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The theory of nuclear excitations involving nucleon resonances is revis-
ited and significantly extended to asymmetric nuclear matter and higher
P - and S-wave N∗ resonances. Excited states are described as superposi-
tions of particle–hole configurations including NN

′−1 and N∗N−1 config-
urations. The configuration mixing is taken into account on the one-loop
level by solving the generalized N∗RPA Dyson equation. The underlying
coupled channels formalism is derived and the response functions are dis-
cussed. Applications of the approach are illustrated for charge-exchange
modes of asymmetric nuclear matter and finite nuclei. The spectral gross
structures of corresponding excitations in finite nuclei are investigated in
the local density approximation. Applications of the approach to resonance
studies by high-energy heavy-ion reactions are recapitulated.
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1. Introduction

An exciting feature of nuclei is their large variety of dynamical modes,
covering single particle degrees of freedom to quasi-elastic (QE) collective
rotations and vibrations, passing over into the resonance (RE) region with
excitations of the medium involving excited nucleons and entering the deep-
inelastic sector. While single particle and quasi-elastic modes probe merely
the collective properties of a quantum mechanical many-body system gov-
erned by the low-energy limit of strong interactions, in-medium resonance
excitations penetrate into the sub-nuclear regions, offering unique oppor-
tunities to study the polarization of the nucleon in the dense environment
of nuclear matter. In the interior of a heavy nucleus, nucleons are densely
packed with an average separation of r0 ∼ 1.14 fm which is about the diam-
eter of a nucleon. Nuclear many-body theory has developed a sophisticated
framework of methods for dealing with these peculiarities, ranging from
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mean-field dynamics and collective models to self-consistent microscopic ap-
proaches allowing one to describe quite precisely nuclear masses and ground
state properties and the response functions observed by probing nuclei with
various external probes.

Quite recently, peripheral heavy-ion charge exchange reactions, probing
hadronic charged current (CC) modes of nuclei, were performed at the FRS
fragment separator at GSI and will be continued at the Super-FRS at FAIR.
Heavy-ion beams of 1AGeV incident energy were used to study both types
of CC response, τ+ modes populating pn−1 configurations, and the comple-
mentary τ− modes populating np−1 configurations. In a heavy-ion reaction,
a τ+ process in one nucleus is accompanied by a τ− transition in the other nu-
cleus, as required by charge and isospin conservation. In an A(Z,N) nucleus
with Z protons and N neutrons, however, isospin symmetry is spontaneously
broken.

Grazing heavy-ion reactions provide the proper conditions for spectro-
scopic investigations. Hence, peripheral reactions are the method of choice
for large-scale studies of various aspects of nuclear spectroscopy from quasi-
elastic (QE) over resonance (RE) excitations to deep-inelastic (DIS) scatter-
ing [1–4]. The existing FRS@GSI, previously and presently used for studies
of exotic nuclei, is well suited for measurements of CC reactions, allowing
even the use of unstable beams [5, 6]. Typical FRS-results for a 112Sn beam
are shown Fig. 1, populating simultaneously τ± ejectile channels 112Sb and
112In, respectively, while the target system is exposed to the complementary
τ∓ processes. The data show clearly the wealth of information gained by CC
reactions at AGeV energies, namely reaching deeply into the RE region.

Fig. 1. Missing energy spectrum obtained in a 112Sn → 112In reaction on a proton
and a carbon target, in the latter case showing clearly separated quasi-elastic and
resonance peaks. Note the shift in the resonance peak for the two targets (from
Ref. [5]).
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The presently available, highly valuable data are on inclusive cross sec-
tions, resolving spectroscopic details or decay channels. However, the clearly
resolved two-component structures are signatures of the change from nucleon
N ′N−1 QE modes to N∗N−1 RE excitations. The purpose of this work is
to present updated theoretical methods which allow one to describe the en-
ergy distributions of heavy-ion CC reactions over large ranges of excitation
energies, filtering out the global — and universal — features of QE and RE
spectra.

In order to access the phenomena expected in the experimentally covered
energy regions, a configuration space of nucleons and — short-lived — nu-
cleon resonances will be used. The theoretical discussion is centered around
the first two excited nucleon states, the Delta resonance, P33(1232), and the
so-called Roper resonance, P11(1440) [7, 8]. The formalism, however, is open
to extensions of the spectrum of N∗ components.

The Delta resonance — the first-ever observed excited state of the nu-
cleon [9] — has long been a safely confirmed member of the baryon decuplet.
The Roper resonance, observed as the second of kin by Roper [10], has re-
mained a controversial case which can hardly be assigned to a definite SU(3)
multiplet. Since that state carries the same spin–isospin quantum numbers
as the nucleon, the puzzling situation occurs that quark models prefer to
interpret P11(1440) as a radial, i.e. compressional excitation of the nucleon.
However, that is in conflict with hadron spectroscopy which assigns a strong
nucleon–meson component to the same state, see the PDG compilation [7]
and e.g. [11]. The latest experimental and theoretical results, summarized
in [12], strongly favor the picture that P11(1440) is indeed a state composed
of a qqq core but which is surrounded by a substantial meson cloud.

In this paper, the focus will be solely on modeling the nuclear CC re-
sponse functions which were used in [5, 6] to interpret the cross-section data.
At the high-beam energies of the experiment, ISI/FSI could be treated in the
Glauber theory. CC modes are of general interest, much beyond exploring
reaction mechanisms and isovector nuclear spectroscopy. For example, spec-
tra of that kind are playing a central role in neutrino-matter interactions as
emphasized by the NuSTEC Collaboration [13], being studied theoretically
by similar methods as will be discussed in the forthcoming sections [14, 15].
Transport-theoretical studies consider the same processes under slightly dif-
ferent aspects and with different theoretical methods [16–19].

Investigations of the dynamical properties of a quantum mechanical
many-body system depend, by obvious reasons, on the proper description of
the ground state relative to which dynamics are defined and are explored.
In this respect, approaches like those of [14, 15] are incomplete, irrespective
of their (relative) success and their importance for the theory of CC lepton–
nucleus interactions. An intrinsically closed approach is obtained by the
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energy density functional (EDF) theory and the methods of density func-
tional theory (DFT). A nuclear EDF is a functional of the field operators
of the active (massive) particles. In our case, these are primarily protons
and neutrons, defining the background medium, supplemented by nucleon
resonances N∗ which, by interaction with an external probe, are enforced
into N ′N−1 nucleon–nucleon and N∗N−1 resonance–nucleon particle–hole
modes. The decisive theoretical step is how to combine the nuclear many-
body environment and the phenomenology of short-lived baryon resonances.
The EDF approaches aim at a scheme for the systematic treatment of the
various aspects of many-body dynamics from ground-state properties to soft
collective excitations and to hard collisional modes. The EDF theory per se
does not attempt a so-called ab initio modelling of nuclear systems but does
not exclude such an approach [21], albeit it is unclear whether the power
counting schemes developed under free space conditions is the same in high-
density nuclear matter. A major advantage of the EDF approach is that
inconsistencies are avoided which may arise when incompatible interactions
and theoretical methods are used.

The Giessen EDF (GiEDF) approach is based on microscopic descrip-
tions of NN interactions. Interactions are derived from covariant Dirac–
Brueckner G-matrices [22–26] and non-covariant Hartree–Fock–Brueckner
G-matrices [27–29], both supplemented by density-dependent (static) many-
body correlations as practiced in the Urbana approach, see e.g. [20]. The
three-body additives are mainly done for infinite nuclear matter, while ad-
justments to nuclear data are avoided. In Fig. 2, the important interplay
of two-body NN dynamics and many-body corrections of the three-body
resonance type in the static limit are illustrated for GiEDF results on the
binding energy per nucleon of infinite symmetric nuclear matter.

Fig. 2. Binding energy per nucleon of symmetric nuclear matter obtained with the
GiEDF without (blue line/green symbols) and with many-body corrections (red
line/purple symbols) of the Urbana model UIX as used in [20]. The ladder and
three-body resonance contributions are indicated.
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In the following sections, the theory of nuclear charged current spec-
troscopy by response functions of nucleonic and resonance excitation modes
will be summarized, thereby generalizing former versions [1, 30] to an en-
larged set of resonances. The aim is to describe nuclear CC response func-
tions over large energy ranges up to the onset of deep-inelastic interactions
in the GeV region. Results for spectra of τ+ and τ− spin–scalar (Fermi-type)
and spin–vector (Gamow–Teller-type) modes and the corresponding longitu-
dinal and transversal spectra are presented. Formal details on propagators
and transition operators are explained in the appendices. The paper closes
with a summary and outlook.

2. Theory of NN
′−1 and N∗N−1 excitations

2.1. Energy density functionals and interactions

The prototype of a purely phenomenological nuclear density functional is
the widely and successfully used non-relativistic Skyrme model [31], parame-
terized by kinetic energy densities and a set of contact interactions. A micro-
scopically approach based on two-body interactions was investigated in [32]
and with the density matrix expansion, a Skyrme-like EDF could indeed be
derived — albeit suffering from the lack of many-body interactions. On the
covariant side, inspired by the early work of Walecka and Serot [33, 34], phe-
nomenological Relativistic Mean-Field (RMF) models have become popular.

Under the theoretical aspect, energy density functionals are the Hamil-
tonian density belonging to a field-theoretical Lagrangian. However, for
investigation of many-body systems, defined by a pre-defined, fixed num-
ber of protons, neutrons, and eventually other baryons, it is of advantage
to change coordinated from matter field operators to invariant binomials of
matter field operators. Symmetries and conservation laws are conserved if
the binaries are chosen such that they are related to the conserved quantum
numbers of the system. A basic quantity of that kind is the baryon num-
ber. The related Lorentz-invariant operator is the baryon four-current jµ
which defines the invariant number density of a system with A particles in
its ground state |A⟩, ρA =

√
⟨A|jµjµ|A⟩ [35] — as exploited in Hohenberg–

Kohn [36] and Kohn–Sham [37]. Since jµ =
∑

B Ψ̄BγµΨB is a binomial of
the baryon field operators, the related squared density operator ρ̂ = jµj

µ

defines the mentioned change of coordinates.
Once the reference system is chosen, e.g. a nucleus A(Z,N) or infinite

nuclear matter composed of proton and neutron densities or neutron star
matter of certain composition, we may investigate the response of the system
of infinitesimal variations δρB of the matter densities. That is achieved
by a Taylor series expansion in the abstract functional density operator
space around the expectation value EA(ρA) ≡ E(ρA), ρA = ⟨A|ρ̂ |A⟩ as
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investigated in Fermi-liquid theory [38, 39]. Up to the second order, one
finds

E(ρ̂ ) ≈ EA(ρA) +
∑
B

δρBUB(ρA) +
1

2

∑
B,B′

δρBδρB′FBB′ , (1)

which is a harmonic approximation in (a high-dimensional) density space.
Particle–particle interactions and pairing mean-fields are easily added. The
generated terms are of physical relevance: EA(ρA) is the total mass of the
reference state A, the latter playing the role of a vacuum state, the first
variational derivatives describe the response of the system to the removal or
addition of particles of kind B, giving access to mean-field potentials (and
energies) of the constituents B. FBB′ are the restoring forces (Landau–
Migdal parameters) of the system against number density variations which
define the residual interactions by which dynamical processes are governed.

If E was defined with effective, density-dependent in-medium two-body
interactions VBB′(ρ̂ ), one finds

UB(ρA) =
∑
B′

VBB′(ρA)ρB′ +
1

2

∑
BB′

ρB′ρB′′
δ

δρB |ρA
VB′B′′(ρA) . (2)

The restoring forces are found as

FBB′(ρA) = VBB′(ρA) +
∑
B′′

ρB′′

(
δ

δρB
VB′B′′(ρA) +

δ

δρB′
VBB′′(ρA)

)
+
1

2

∑
B1,B2

ρB1ρB2

δ2

δρBδρB′ |ρA
VB1B2(ρA) . (3)

The additional variational derivative terms are indispensable for the thermo-
dynamical consistency of the theory [23, 35] as expressed by the Hugenholtz–
van Hove theorem [40].

2.2. Response function formalism for N∗ configurations

Formally, the approach appears as a one-particle–one-hole (1p1h) type
Random Phase Approximation (RPA) which, however, incorporates mean-
field self-energies as used in Fig. 2 and higher-order contributions by nu-
cleons and resonance in-medium self-energies. Thus, the basis states are
dynamically dressed quasi-particles. The single hole and particle spectrum
is illustrated in Fig. 3. N∗ states include self-energies induced by their decay
where in-medium modifications, as e.g. Pauli-blocking and pion absorption,
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are taken into account in analogy to the approach of Oset and Salcedo [41].
Analyticity is conserved only if both the real and the imaginary parts of the
energy-dependent dispersive polarization self-energies are used.

Fig. 3. Schematic illustration of the spectrum relative to the chemical potential λ of
the hole state and particle state which are located to the left and to the right of λ,
respectively. In cold degenerate matter, the chemical potential is given by the Fermi
energy εFq of baryon type q = p, n . . . In momentum space, the hole occupation
numbers are given by the Heaviside distribution n(k) = n<(k) = Θ(k2Fq − k2)

while particle states are populated complementary, n(k) = n(k)> = 1 − n<(k) =

Θ(k2 − k2Fq).

The creation of a resonance in a nucleus amounts to transforming a nu-
cleon into an excited intrinsic state. Thus, the nucleon is removed from the
pre-existing Fermi sea and an N∗N−1 configuration is created. That state
is not an eigenstate of the many-body system but starts to interact with the
background medium through residual interactions VNN∗ . The appropriate
theoretical framework for that process is given by the polarization propa-
gator formalism [42], also underlying, for example, the former approaches
in [16, 18, 43].

For the non-interacting system, the generalized particle–hole (ph) prop-
agator is given by a block-diagonal matrix

G(0)(ω, q) =

(
G

(0)
NN−1(ω, q) 0

0 G
(0)
N∗N−1(ω, q)

)
, (4)

where G(0)
NN−1 and G

(0)
N∗N−1 describe the propagation of particle–hole (i.e. two

quasi-particle) NN−1 and N∗N−1 states, modified by the nuclear medium
by mean-field interactions UN,N∗(ρ) and dispersive self-energies ΣN,N∗(ω, q)
— depending also on the density of the background medium — and de-
cay self-energies for the unstable resonances, as displayed in Fig. 4. Since
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G
(0)
N∗N−1 represents the whole subspace of resonances, it is actually a diagonal

sub-matrix of dimensionality equal to the total number of resonances.

Fig. 4. In-medium interactions of a baryon resonance N∗ via the static mean-
field (left) and the dispersive polarization self-energies (center) indicated here by
the decay into intermediate nucleon–meson configurations. Moreover, in nuclear
matter, the coupling to NN−1 excitations contributes a spreading width (right).
Wavy lines indicate the exchange mesons π, η, σ, δ/a0(980), ρ, ω.

These propagators are given by the Lindhard functions for four-momen-
tum transfer k = (k0,k)

T , defined by integrations over the product of a hole
propagator GN and a particle-state propagator GP [44]

ϕNP (k) = i

∫
d4p

(2π)4
GN (p)GP (p+ k) . (5)

Depending on the kind of isospin mode, GN (p) is a neutron– or proton–hole
propagator, while GP (p) is either the particle propagator of the complemen-
tary type of nucleon or a resonance propagator. The formulation is oriented
on the (non-relativistic) many-body framework of Ref. [42]. The formalism
is of general character and applicable to any isospin and spin-parity states,
see e.g. the recent study of ω–nucleus interactions [45, 46].

The propagator of proton and neutrons (in spectroscopic notation P11(940)
[7]) is

GN (p) =
1

p0− ε(p)−ΣN (p2) + i0
+ 2πi n(p)δ

(
p0− ε(p)− Re

[
ΣN

(
p2
)])

,

(6)
where the second term accounts for the contributions of the Fermi sea, occu-
pied by the probabilities n(p) at four-momentum p = (p0,p)

T . The propaga-
tor of nucleon-like P11 resonances is of the same structure but with n(p) = 0.
Single particle energies, including the static mean-field self-energies, are de-
noted by εN .
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Delta-resonances and resonances of higher spin obey their specific covari-
ant wave equations and propagators which were studied e.g. in [47, 48]. For
the present purpose, Delta propagation is described by a simplified Rarita–
Schwinger propagator which non-relativistically is

Gµν
∆ (p) =

1

p0 − ε∆(p)−Σ∆ (p2) + i0
δµν . (7)

After the contour integration over p0 nucleon, the particle-nucleon-hole
Lindhard function attains the form

ϕN (k) = −
∫

d3p

(2π)3

(
n(p+k)(1−n(p))

ε∗(p+k)−k0−ε∗(p)+i0
+

n(p)(1−n(p+k))

ε∗(p)+k0−ε∗(p+k)+i0

)
(8)

being summed over spin projections s, s′. P11 resonances are described ac-
cordingly, but with ns′ = 0 and the Delta particle-nucleon-hole Lindhard
function becomes

ϕ∆(±k) = −
∫

d3p

(2π)3
n(p)

ε∗N (p)− ε∗∆(p± k)± k0
. (9)

The in-medium energies ε∗N,∆(p) = εN (p) + ΣN,∆(p) include dynamical
self-energies. Since the single particle self-energies were chosen as spin-
independent, the propagators apply equally to all spin states of nucleons
and resonances. In Appendix A the properties of the Lindhard function in
ANM are discussed in detail.

The residual NN−1 and N∗N−1 interactions are contained in

V =

(
VNN VNN∗

VN∗N VN∗N∗

)
. (10)

The Green function of the interacting system is given by the Dyson equation
of the 4-point function

G(ω, q) = G(0)(ω, q) + G(0)(ω, q)VG(w, q) . (11)

Since polarization self-energies induced by the coupling to higher-order con-
figurations are included, the approach is, in fact, a projection to the one-
particle–one-hole sector, corresponding to an extended Random Phase Ap-
proximation (RPA) of nucleons and resonances.

2.3. Response function formalism

The coherent response of the A = Z + N nucleon system with ground
state |A⟩ to an external probe with the operator Oa(q) ∼ eiq·rσSaτTa , where
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a = (Sa, Ta) denotes scalar and vector spin (Sa = 0, 1), isospin (Ta = 0, 1)
and momentum (q) transfer, via (∼ eiq·r), is described by the polarization
propagators of the non-interacting system

Π
(0)
ab (ω, q) = ⟨A|O†

bG
(0)(ω, q)Oa|A⟩ . (12)

The polarization propagators of the interacting system for the chosen set of
operators is

Πab(ω, q) = ⟨A|O†
bG(ω, q)Oa|A⟩ , (13)

and obey the Dyson equation(
ΠNN ΠN∆
ΠN∗N ΠN∗N∗

)
=

(
Π

(0)
NN 0

0 Π
(0)
N∗N∗

)

+

(
Π

(0)
NN 0

0 Π
(0)
N∗N∗

)(
VNN VNN∗
VN∗N VN∗N∗

)(
ΠNN ΠNN∗
ΠN∗N ΠN∗N∗

)
, (14)

which is illustrated diagrammatically in Fig. 5.

Fig. 5. The RPA polarization propagator. The N−1N → N−1N (left), the mixed
N−1N → N−1∆ and the N−1∆ → N−1∆ components are displayed. Also, the
bare particle–hole-type propagators are indicated. External fields are shown by
wavy lines, the residual interactions are denoted by dashed lines. Only part of the
infinite RPA series is shown.

Once the polarization propagator is known, observables are easily cal-
culated. The response functions, i.e. the spectral distribution of transition
strengths, are defined by

Sab(ω, q) = − 1

π
Im [Πab(ω, q)] . (15)

Summations over spin quantum numbers are implicit.



Nucleon Resonances in Nuclear Matter and Finite Nuclei 2-A14.11

3. CC response functions of asymmetric nuclear matter

3.1. Lindhard function in asymmetric matter

The translation invariance of infinite matter simplifies calculations sig-
nificantly. Single particle wave functions are given by plane waves times
a spin–isospin wave function. The matrix elements of V = V(q) are then
given by the Fourier–Bessel transforms of the respective particle–hole two-
body interactions and spin-isospin matrix elements. The same is true for
the matrix elements of the one-body operators Oa,b.

Investigations of asymmetric infinite nuclear matter (ANM) have to ac-
count for the spontaneously broken isospin symmetry by the imposed dif-
ference in proton and neutron content. That is taken into account by intro-
ducing separate proton and neutron propagators which are distinguished by
different ground-state occupation numbers as defined by the respective Fermi
momenta kFp ̸= kFn or, in a more general context, the respective chemical
potential λp ̸= λn. As a consequence, also the particle–hole propagators
double in number by requiring not only pn−1 and np−1 4-point functions
but also N∗n−1 and N∗p−1.

In leading order, i.e. mean-field approximation, the nucleon ground-
state occupation numbers are given by the Heaviside distributions, nq(p) =
Θ(kFq − |p|) for q = p, n and the respective Fermi momentum kFq. Hence,
the pn−1 Lindhard functions of τ+ modes are

ϕ
(+)
N (ω, q) = ϕnp(ω + iη, q)− ϕ̃pn(ω − iη, q) , (16)

where η → 0+. With w = ω + iη, the so-called time-forward amplitude is
defined by

ϕpn(w, q) = −
∫

d3k

(2π)3
Θ(kFp − k)Θ(|k + q| − kFn)

w − ε∗n(k + q) + ε∗p(k)−Σnp(ω, q)
, (17)

and the time-backward amplitudes are

ϕ̃pn(w, q) = −
∫

d3k

(2π)3
Θ(kFp − |k + q|)Θ(|k| − kFn)

−w∗ − ε∗p(k + q) + ε∗n(k)−Σpn(ω, q)
. (18)

In the resonance sector, the backward amplitudes do not appear. Corre-
spondingly, the N+N−1 Lindhard functions of the nucleon-resonance
modes are changed into the set of distinct N∗p−1 and N∗n−1 Lindhard
functions. Further details on the structure and properties of the Lindhard
functions are found in Appendix A.
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3.2. CC response of asymmetric infinite nuclear matter

In the concrete case of numerical calculations on the τ± modes of ANM,
the configuration space was built of protons, neutrons, the P11(1440) Roper
and the P33(1232) Delta resonance. The τ+ modes then involve pn−1 quasi-
elastic excitations. In the inelastic resonance region, one finds the corre-
sponding Roper mode P+

11n
−1 and two Delta modes, P+

33n
−1 and P++

33 p−1.
The Roper and Delta modes also contribute to the τ− sector, where, in
addition to np−1 excitations, the spectra contain the Roper mode P 0

11p
−1

and the two Delta modes, P 0
33p

−1 and P−
33n

−1. Hence, in ANM, the main
contributions to the τ+ and τ− excitations are built on different nucleon
Fermi seas which, however, become mixed by Delta modes. In symmetric
nuclear matter (SNM), the same kind of spectral features are found, but
since isospin symmetry is restored in SNM, the τ± response function will be
equal. The same composition and features will be found in the CC spectra
of finite nuclei. However, electromagnetic effects will inhibit even in N = Z
nuclei the full restoration of isospin symmetry.

In Fig. 6, response functions of ANM with 10% neutron excess (ζ =
Z/A = 0.4) for the τ− member of the iso-triplet of longitudinal CC spin op-
erators O(τ )

L = σ ·pτ± are displayed, illustrating the density dependence and

Fig. 6. Longitudinal RPA response functions for the operator σ ·pτ− in asymmetric
nuclear matter with a proton content of 40%. In the upper and lower rows, the
results at total density ρ = 1

2ρsat and ρ = ρsat = 0.16 fm−3 are shown. In the
left column and the right column, the response functions at momentum transfer
q = 300 MeV/c and q = 500 MeV/c, respectively, are displayed.
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the dependence on the three-momentum transfer. With increasing density,
an upscaling of the spectral distribution is seen, reflecting the enlargement
of the Fermi spheres with increasing density. The momentum dependence is
significantly stronger as seen by the broadening of the quasi-elastic compo-
nent and the gain in strength and width of the Delta and Roper contribu-
tions.

The (pseudo-scalar) longitudinal operator is of special interest because
it is the pion–nucleon vertex. The complementary transversal iso-triplet of
(vector) operators O(τ )

T = (σ×p)τ , describing the ρN isovector-spin vector
vertices. Other operators of interest — also for weak CC processes — are
the spin–scalar (Fermi) operator F (τ ) = τ and the spin–vector (Gamow–
Teller) operator G(τ ) = στ , both promoting NC and CC transitions. In
Appendix B, (one-body) transition operators are represented in second quan-
tization.

3.3. In-medium N∗ spectral distributions

The density and momentum dependencies are largely driven by the com-
bined action of static mean-field and dynamical in-medium self-energies.
Nucleon and resonance propagators include mean-field potentials, effective

Fig. 7. Spectral distribution of the P -wave resonances in free space (blue lines) and
in infinite nuclear matter at a selection of densities as indicated.
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kinetic masses and polarization self-energies from the coupling to particle-
hole modes of the background medium, for resonances being supplemented
by the decay self-energies. The latter are corrected for Pauli-blocking and
in-medium pion absorption, using an updated version of the Oset–Salcedo
model [49]. As seen Fig. 7, the net effect is a shift of the peak positions
towards lower energies, caused by mean-field attraction and the real part of
the self-energies, accompanied by a reduction in width. The relocation re-
duces the phase space available for decay and Pauli-blocking and increased
pion absorption act in the same direction to reduce the resonance decay
width in nuclear matter.

4. Charged current response functions in finite nuclei

4.1. Local density approximation

An elegant method for investigating the global spectral properties of
finite nuclei, focused on universal features, is the Local Density Approxi-
mation (LDA). The LDA amounts to use infinite matter response functions
for ANM of the same asymmetry as the nucleus A(Z,N) under scrutiny,
ζ = Z/A, but using local Fermi momenta kFq → kFq(r) = (3π2ρq(r))

1
3 ,

where for q = p, n ρq(r) is the (self-consistent HF/HFB) ground-state den-
sity, preferentially obtained by the same interaction model as used in the
ANM calculations. That approach was used in the aforementioned spec-
tral studies for the FRS experiments [5, 6]. The response functions of the
nucleus A are obtained by integration of their LDA spectral distribution

S
(A)
ab (ω, q) = − 1

π

∫
d3r Im

[
Π

(LDA)
ab (ω, q|ρA(r))

]
. (19)

In Fig. 8 and Fig. 9, the τ± longitudinal and transversal response func-
tions for 12C are shown. The momentum dependence shows the same fea-
tures as in ANM, although 12C is an N = Z nucleus with asymmetry ζ = 0.5.
Aside from minor differences in detail, overall, the longitudinal and transver-
sal response functions are rather similar. Noteworthy is the string contribu-
tion of the Roper resonance. That nucleon partner state plays a prominent
role in the CC response.

The features found in ANM and 12C are also visible in the τ± longitudinal
and transversal response functions in 208Pb, shown in Fig. 10 and Fig. 11,
respectively. With that heavy nucleus, the resonance components appear to
be enhanced. The Roper resonance component is especially enhanced in the
208Pb → 208Bi τ+ case which is largely caused by the optimal overlap of the
isospin wave functions within the P11 multiplet.
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Fig. 8. Longitudinal spin–isospin response functions per nucleon for 12C → 12N
(upper row) and for 12C → 12B (lower row). In the left column, the results at
momentum transfer q = 300 MeV/c and in the right column, the results at q =

500 MeV/c are shown.

Fig. 9. Transversal spin–isospin response functions per nucleon for 12C → 12N
(upper row) and for 12C → 12B (lower row). In the left column, the results at
momentum transfer q = 300 MeV/c and in the right column, the results at q =

500 MeV/c are shown.
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Fig. 10. Longitudinal spin–isospin response functions per nucleon for 208Pb → 208Bi
(upper row) and for 208Pb → 208Tl (lower row). In the left column, the results
at momentum transfer q = 300 MeV/c and in the right column, the results at
q = 500 MeV/c are shown.

Fig. 11. Transversal spin–isospin response functions per nucleon for 208Pb → 208Bi
(upper row) and for 208Pb → 208Tl (lower row). In the left column, the results
at momentum transfer q = 300 MeV/c and in the right column, the results at
q = 500 MeV/c are shown.
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4.2. Comparison to data

As mentioned before, the theoretical studies were motivated by experi-
ments investigating peripheral CC heavy-ion reactions at relativistic beam
energies. Details on the experiments, the measurements, and data reduction
together with detailed descriptions of the treatment of initial- and final-state
interactions by the Glauber theory are found in [5, 6].

As an illustration of the — at first sight surprising — success of the com-
bined Glauber-plus-EDF and N∗RPA LDA approach, the energy-differential
cross sections for CC reactions of a 112Sn beam at 1AGeV on a 12C target
are shown in Fig. 12. Inclusive cross section results for the τ+-exit channel
112Sb and the complementary τ−-exit channel 112In are displayed. The re-
lated target-like τ∓ residual systems are not resolved. They are constrained
only by the total baryon number AT = 12 and the respective residual charge
number Z− = ZT − 1 = 5 and Z+ = ZT + 1 = 7, hence will include an un-
resolved number of mesons, leptons, and photons.

Fig. 12. Energy distributions of CC reactions of a 112Sn beam at 1AGeV on a
12C target. On the left, the energy-differential cross section recorded for 112Sb
ejectiles and an X = 12B-like residual system constrained only by the baryon
number AT = 12 and the total charge Z− = ZT−1 = 5 is shown. On the right, the
energy distribution for the complementary exit channel 112In, accompanied by an
X = 12N-like residual target system with Z+ = ZT+1 electric charges, is displayed.
The partial contributions of projectile and target excitation are indicated.

5. Summary and outlook

Nuclear CC modes are of large importance for understanding nuclear
dynamics in the isospin sector. Since in the long history of studies with light-
ion charge exchange reactions, the low-energy quasi-elastic modes as the
spin–scalar Fermi isobaric analog resonance (IAR) and spin–vector Gamow–
Teller resonance (GTR) were in the center of interest, relativistic heavy-
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ions beams have opened the window to large scale, systematic spectroscopic
studies over energy regions covering the full range of quasi-elastic CC modes
and penetrating deep into the sector of resonance excitations.

In this paper, an EDF-based theoretical approach has been presented
which allows one to describe the spectrum of involved nuclei microscopically.
Mean-field dynamics and residual interaction were derived by first and sec-
ond variation from the same EDF thus guaranteeing thermodynamical and
mechanical consistency between the static and the in-medium dynamical
parts of the nucleon resonance self-energies. Hence, N and N∗ propaga-
tors are compatible which will reduce the model-dependent uncertainties.
Polarization propagators were derived in the extended RPA approximation,
including higher-order many-body polarization effects by particle and hole
density- and energy-dependent in-medium self-energies. The approach is
open for extension of various kinds. An obvious one is to add more res-
onances, e.g. the spectrum of higher-lying P11 and P33 and the other P -
wave states, P13 and P31. The roles of S-wave and higher spin resonances
are largely unexplored although they are considered in transport-theoretical
models of CC reactions, e.g. [19].

Peripheral heavy-ion CC reactions at relativistic energies have a large,
yet to be explored, research potential for investigations of the transitional
region of quasi-elastic to resonance excitations. Combined with pion spec-
troscopy, which is under preparation for the upcoming FAIR@GSI facil-
ity, data of a new quality will give insight into the spectral region of sub-
nucleonic degrees of freedom.

The intense and fruitful collaboration with J.L. Rodríguez-Sánchez,
J. Benlliure, H. Geissel (deceased 2024), and I. Vidaña are gratefully ac-
knowledged. This work was supported in part by DFG, grants Le439/16
and Le439/17.

Appendix A

Spin and isospin structures of propagators in asymmetric nuclear matter

In particle–spin representation, the one-particle–one-hole (1ph) propa-
gators are given as

G(0)(ω, q) =
∑
fpfh

|fpfh⟩G
(0)
fpfh

(ω, q)⟨fpfh| , (A.1)

where |fpfh⟩ are the spin–isospin wave functions of the particle–hole states.
Hole states are always given by nucleons N = p, n with spin and isospin
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sN , tN = 1
2 , where proton and neutron are carrying isospin charges qp =

+1 and qn = −1, respectively. Particle states are either nucleons or ex-
cited states N∗ of the nucleon. The resonances N∗ considered here in-
clude sN∗ , tN∗ = 1

2 states such as the Roper resonances, P11(1440) and
sN∗ , tN∗ = 3

2 P33-resonances, i.e. the Delta states. For spin–scalar 1ph
self-energies and spin-saturated matter, as assumed here, the propagators
are independent of magnetic spin-quantum numbers. Under that proviso,
response functions for spin transitions of different kinds do not mix, i.e. tran-
sitions with spin transfer S = 0 decouple from those with S = 1. Likewise,
longitudinal and transversal spin modes decouple accordingly.

The solution of the Dyson equation for the purely nucleonic excitations
requires evaluating polarization propagators of the kind

Π
(0)
aα,bβ = ⟨0|σβτbG(0)τaσα|0⟩ , (A.2)

where in spherical representation α, β = 0,±1 and accordingly for the isospin
operators.

We consider first the spin degrees of freedom only. From Eq. (A.1) and
by means of the results derived in Appendix B, such expressions are readily
evaluated. Under the given constraints, the summation over the magnetic
spin quantum numbers can be performed, leading to δαβ and only the pieces
diagonal in the spin operators survive which, in fact, are independent of the
projection quantum numbers. Since in our convention the reduced matrix
element for the unity operator 1 coincides in value with R

(1)
1
2

1
2

= R
(σ)
1
2

1
2

=
√
2,

we can write for configurations involving spin-12 particle and hole states

Π
(0)
N∗N = R

(σ/1)2
1
2

1
2

G
(0)
fN∗

p
fNh

= 2G
(0)
fN∗

p
fNh

, (A.3)

where now N∗ includes nucleon particle states as well.
The complexities of the composition of the system under consideration

are still contained in the reduced propagators. Different from the widely
cited and used expression found in [44], here we have to account for differ-
ences in particle and hole masses which change the momentum structure of
the propagators. Moreover, in asymmetric nuclear, the different content of
protons and neutrons leads to a spontaneous breaking of isospin symmetry,
reflected in two essential entities: Dynamically, isovector self-energies appear
in the particle and the hole sector, and statistically, protons and neutrons
occupy Fermi seas of different Fermi momenta, kFp ̸= kFn . These two kinds
of effects are showing up especially in charge-exchange excitations which
connect different baryon sectors. Either of those effects inhibits to perform
the summation over isospin projections in closed form.
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Including isospin, we find for configurations with isospin-12 particle and
hole states

Π
(0)
N∗N = R

(σ/1)2
1
2

1
2

R
(τ/1)2
1
2

1
2

(tpqpth − qh|κq)
(
tpqpth − qh|κ′q′

)
P

(N∗N)
kFpkFh

= 4 (tpqpth − qh|κq)
(
tpqpth − qh|κ′q′

)
P

(N∗N)
kFpkFh

(A.4)

allowing for isospin transitions with κ = 0, 1, where charge-exchange transi-
tions proceed by κ = 1 isovector transitions only. The remaining propagator,
stripped off spin and isospin matrix elements, is evaluated as retarded prop-
agator

P
(N∗N)
kFpkFh

(ω, q) =

∫
d3k

(2π)3
(
Xph(ω, q,k)− Y ∗

ph(ω, q,k)
)
, (A.5)

where for cold (T = 0) nuclear matter,

Xph(ω, q,k) =
Θ
(
|k + q|2 − k2Fp

)
Θ
(
k2Fh

− k2
)

Ep(k + q)− Eh(k)− ω − iΓph(ω)/2
(A.6)

and Y ∗
ph(ω, q,k) = Xph(−ω, q). The energies are taken to include rest

masses, mean field and dispersive self-energies, e.g.

Ep(kp) = m∗
p +

k2p
2m∗

p

+ Up +Re(Σp(ω)) (A.7)

and correspondingly for Eh. The imaginary parts of the dispersive self-
energies are contained in the width

Γph(ω) ≈ −2 Im(Σp(ω)−Σh(ω)) , (A.8)

where we have neglected contributions due to the fact that we are deal-
ing with particle–hole configurations. Effective masses and self-energies are
functions of the density and depend also on the proton and neutron content.

Defining

x
(
k, q, kFp

)
=

k2 + q2 − k2Fp

2kq
, (A.9)

z (k, q, ω) =
1

2kq

×
(
2m∗

p

(
−Eh(k) +m∗

p + Up +Re(Σp))− ω − i

2
Γph

)
+ k2 + q2

)
, (A.10)
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the integral over t = cos θkq can be done analytically, leading to the Lindhard
functions

ϕkFpkFh
(ω, q, k) =

1

2

+1∫
−1

dt
Θ(x+ t)

z + t

=
1

2

(
log

(
z + 1

z − x

)
Θ(x+ 1)− log

(
z − 1

z − x

)
Θ(x− 1)

)
(A.11)

and

P
(N∗N)
kFpkFh

(ω, q) = −
m∗

p

2qπ2

kFh∫
0

dkk
(
ϕkFpkFh

(+ω, q)− ϕkFpkFh
(−ω, q)

)
.

(A.12)
Even the remaining integral can be done in closed form but we refrain from
displaying the quite lengthy expression.

The particle Fermi momentum is non-zero only for purely nucleonic exci-
tations. While for nn−1 and pp−1 modes we have kFp = kFh

and m∗
p = m∗

h,
a completely different situation is encountered in the np−1 and pn−1 charge
exchange channels. In asymmetric nuclear matter, the particle and hole
Fermi momenta and effective masses will be different which is also true for
the self-energies.

The same strategy can also be applied to the channels involving Delta-
particle states

Π
(0)
DN = R

(S)2
3
2

1
2

R
(T )2
3
2

1
2

(tDqDth − qh|1q)
(
tDqDth − qh|1q′

)
P

(DN)
kFh

=
16

9
(tDqDth − qh|1q)

(
tDqDth − qh|1q′

)
P

(DN)
kFh

, (A.13)

where

P
(DN)
kFh

(ω, q) = −
m∗

D

2qπ2

kFh∫
0

dkk (ϕDN (+ω, q)− ϕDN (−ω, q)) . (A.14)
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Appendix B

Spin and isospin formalism in second quantization

In second quantization, the spin operators are

σµ =
∑
m1m2

⟨m1|σµ|m2⟩a+m1
am2

=
∑
m1m2

R(σ)
ss (−)s2+m2(s1m1s2m2|1µ)a+m1

a−m2 , (B.1)

where s1 = s2 = s = 1
2 and the Wigner–Eckart theorem was used. The

reduced matrix element of the operator σ of tensorial rank λ = 1 is defined as

R(σ)
ss =

1

λ̂
⟨s||σ||s⟩ = 2√

3

√
s(s+ 1)(2s+ 1)|s= 1

2
=

√
2 . (B.2)

Equation (B.1) shows that the components σµ mediate spin–dipole excita-
tions (λ, µ) = (1, µ. In the same manner, we find for the isospin rank-1
operators

τµ =
∑
q1q2

⟨q1|σµ|q2⟩c+q1cq2

=
∑
q1q2

R
(τ)
tt (−)t2+q2(t1q1t2q2|1µ)c+q1c−q2 , (B.3)

where the reduced isospin matrix element R
(τ)
tt is defined in analogy to

Eq. (B.2).
Excitations of Delta particle-nucleon-hole configurations involve transi-

tions between spin-/isospin-12 and spin-/isospin-32 baryons for the so-called
transition spin/isospin formalism with rank-1 operators S and T , respec-
tively, is used, see e.g. [50]. The transition spin operator S — and corre-
spondingly T — is defined by the matrix elements of nucleon (sN = 1

2) to
Delta (sD = 3

2) transitions

⟨sDmD|Sr|sNmN ⟩ ≡ (sNmN1r|sDmD) (B.4)

given on the right-hand side by a Clebsch–Gordan coefficient. By comparison
to the standard form of the Wigner–Eckart theorem, we obtain the reduced
matrix element

⟨32 ||S||
1
2⟩ =

√
2sD + 1|sD= 3

2
= 2 (B.5)

and

R(S)
sDsN

=
⟨32 ||S||

1
2⟩√

2λ+ 1 |λ=1

=
2√
3
. (B.6)
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As before, we may use the formalism of second quantization to obtain

Sr =
∑

mDmN

⟨sDmD|Sr|sNmN ⟩a+mD
amN + h.c.

=
∑

mDmN

R(S)
sDsN

(
(sDmDsNmN |1r) (−)sN+mNa+mD

a−mN + h.c.
)
. (B.7)

Accordingly, we proceed with the isospin transition operator T . The reduced
matrix element for tN = 1

2 and tD = 3
2 , respectively, is

R
(T )
tDtN

=

√
2tD + 1√
2λ+ 1 |tD= 3

2
,λ=1

=
2√
3

(B.8)

and

Tr =
∑
qDqN

⟨qDqD|Tr|tNqN ⟩a+qDaqN + h.c.

=
∑
qDqN

R
(T )
tDtN

(
(tDqDtNqN |1r) (−)tN+qN c+qDc−qN + h.c.

)
. (B.9)
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