, the proton wave function has signif-
icant S-wave components; yet it also contains material P -wave structures
and the canonical normalisation receives measurable S⊗P -wave interference
contributions. The verity of this picture of the proton wave function is con-
firmed, e.g., by its successful explanation of nucleon elastic electromagnetic
and gravitational form factors [48, 50, 51] and a large array of unpolarised
and polarised proton parton distribution functions [52–54].

Fig. 4. Contributions of the various quark+diquark orbital angular momentum
components to the canonical normalisation of the Poincaré-covariant wave func-
tion of a J = 1/2 baryon after rest-frame projection: there are both positive
(above plane) and negative (below plane) contributions to the overall positive nor-
malisation. Upper left: Proton. Upper right: First J = 1/2+ excitation of the
proton, identified as the Roper resonance. Bottom left: First J = 1/2− excitation
of the proton, identified as the N(1535)1/2−. Bottom right: Second J = 1/2−

excitation of the proton, identified as the N(1650)1/2−.
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Turning now to Fig. 4 (upper right), one sees the rest-frame quark+di-
quark angular momentum projection of the Poincaré-covariant wave func-
tion of the proton’s first 1/2+ excitation. The wave function of this system
has properties that justify its interpretation as the proton’s first radial ex-
citation. For instance, the zeroth Chebyshev moment of each component
possesses a single zero [33]. Thus, as explained in connection with meson
radial excitations [55, 56], this state is properly identified in quantum field
theory with the radial excitation of the N(940). (Transition form factors
will soon be discussed.)

On the other hand, in the Poincaré-covariant q(qq) approach, the first
1/2+ excitation is obviously far more than simply a radial excitation. In-
deed, its q(qq) angular momentum structure is completely different from
that of the proton: the S- and P -wave components are enhanced in magni-
tude, with P -waves flipped in sign; the S ⊗ P -wave interference terms are,
in this state, strongly destructive as are P ⊗ D-wave terms; and there are
strong constructive S ⊗ D-wave contributions. Notwithstanding these sig-
nificant differences, identification of this system with the quark core of the
Roper resonance is justified by the fact that the wave function which yields
Fig. 4 (upper right) also delivers agreement with the γ∗N(940) → N(1440)
transition form factors on Q2 ≳ 2m2

N [33, 35]. Notably, the predictions in
Ref. [33] have been updated. The new results will be reported elsewhere.
Here it is sufficient to record that, without reference to Roper electroproduc-
tion data in its formulation, the framework in Ref. [48] delivers even better
results than those in the first study [33].

It is worth augmenting our analysis of the upper images in Fig. 4 with
a discussion of the lower panels, which depict rest-frame angular momentum
projections of the Poincaré-covariant wave functions of the N(1535)1/2− and
N(1650)1/2−. In quark potential models, these states are both orbital an-
gular momentum excitations of the ground-state nucleon: N(1535)1/2− —
(L = 1, S = 1/2); N(1650)1/2− — (L = 1, S = 3/2). Evidently, considering
Fig. 4 (bottom left) and (bottom right), the quantum field theory pictures
are more complex. In both cases, to somewhat differing degrees: (a) P -
wave components are significant, but they make a negative contribution to
the normalisation; (b) the largest constructive contributions owe to S ⊗ P -
wave and P ⊗ D-wave interference; and (c) S ⊗ D and D ⊗ D terms are
negative. The N(1535)1/2− wave function has been validated by compar-
isons of data with predictions for the γ∗N(940) → N(1535)1/2 transition
form factors, which will soon be released. (An existing q(qq) analysis, based
on a symmetry-preserving, Poincaré-covariant treatment of a vector⊗ vector
contact interaction, sets a baseline for such studies [57].) Analogous tests
are currently underway in connection with the N(1650)1/2−.
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It should also be remarked that, in quantum field theory, the N(1535)1/2−

and N(1650)1/2− are properly viewed as parity partners of the nucleon.
Thus, with respect to the N(940), any and all differences in mass and struc-
ture owe to dynamical chiral symmetry breaking — see, e.g., Refs. [20, 58–
60], which is a corollary of emergent hadron mass (EHM) [8, 9, 39, 40, 61–64].
The similarities between the rest-frame q(qq) angular momentum projec-
tions of the Poincaré-covariant wave functions of these states supports this
perspective. Any claim, today, that parity-doubling (degeneracy of parity
partners) is seen in the baryon spectrum is false: instead, it merely ex-
presses a misapprehension of the true character of parity partners. Absent
EHM, on the other hand, the N(1535)1/2− and N(1650)1/2− resonances
would both be degenerate with the ground-state nucleon and have identical
wave functions, i.e., these three states would be indistinguishable. The same
would then, and only then, be true of all real parity partners. Equivalent
statements hold for mesons [65, 66].

The images in Fig. 4 highlight that any approach to calculating properties
of the nucleon and its excitations which fails to express the complex character
of their wave functions, will very likely deliver an erroneous structural picture
of these states. Notably, the much debated N(1440) is both a radial and
orbital angular momentum excitation of the N(940), and the same is true
of the other states.

Focusing on the Roper, now that electroexcitation data exist [35], pro-
ponents of alternative interpretations of the Roper resonance can subject
their pictures to stringent validation tests. Absent such tests, it is ratio-
nal to question any claims that the Roper is unrelated to the proton’s first
radial excitation. The future will see robust calculations based on the three-
valence-body Faddeev equation (3-body) without reference to diquark corre-
lations [22, 50, 67]. To date, wherever comparisons have been made, 3-body
and q(qq) results are largely in agreement [19, 47, 48].

3. ∆(1600)3/2+

The above discussion has highlighted that the QCD structure of hadrons
is far richer than can be produced by quark models and, moreover, that a
Poincaré-covariant treatment of the structure of each, independent system
is crucial to its sound explanation, interpretation, and understanding. It is
worth continuing this elucidation by canvassing properties of the (3/2, 3/2+)
∆(1232) and its first (3/2, 3/2+) excitation, the ∆(1600).

A detailed analysis of ∆(1232)3/2+ and ∆(1600)3/2+ Poincaré-covariant
wave functions, obtained in the q(qq) framework, is presented in Ref. [24]. In
these cases, the diquark structure is straightforward. Namely, since it is im-
possible to construct an isospin 3/2 system using an isoscalar diquark, such
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systems can only contain axialvector and/or vector diquarks. Furthermore,
since vector diquarks are (a) effectively more massive than axialvector di-
quarks and (b) have opposite parity to the baryon under consideration, then
only axialvector diquarks need to be considered. These points are elucidated,
e.g., in Refs. [49, 68].

Continuing, it is first worth noting that the ∆(1600)3/2+ wave function,
like that of the Roper, exhibits features that justify its interpretation as the
first radial excitation of the ∆(1232)3/2+. This interpretation is supported,
e.g., by the appearance of a single zero in the zeroth Chebyshev moment of
each component of that wave function which has a significant magnitude [24].
On the other hand, as we will see, and again akin to the N(1440)1/2+, the
∆(1600)3/2+ is not simply a radial excitation.

Rest-frame q(qq) angular momentum decompositions are available for
∆(1232)3/2+ and ∆(1600)3/2+ [24]. Using the assignments displayed in
Fig. 5, the structures of these wave functions are displayed in Fig. 6. Con-
sidering Fig. 6 (left), one sees that, evaluated in the rest frame, the canonical
normalisation of the ∆(1232)3/2+ is largely determined by S-wave compo-
nents, although there are significant, constructive P -wave contributions and
also strong S ⊗ P -wave destructive interference terms. The structural pic-
ture of the ∆(1232)3/2+ communicated by this image has been confirmed
by comparisons with data on the γ∗ + p → ∆(1232)3/2+ transition form
factors [69–71]. (An update of these predictions will soon be available from
the q(qq) framework in Ref. [48].)

Fig. 5. Legend for interpretation of J = 3/2 baryon rest-frame quark+diquark
angular momentum decompositions, which also identifies interference between the
distinct orbital angular momentum basis components. These states can possess S-,
P -, D-, and F -wave components. The axes labels refer to distinct components of
the q(qq) wave function, which are explicitly detailed in Ref. [24, Eq. (15)].
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Fig. 6. Contributions of the various quark+diquark orbital angular momentum
components to the canonical normalisation of the Poincaré-covariant wave func-
tion of a J = 3/2 baryon after rest-frame projection: there are both positive
(above plane) and negative (below plane) contributions to the overall positive nor-
malisation. Left: ∆(1232). Right: First J = 3/2+ excitation of the ∆(1232), which
can be identified with the ∆(1600) resonance.

Turning to Fig. 6 (right), it is evident that, although S-wave contribu-
tions are dominant in the ∆(1600)3/2+, there are prominent D-wave com-
ponents, significant P ⊗ D-wave interference contributions, and numerous
F -wave induced interference terms. (Amplified higher partial waves are also
seen in related 3-body studies of the ∆(1600)3/2+ [21, 72].) Here, it is im-
portant to stress that this q(qq) structural picture of the ∆(1600)3/2+ has
been used to predict γ∗ + p → ∆(1600) transition form factors [71]. Those
predictions were confirmed in an analysis of π+π−p electroproduction data
collected at JLab; see Refs. [64, Sec. 4.2] and [73]. It is worth noting, too,
that the predictions in Ref. [71] have been updated, using the framework in
Ref. [48]. The new results will be reported elsewhere. Again, they confirm
those which are already available.

That confirmation leads us to reiterate a material point. Namely, as
with the N(1440)1/2+, some practitioners deny a connection between the
∆(1600)3/2+ and the first 3/2+ excitation of the ∆(1232)3/2+ [74]. In-
stead, they suggest that it is some sort of molecular state following an
analysis based on a framework that attributes the same structure to the
N(1440)1/2+. Such pictures do not incorporate the truly complex wave
function displayed in Fig. 6 (right), with its strong orbital angular momen-
tum correlations. They could only become viable if tested against data on
the γ∗ + p → ∆(1600) transition. Such a validation seems far away; hence,
one should today remain wary of these molecular pictures; especially in the
face of the q(qq) structural predictions that deliver agreement with the elec-
troproduction data [71].
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4. ∆(1700)3/2−

The refined q(qq) framework described and deployed in Ref. [48] has al-
ready been employed in numerous applications. For instance, predictions
for light-front transverse charge and magnetisation densities for the pro-
ton and neutron and their dressed valence-quark constituents can be found
in Ref. [47]. Analyses of transition form factors will subsequently be re-
leased. Herein, therefore, we will only provide a sketch of predictions for
∆(1700)3/2− electroproduction form factors. The calculational procedure
does not differ from that used in connection with, e.g., the ∆(1600)3/2+

transition form factors [71].
We begin by considering the Poincaré-covariant wave function of the

∆(1700)3/2−. Possessing opposite parity to the ∆(1232)3/2+ ground state,
then quark potential models typically identify the ∆(1700)32

− as an L = 1
orbital angular momentum excitation of the ∆(1232), so, P wave. What
does quantum field theory have to say?

The first point is that since this system does have opposite parity to the
∆(1232)3/2+ ground state, it can contain negative-parity vector diquarks.
Notwithstanding that, they play a very minor role; regarding Ref. [24, Ta-
ble II], one sees that they contribute just 5% of the amplitude and their omis-
sion leaves the mass practically unchanged. Thus, like the ground state, the
∆(1700)3/2− is built, almost entirely, from isovector–axialvector diquarks.

Considering now the pointwise behaviour, one finds that most of the
zeroth Chebyshev moment projections of the ∆(1700)3/2− wave function
possess a zero. When a zero exists, it lies within the domain 1

3 fm–1
2 fm,

i.e., at length-scales smaller than the bound-state radius. This is similarly
true of (12 ,

1
2

±
) bound-state wave functions [20, Figs. 4, 5] and also vector

mesons [75, Fig. 5]. These things indicate that the ∆(1700)3/2− is much
more than merely an L = 1 excitation of the ∆(1232)3/2+.

Such an observation leads one to ask whether the ∆(1700)32
− has any

of the characteristics of an orbital angular momentum excitation. This is
addressed by considering the rest-frame q(qq) angular momentum decompo-
sition of the ∆(1700)3/2− wave function, which is displayed in Fig. 7 and
compared directly with that of the ∆(1232)3/2+. Working with this image,
one may consider how the mass obtained by solving the Faddeev equation
develops according to the inclusion or exclusion of different partial waves;
see Ref. [24, Table III]. Concerning the ∆(1700)3/2−, the lightest mass is
obtained by keeping only P waves. The net effect of adding the other com-
ponents is a 4% increase in the mass. One must therefore expect that the
state is dominated by the P -wave components.
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Fig. 7. Contributions of the various quark+diquark orbital angular momentum
components to the canonical normalisation of the Poincaré-covariant wave func-
tion of a J = 3/2 baryon after rest-frame projection: there are both positive (above
plane) and negative (below plane) contributions to the overall positive normalisa-
tion. Left: ∆(1232). Right: First J = 3/2− excitation of the ∆(1232), which
can be identified with the ∆(1700)3/2− resonance. The interpretation legend is
provided in Fig. 5.

This expectation is confirmed by Fig. 7 (right), which shows that the
dominant contribution to the ∆(1700)3/2− canonical normalisation is pro-
vided by P -wave components. In addition, there are D-wave pieces, P ⊗D
interference is evident, and also some D⊗ F contributions. Thus, in poten-
tially accidental agreement with quark potential models, the ∆(1700)3/2−

is primarily a P -wave state, which, nonetheless, also possesses measurable
S-, D-wave components.

One way to test the wave function in Fig. 7 (right) is to use it as the basis
for predictions of the γ∗N → ∆(1700) transition amplitudes and a subse-
quent comparison with relevant data. In order to present such a comparison,
we first note that a γ∗N → ∆ transition is described by three Poincaré-
invariant form factors [80]: magnetic-dipole, G∗

M; electric quadrupole, G∗
E;

and Coulomb (longitudinal) quadrupole, G∗
C. They arise through consider-

ation of the N → ∆ transition current

Jµλ(K,Q) = Λ+(Pf )Rλα(Pf )iγ5Γαµ(K,Q)Λ+(Pi) , (1)

where Pi, Pf are, respectively, the incoming nucleon and outgoing ∆ mo-
menta, with P 2

i = −m2
N , P 2

f = −m2
∆; the incoming photon momentum

is Q = (Pf − Pi); K = (Pi + Pf )/2; and Λ+(Pi), Λ+(Pf ) are, respectively,
positive-energy projection operators for the nucleon and ∆, with the Rarita–
Schwinger tensor projector Rλα(Pf ) arising in the latter connection.
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In order to succinctly express Γαµ(K,Q), we define

Ǩ⊥
µ = T Q

µνǨν =
(
δµν − Q̌µQ̌ν

)
Ǩν , (2)

with Ǩ2 = 1 = Q̌2, in which case

Γαµ(K,Q)

= k
[
λm

2λ+

(
G∗

M −G∗
E

)
γ5εαµγδǨ

⊥
γ Q̌δ −G∗

ET Q
αγT Ǩ⊥

γµ − iς

λm
G∗

CQ̌αǨ
⊥
µ

]
, (3)

where k =
√

(3/2)(1+m∆/mN ), ς = Q2/[2Σ∆N ], λ± = ς+t±/[2Σ∆N ] with
t± = (m∆ ±mN )2, λm =

√
λ+λ−, Σ∆N = m2

∆ +m2
N , ∆∆N = m2

∆ −m2
N .

In terms of the Poincaré-invariant form factors, the directly measured
JP = 3/2− helicity amplitudes are expressed as follows:

A1/2

(
Q2

)
= − 1

4F1−

[
G∗

E

(
Q2

)
− 3G∗

M

(
Q2

)]
, (4a)

S1/2

(
Q2

)
= − 1√

2F1−

|q|
2m∆

G∗
C

(
Q2

)
, (4b)

A3/2

(
Q2

)
= −

√
3

4F1−

[
G∗

E

(
Q2

)
+G∗

M

(
Q2

)]
, (4c)

where

F1− =
mN

|q|
2mN

(m∆ −mN )

√
M
4πα

√
Q2

−
4mNm∆

, (5)

with α the quantum electrodynamics fine structure constant, M = [m2
∆ −

m2
N ]/[2m∆], and the magnitude of the photon three-momentum being |q| =√
Q2

+Q
2
−/[2m∆], Q2

± = (m∆ ±mN )2 +Q2.
∆(1700)3/2− transition electrocoupling data are available from JLab

[3, 76–79]. Thus, in Fig. 8, those data are compared with predictions for
these electrocoupling helicity amplitudes that were obtained using the q(qq)
framework in Ref. [48]. Evidently, and uniformly on x ≳ 2, i.e., above the
domain on which meson–baryon final-state interactions may play a role, the
predictions agree well with data, as was the case for the Roper resonance;
see Section 2. This agreement confirms the viability of the ∆(1700)3/2−

wave function in Fig. 8 (right).
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Fig. 8. Helicity amplitudes: γ∗p → ∆(1700)3/2− transition (2m̄ = mN+m∆(1700)).
Solid black curve — prediction obtained using the q(qq) framework in Ref. [48].
Data — Refs. [3, 76–79]. Upper left: A1/2. Upper right: A3/2. Bottom: S1/2.

5. Summary and perspective

The first baryon resonance, ∆(1232)3/2+, was discovered in the early
1950s, i.e., roughly eighty years ago. Ten years later, the Roper resonance
joined the collection. Today, the number of known baryon resonances is
very large; see, e.g., Ref. [13, Fig. 15.4], which is, notably, not exhaustive.
As baryons, these states are the most fundamental three-body systems in
Nature — they must all be understood, not only the isolated ground-state
nucleon.

On the other hand, supposing both that quantum chromodynamics (QCD)
is the theory underlying strong interactions and the degrees of freedom evi-
dent in the defining Lagrangian are all that one knows, then these states are
not three-body systems at all. Instead, they are complicated infinitely many-
body systems built from gluon and quark partons, whose only three-body
feature is their valence quark content; see Fig. 9. Numerical simulations of
lattice-regularised QCD approach the baryon problem from this direction:
ground states are readily accessible [81], but resonances are not [82].
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u

u

d

Fig. 9. Light-quark baryons contain three light-valence quarks, and infinitely many
gluon and sea-quark partons, drawn here as “springs” and closed loops, respectively.
This image is a sketch of the proton: two valence u-quark partons and one valence
d-quark parton. Adding strangeness, the number of possible baryon states increases
by a factor of at least three.

Herein, we have primarily discussed an alternative to lattice simulations,
namely, the continuum Schwinger function approach to hadron bound states.
In this case, baryons are three-body systems, in the sense that they are
built from three dressed-quark quasiparticle degrees of freedom, whose char-
acteristics are an expression of emergent hadron mass (EHM). EHM is a
powerful concept, whose beginning is found in the dynamical generation of
a gluon mass scale through gluon self-interactions; see Ref. [83] and citations
therein. Exploiting EHM via QCD’s Dyson–Schwinger equations (DSEs)
— the quantum Euler–Lagrange equations for the theory — all glue and
sea partons are sublimated into the dressed valence quarks at the hadron
scale [84]. Consequently, they are described by a momentum dependent mass
function, M(k2), which is large at infrared momenta, viz. for light quarks,
M(0) ≈ mN/3; see Ref. [9, Sec. 2C].

The valence-quark quasiparticle picture has passed many experimental
and theoretical tests, e.g., delivering sound predictions for nucleon elastic
electromagnetic and gravitational form factors [48, 51] and a large array
of unpolarised and polarised proton parton distribution and fragmentation
functions [52–54, 89]. The majority of studies have hitherto employed the
quark+fully-interacting diquark, q(qq), simplification of the baryon prob-
lem. Herein, we have sketched some of its applications to the study of
baryon resonance electroexcitation. (Spectrum studies — q(qq) and 3-body
— are provided, e.g., in Refs. [19, 22, 90, 91].) As noted, too, other q(qq)
predictions for electroexcitation amplitudes will soon be released.
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The near future will see completion of work on the study of resonance
excitation using Poincaré-covariant wave functions obtained from the direct
3-body Faddeev equation sketched in Fig. 10. Where comparisons are al-
ready available, q(qq) and 3-body predictions are compatible. Notwithstand-
ing that, the approximations implicit in the q(qq) simplification should be
checked in all areas. Then the tightest possible links can be forged with QCD
and science can arrive at a robust understanding of the nucleon and all its
resonances, viz. the spectrum and structure of Nature’s most fundamental
three-body systems.

P

p1

p2

p3

α

β

γ

= Σ{3, 1, 2}

P

p1

p2

p3

α

β

γ

ΨΨ

G
k

S

S

Fig. 10. Three-body Faddeev equation for a baryon with total momentum P =

p1 + p2 + p3, drawn in rainbow-ladder (RL) truncation, which is leading order
in the systematic, symmetry-preserving DSE approximation scheme introduced in
Refs. [85, 86]. Filled circle: Faddeev amplitude, Ψ , the matrix-valued solution,
which involves 128 independent scalar functions. Spring: dressed-gluon interaction
that mediates quark+quark scattering; see Refs. [87, 88]. Solid line: dressed-quark
propagator, S, calculated from the rainbow gap equation. Lines not adorned with
a shaded circle are amputated. Isospin symmetry is assumed. The sum runs over
each of the cases involving quark “i = 1, 2, 3” as a spectator to the gluon exchange
interaction.
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