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The long-standing debate over whether the complete set of observables
in pseudo-scalar meson photoproduction consists of eight or merely four
elements continues to persist. From the perspective of amplitude analysis,
it is argued that all eight observables are necessary to completely deter-
mine the others. On the other hand, proponents of partial-wave analysis,
working with theoretically precise data of infinite accuracy, claim that only
four observables are needed. However, this claim is not acceptable from
an experimental viewpoint, as all data in the real world contain some un-
certainty. This paper illustrates that the controversy is artificial and is
due to additional mathematical assumptions used in partial-wave analy-
sis. Our research advances this discussion by moving from exact synthetic
numerical data to also synthetic, but more realistic data in partial-wave
analysis and shows that the claimed reduction in observables is unjustified.
Consequently, the final conclusion is that the complete set of observables in
pseudo-scalar meson photoproduction, whether using amplitude analysis or
partial-wave analysis with practical data, must consist of eight observables.
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1. Introduction

It is imperative to define what is meant by the complete set of observ-
ables, often referred to as a complete experiment. An early definition of this
concept was provided by Barker, Donnachie, and Storrow [1], stating: “It
is well known that we need 7 measurements to determine the amplitudes
up to an overall phase and up to discrete ambiguities”, a definition sub-
sequently adopted by Keaton and Workman [2], Chiang and Tabakin [3],
and Nakayama [4]. It has further been demonstrated in [3] that all discrete
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ambiguities can be resolved if an eighth, judiciously selected, observable is
included. These analyses, relying on the amplitude analysis technique, are
in complete concordance; the complete set of observables is formed by 8 well-
chosen observables. Nonetheless, it is crucial to emphasize that this defini-
tion does not yield only one definitive set of 4 complex amplitudes; it yields
an infinite multitude of them, attributable to the overall phase ambiguity.
Therefore, the answer to this problem is inherently non-unique. A specific
set of 4 complex amplitudes derived from a chosen set of observables can
be multiplied by an unknown phase eiϕ(W,θ) dependent on energy and an-
gle, modifying all real and imaginary components, yet preserving the same
set of observables. This phenomenon is known as the continuum ambiguity
effect [5–8], and it is essential for our analysis.

The complete set of observables issues is also examined in partial-wave
analysis, a well-established methodology for data examination within the do-
main of experimental physics [9]; however, the conclusions differed. A sub-
stantial scholarly attention has been devoted to revealing the complete set
of observables when partial-wave analysis is employed. Significant investiga-
tive efforts in this domain have been undertaken by the Mainz–Bonn–GWU
collaborations [10–12]. However, their findings diverge from conventional
amplitude analysis outcomes: instead of the requisite 8 observables iden-
tified by amplitude analysis, they assert that only 5 — even potentially 4
— observables are necessary when employing partial-wave analysis [10, 12].
This discrepancy presents a notable challenge to the experimental commu-
nity’s consensus. It raises a critical inquiry: is the acquisition of data from
8 separate measurements indispensable, or can a precise measurement of
merely 4 suffice? This question persists unanswered, and it is the objective
of this paper to address this issue.

To get a convincing answer, it is essential to thoroughly examine the
conditions under which both approaches work. In the amplitude analysis,
the objective is to determine seven real parameters, consisting of four abso-
lute values and three relative angles of four complex amplitudes, at a fixed
energy and angular point {W, cos θ}, without introducing any correlations
between adjacent points. It is important to repeat that this analysis is con-
ducted “up to an overall phase”. Consequently, the resulting four complex
amplitudes are not uniquely defined, and the solution to this problem is an
infinite set of four complex amplitudes. The problem’s uniqueness is estab-
lished only upon the introduction of continuum ambiguity considerations
and fixing the overall phase by incorporating all other open channels. Con-
versely, the technique of partial-wave analysis presupposes from the outset
that partial-wave analysis is feasible, necessitating the existence of a unique
set of four complex amplitudes. This issue has been extensively discussed
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in Ref. [8], and in Chapter 1.5 of Ref. [10], where it was explicitly stated:
“The problem of the unknown overall phase therefore blocks the way from
the CEA to multipoles”. As a potential resolution to this issue, it has been
suggested to employ a truncated partial-wave analysis, where angular mo-
mentum is confined to a certain finite cut-off angular momentum value,
essentially fixing the angular part of the overall phase1. Technically, the
continuity was implemented by fixing energy-dependent part of the overall
phase by fixing one of the multipole phases. They have chosen Re(E0+) > 0
and Im(E0+) = 0. Their assertion was, following the works of Grushin [13],
that fixing one multipole phase suffices to fix the overall phase in trun-
cated partial-wave analysis. Thus, fixing the overall phase through trun-
cation constitutes the primary significant difference. The second difference
is introducing analyticity in angle. The angular behavior of the four com-
plex amplitudes is described by the partial-wave expansion of the Chew–
Goldberger–Low–Nambu (CGLN) amplitudes [14] given in Appendix A, so
the reaction amplitudes exhibit analyticity concerning the angular variable.
In other words, point-to-point continuity is imposed. In conclusion, the
fundamental assumptions of amplitude versus partial-wave analysis differ,
leading to the expectation that additional assumptions made for partial-wave
analysis will influence the analysis. Furthermore, the analytical techniques
employed differ; amplitude analysis bases its conclusions on general consider-
ations, searching for only seven real numbers, with data and measurements
largely unneeded. In contrast, partial-wave analysis relies on data fitting
rather than general considerations; thus, the selection of the database and
numerical aspects of the problem will significantly impact the outcome. It
is imperative to ensure that our final conclusions remain unaffected by the
particularities of partial-wave analysis, and are fully realistic irrespective of
the assumptions made in either fitting or database selection.

2. Complete set of observables in truncated partial-wave analysis
with fixed multipole phase

Let me delineate the methodology employed in Refs. [10–12]. The pro-
cedure adopted in these studies is as follows:

1. a fixed set of multipoles is selected at a specified energy with a fixed
cut-off angular momentum;

2. precise numerical values of all observables for the selected energy and
prescribed cut-off angular momentum are generated;

1 Truncating partial-wave analysis means that out of an infinite number of possible
solutions for various overall phases, we fix the overall phase to the value for which all
multipoles are higher than Lmax vanish.
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3. the selected set of numerical observables is fitted with a suitable for-
mula at a specified energy and chosen cut-off angular momentum to
identify the minimal set of observables required for the unique restora-
tion of the initial value.

Thus, their conclusions are not derived through analytical means but are in-
ferred from the numerical analysis of infinite precision (unrealistically ideal)
synthetic data for a finite angular momentum. As the number of parameters
increases with the order of truncation, the fitting process becomes increas-
ingly slow; hence, they limit their conclusions to Lmax = 2. Therefore, two
additional assumptions are made: partial-wave analysis is confined to a trun-
cated partial-wave analysis with a relatively low cut-off angular momentum,
and the fitted observables are numerical observables of infinite precision.

This method prompts two further questions: Firstly, in what manner is
stability ensured in truncated partial-wave analysis, given the established
fact that unconstrained partial-wave analysis, due to continuum ambigu-
ity, fails to produce continuous outcomes? Secondly, how are the numerical
challenges effectively managed, especially since the objective involves locat-
ing the exact zero of the minimized function — a task recognized for its
significant numerical sensitivity?

In the truncated partial-wave analysis as discussed in Refs. [10–12], the
continuity of the solution has been ensured by adhering to the approach
proposed by Grushin in 1989 [13]. This method essentially involves desig-
nating the phase of a selected multipole to be real. This process is thor-
oughly detailed in Chapter 5: “Numerical truncated partial-wave analysis”
of Ref. [10], wherein it is explicitly mentioned that they employ “phase con-
strained” multipoles MC

l , specified by setting the phase of E0+ to zero:
Re[E0+] > 0, and Im[E0+] = 0. Consequently, they utilized E0+ in place
of M1− multipole, as recommended in Grushin’s work [13]. This methodol-
ogy successfully achieved solution continuity and corroborated Omelaenko’s
finding that a carefully selected set of four observables constitutes a complete
set [15]. This outcome posed a conundrum for experimentalists, as all the
underlying assumptions leading to this conclusion appeared quite plausible.
Does this imply that only four observables are necessary, rather than eight,
to comprehensively describe the process?

The numerical partial-wave analysis of data with infinite precision, as
performed by the Mainz–Bonn–GWU groups for Lmax = 2, has been suc-
cessfully replicated, ensuring continuity through the enforcement of a single
constraint: E0+ the multipole must be real and positive. Consequently, it
is necessary to derive 8 multipoles by fitting 15 real parameters to the nu-
merically precise data generated by the exact formula for Lmax = 2. This
endeavor posed a complex mathematical challenge, given the goal of achiev-
ing 15 parameters while fitting a minimization function that equals precisely



Complete Set of Observables in Pseudo-scalar Meson . . . 2-A18.5

zero. Despite the numerical intricacies, I have successfully reproduced the
outcomes detailed in Refs. [10–12], thereby corroborating all the results pre-
sented in Table III of Ref. [12] using the Mathematica code, akin to the
implementation in the original investigations. Under these conditions, a set
of four carefully selected observables constitutes a complete set.

As new codes tend to be faster than the original codes from the Mainz–
Bonn–GWU group, I have confirmed these results for Lmax = 3, with the
ability to go even higher in L if needed.

However, let me stress that their conclusions were made for truncated
partial-wave analysis, and this means that the angular part of the overall
phase was fixed by choosing the truncation order. In the real world, trun-
cation in partial-wave analysis is only an approximation, and we have an
infinite number of terms instead of finite ones, so the angular part of the
overall phase is not fixed, and it has to be fixed in addition. Thus, we have
to fix the amplitude phase, and not the multipoles phase only.

3. Complete set of observables in infinite partial-wave analysis
with fixed overall amplitude phase

To be as similar as possible to Mainz–Bonn–GWU studies, I have chosen
to fix the phase of F1 CGLN amplitude, and decided to put it to zero re-
quiring that Re[F1(W, θ)] > 0 and Im[F1(W, θ)] = 0. To achieve this, I have
devised the methodology for independently varying a set of multipoles as
fitting parameters while preserving the constancy of the overall phase. As
the overall phase is an unmeasurable quantity, and following Ref. [16], from
now on, I shall, in our analysis, identify the overall phase with the CGLN F1

amplitude phase. This necessitated the imposition of a supplementary set
of constraints, which are more stringent than the mere fixation of a single
multipole phase.

An efficient approach to maintaining the overall phase invariance was
identified in the CGLN representation of the reaction amplitudes. Specif-
ically, among the various representations of reaction amplitudes (CGLN,
helicity, transversity, etc.), this is the sole representation where all ampli-
tudes can be articulated as an expansion only in powers of cosine, without
the interference from any sine-dependent factors that are present in other
representations. Thus, I rewrite the formulas (A.1) in the following way:

Fi(W, cos θ) =

Lmax∑
l=0

ail(W ) cos θl , i = 1, . . . , 4 , (1)

where ail(W ) represent coefficients that exhibit linear dependency on all
employed multipoles.
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In the case of Lmax = 2, the three coefficients associated with each of
the four amplitudes are specified as follows:

a10(W ) = E2− + E0+ − 3
2 E2+ + 3M2− − 3M2+ ,

a11(W ) = 3 (E1+ +M1+) ,

a12(W ) = 15
(
1
2E2+ +M2+

)
,

a20(W ) = M1− + 2M1+ ,

a21(W ) = 3 (2M2− + 3M2+) ,

a30(W ) = 3 (E1+ −M1+) ,

a31(W ) = 15 (E2+ −M2+) ,

a40(W ) = 3 (−E2− − E2+ −M2− +M2+) . (2)

Now, it is trivial to implement the condition Im[F1(W, θ)] = 0. We demand
that each coefficient of expansion in cos θ must be equal to zero. So, I get

Im
[
a10(W )

]
= 0 ,

Im
[
a11(W )

]
= 0 ,

Im
[
a12(W )

]
= 0 . (3)

This yields a system of three constraint equations incorporating 8 imaginary
parts that define the eight utilized multipoles. Solving this system permits
the removal of three real parameters from the original set of 16, consequently
leaving 13 parameters free. Within this framework, the F1 phase persists in
its invariance when all 13 remaining multipoles are permitted to vary freely,
although the absolute value may fluctuate without constraints.

Accordingly, the fit was conducted using three constraints rather than
a single one, as was the case when a single multipole phase was fixed. This
modification resulted in a reduction of the number of observables constitut-
ing a complete set, from four to three.

Let me summarize. Both aforementioned analyses revealed that we en-
counter five ambiguities when restoring multipoles from a complete set of
observables. Three ambiguities are sign ambiguities originating in the fact
that all observables are generated by a set of formulas which include sines
and cosines of three relative angles, and can be eliminated by measuring
a sufficient number of observables (three of them). However, two phase am-
biguities (ambiguities in energy and angle) are genuine ambiguities and can-
not be eliminated in a single-channel measurement; they have to be fixed by
assumption. In truncated partial-wave analysis, the energy-dependent part
is fixed by hand, introducing the assumption that the phase of E0+ mul-
tipole vanishes (ReE0+ > 0 and ImE0+ = 0), and the angular-dependent
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part is fixed by choosing the truncation order. Thus, we are left with four
ambiguities. Three sin/cos ambiguities are solved by extending the number
of measured observables to three, and the angular phase ambiguity is solved
by adding one more observable to the measured set2. For infinite PWA, the
angular dependence of phase ambiguity is not fixed, so we have to do it by
hand as well. Thus, we choose to define that the phase of F1(W, θ) CGLN
amplitude always vanishes (ReF1(W, θ) > 0 and ImF1(W, θ) = 0 for each
possible angle θ). So, we have to choose a set of only three observables to
eliminate sin/cos ambiguity.

It is essential to recognize that full analyticity has not yet been imple-
mented due to the absence of analyticity in energy. Should energy analyticity
be established, each observable would possess a unique value with respect to
sign ambiguity. This is because dispersion relations would resolve the indef-
inite sign associated with the cosine and sine elements within the formulas
of the observables.

Consequently, I contend that incorporating energy analyticity will re-
solve all sin/cos ambiguities regarding the definitions of observables, leaving
a single observable necessary to constitute a complete set. Naturally, it is
essential to measure this at an adequate number of energy points, aligning
with the principles of analytic function theory.

4. Complete set of observables with analyticity in energy
explicitly introduced

In order to examine this matter, I rely on my computational codes3 for
the analysis which are outlined before for Lmax = 2, and in addition incor-
porate analyticity in energy. The model for implementing the analyticity is
based on the application of the Pietarinen expansion technique [17]. I em-
ploy the definition of CGLN amplitudes given by Eq. (1) as it utilizes the
expansion in cos θ only, and assume that all coefficients can be expanded in
energy using the Pietarinen series

ail(W ) =

N i∑
n=1

ciln Z
(
W,αi

l, β
i
l

)n
, i = 1, . . . , 4

2 Observe that in this formalism, angular phase ambiguity is for truncated PWA trans-
ferred to observables. This seems unnatural as phase ambiguity should not be resolved
by measuring observables, but in this procedure, this happens. Remember that we
are fitting synthetic observables which have to be generated somehow. And in gen-
erating them, when we fix the energy-dependent phase ambiguity by a free choice,
different levels of truncation produce different sets of observables as truncation picks
only one solution out of an infinite number of them, in which all multipoles higher
then cut-off angular momentum Lmax.

3 As I said, we are limited to numeric analysis only.
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Z
(
W,αi

l, β
i
l

)
=

αi
l −

√
βi
l −W

αi
l +

√
βi
l −W

, (4)

where N i denotes the order of the Pietarinen expansion, and ciln, αi
l, and

βi
l represent the real Pietarinen coefficients, which vary for each amplitude

and angular momentum index. Consequently, analyticity in energy is fa-
cilitated through the Pietarinen expansion. It is now evident that for each
specified energy, the relative sign of real and imaginary parts is definitively
determined by the Pietarinen expansion, thereby resolving all possible am-
biguities. The fitting parameters have transitioned from multipoles to the
Pietarinen coefficients ciln, αi

l, and βi
l .

To enable numeric analysis, I have simplified the model. I have fixed the
Pietarinen parameters αi

l and βi
l , and proceeded to only fit ciln. Additionally,

rather than summing over the entire Pietarinen expansion as indicated in
Eq. (4), I have limited our consideration of analyticity in energy to a single
term

n = 1 for i = 1 ; n = 2 for i = 2 ;

n = 3 for i = 3 ; n = 4 for i = 4 . (5)

Under this assumption, the preservation of the overall phase occurs auto-
matically. It is essential to emphasize the necessity for additional constraints
for fixing the overall phase (akin to those previously employed) if the num-
ber of Pietarinen terms for a specified angular momentum coefficient ail(W )
exceeds one. The current number of fitting parameters ciln amounts to eight,
comprising three parameters for F1, two for F2, two for F3, and a single one
for F4, as referenced in Eq. (2). This is anticipated, given that eleven free
parameters were previously required to achieve a unique result with sign
ambiguity across three relative angles, necessitating three additional con-
straints to resolve this issue. In circumstances where analyticity in energy
was not manifestly imposed, three ambiguities in relative angles existed,
which required three observables for resolution. However, with the explicit
imposition of analyticity in energy, these three ambiguities have been elim-
inated.

Furthermore, for the sake of simplicity, I posit that the strength and
threshold parameters in the Pietarinen expansion are identical for all angular
coefficients

αi
l = α and βi

l = WKΛ
thr . (6)
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For the benefit of the reader, I present the final set of CGLN amplitudes
within this model

F1(W, cos θ) =

α−
√
WKΛ

thr −W

α+
√
WKΛ

thr −W

(
c101 + c111 cos θ + c121 cos θ

2
)
,

F2(W, cos θ) =

α−
√
WKΛ

thr −W

α+
√
WKΛ

thr −W

2 (
c202 + c212 cos θ

)
,

F3(W, cos θ) =

α−
√
WKΛ

thr −W

α+
√
WKΛ

thr −W

3 (
c303 + c313 cos θ

)
,

F4(W, cos θ) =

α−
√
WKΛ

thr −W

α+
√
WKΛ

thr −W

4

c404 . (7)

The previously employed methodology is repeated: numeric observables of
infinite precision are generated and subsequently fitted with the functions
that originally produced them. At this stage, the fitting process presents
increased complexity numerically, necessitating a greater number of data
points and enhanced precision to achieve the final result. However, it is
concluded that only a single observable is required to accurately reproduce
the specified input.

Thus, this numerical analysis within a simplified model indicates that
a comprehensive set of observables for fully analytical CGLN amplitudes
with respect to both angle and energy comprises a single observable. Mea-
surement of the differential cross section at a sufficient number of points,
with no experimental error, will suffice to uniquely determine all four CGLN
amplitudes.

This is indeed a contradiction with amplitude analysis results, which say
that you need 8 observables for the same task. And this cannot be true.

5. Randomizing numeric set of observables

It is imperative to emphasize that all prior conclusions, regardless of
whether they are made by fixing E0+ multipole phase, fixing F1(W, cos θ)
amplitude phase, or by introducing manifest analyticity in angle and energy,
have been drawn under the assumption of measurements with negligible ex-
perimental error, a condition that is not representative of real-world scenar-
ios. It is significant to note that the authors of the truncated partial-wave
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analyses referenced in [10–12] were cognizant of this limitation and have re-
peatedly cautioned readers that their research, which relies on data of infinite
precision, might be only a consistency exercise. Despite acknowledging this
fact, they have not made any further progress on this issue, merely stating
that it warrants verification. Consequently, I felt motivated to undertake
the subsequent step that deemed necessary.

In recognition of the unavoidable presence of experimental error, this
study seeks to examine the effects of deviating from the idealistic assump-
tion of data free from error. The standard partial-wave model, characterized
by the absence of energy analyticity, was employed to fit the three observ-
ables dσ/dΩ, P , and Σ. A randomization was applied to the central values
of the synthetic numerical database while maintaining a zero-error baseline.
A systematic error of 0.1% of the maximum value for each observable was
incorporated, as well as a relative error of a similar magnitude of 0.1% of the
precise numerical value. This error magnitude, while seemingly trivial and
unattainable in practical measurements, is demonstrated in Fig. 1. The fig-
ure illustrates the non-randomized synthetic numerical data at one randomly
chosen energy as black circles, the randomized synthetic data as red circles,
and the fitting results as an orange line, with squared-numerical-deviation
values indicated as quantities χ2

dσ/dΩ,P,Σ,T,F,G. Although the effects of ran-
domization are scarcely detectable in the figure, it becomes apparent that
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Fig. 1. Comparison of synthetic numeric data with infinite precision (black circles)
at one randomly chosen energy, randomized synthetic data with randomization fac-
tor of 0.1% (red circles) with the result of the fit to three observables (orange line).
First row shows the fitted observables, and the second row shows the predicted
values for three randomly chosen observables out of the remaining 13.
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even with such a slight randomization constant, the predictive accuracy for
other, non-fitted observables is significantly reduced when fitting the three
observables with full precision. Crucially, even with significantly smaller
randomization values (several orders of magnitude lower), the fitted mul-
tipoles exhibit notable deviations from the initial ones, signifying a loss of
completeness. Nonetheless, this impact remains imperceptible within the
figures of observables themselves, but remains clearly present when relevant
χ2 values are compared.

6. Conclusions

I have replicated the truncated partial-wave analysis fits wherein the
phase of a single multipole was constrained, as outlined in Refs. [10–12], ef-
fectively reproducing the results previously documented, even extending the
highest truncation order from Lmax = 2 to Lmax = 3, with the possibility to
go higher. I have confirmed that in this case, the complete set of observables
consists of four well-chosen observables. When the assumption of truncation
is banned, and the infinite partial-wave analysis is undertaken, the angular
part of the overall phase is no longer fixed, so we have fixed it in addition.
As a result, the number of observables necessary to constitute a complete set
was diminished from four to three. Furthermore, by integrating analyticity
with respect to energy through a theoretical model, I discerned that the req-
uisite number of observables for a complete set is further reduced from three
to one. Thus, I deduce that the reduction in the number of observables from
eight in amplitude analysis to one in truncated partial-wave analysis, when
analyticity in both angles and energy is explicitly imposed, is attributable
to the intrinsic properties of analytic functions when utilizing data sets of
infinite precision. I examined the significance of employing data of infinite
precision by introducing a version of the fitted data set with minimal ran-
domization and observed the effect’s disappearance. This phenomenon is
illustrated in the figures, where observables were randomized with a very
small randomization coefficient of 0.1%. These findings suggest that the re-
duction in the number of observables from eight in amplitude analysis to one
in partial-wave analysis with complete analyticity in both angle and energy,
results solely from the employment of idealized numerical observables.

In conclusion, it has been ascertained that the complete set of observables
necessary for truncated partial-wave analysis, when employing realistic data,
remains unchanged in comparison to amplitude analysis. The number of
observables remains eight.
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Appendix A

Partial-wave decompositions are introduced through CGLN amplitudes

F1 (W, θ) =
∞∑
ℓ=0

{
[ℓMℓ+ (W ) + Eℓ+ (W )]P

′
ℓ+1 (cos θ)

+ [(ℓ+ 1)Mℓ− (W ) + Eℓ− (W )]P
′
ℓ−1 (cos θ)

}
,

F2 (W, θ) =

∞∑
ℓ=1

[(ℓ+ 1)Mℓ+ (W ) + ℓMℓ− (W )]P
′
ℓ (cos θ) ,

F3 (W, θ) =

∞∑
ℓ=1

{
[Eℓ+ (W )−Mℓ+ (W )]P

′′
ℓ+1 (cos θ)

+ [Eℓ− (W ) +Mℓ− (W )]P
′′
ℓ−1 (cos θ)

}
,

F4 (W, θ) =
∞∑
ℓ=2

[Mℓ+ (W )− Eℓ+ (W )−Mℓ− (W )− Eℓ− (W )]P
′′
ℓ (cos θ) .

(A.1)
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