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In honor of Dave Roper’s 90th birthday, I present a pedagogical in-
troduction to our modern understanding of unstable particles in Quantum
Field Theory, based on the analytic structure of the propagator, with oc-
casional remarks on the Roper resonance. I discuss the mass and decay
rate of unstable particles, the Breit–Wigner resonance formulae and width,
poles and branch cuts, and pole trajectories.
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1. Introduction

I would like to take this opportunity, on the occasion of Dave Roper’s
90th birthday, to review our modern understanding of unstable particles in
Quantum Field Theory [1]. You might think that this could be found in any
one of the many excellent textbooks on Quantum Field Theory, but that is
not the case. All such textbooks either avoid the topic altogether, or treat
it approximately (sometimes without acknowledging the approximations)1.
The treatment here is close to that of Sec. 6.3 of the 1992 textbook of Brown
[3], but without assuming the width of the particle is small compared to its
mass.

The Roper resonance, along with the Higgs boson, is one of the only
particles that carries someone’s name. This baryon, discovered by Dave in
1964 in a careful analysis of pion–nucleon scattering data [4], was among the
first hadronic resonances discovered. Its discovery was a surprise because
it was not conspicuously apparent in the data. It is the lightest baryon
resonance with the same quantum numbers as the nucleon (JP = 1

2

+, I = 1
2),

is the second lightest of the dozens of unflavored baryon resonances (after the
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.
1 See Sec. 7 of Ref. [2] for a review of the treatment of unstable particles in Quantum

Field Theory textbooks.
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∆(1232)), and is still of considerable interest today. It is labeled N(1440)
by the Particle Data Group [5], but researchers in the field still call it the
Roper resonance.

My goal is to give a treatment that applies to all unstable particles,
whether it be a muon, a pion, a B meson, a hadronic resonance, or a Z boson.
Although these particles manifest themselves in experiments in very different
ways, they are all treated the same way in Quantum Field Theory. A muon,
a charged pion, and a B meson decay weakly, have widths many orders
of magnitude magnitude smaller than their masses, and travel macroscopic
distances before decaying. A hadronic resonance decays strongly, so its
width is typically O(100) MeV, just one order of magnitude less than its
mass, corresponding to a lifetime of about 10−23 sec. A Z boson decays
weakly, but because it is so heavy, its width is about 2.5 GeV, roughly two
orders of magnitude less than its mass, corresponding to a lifetime of about
10−24 sec.

The treatment of unstable particles here is pedagogical, with a minimum
of references, in the style of a textbook. Extensive references to the literature
and further details can be found in Refs. [1, 2]. I hope that the treatment
of unstable particle that I present here will inform the next generation of
Quantum Field Theory textbooks.

2. Mass

Let us begin by asking why we are using Quantum Field Theory to
describe unstable particles. Perhaps this is obvious for the muon and the
Z boson, whose fields are present in the electroweak Lagrangian, but what
about the pion, the B meson, and the hadronic resonances? After all, these
particles are composed of quarks and antiquarks, and the QCD Lagrangian
is written in terms of quark fields, not baryon and meson fields. The answer
is that if we want to describe the interactions of hadrons in a way that is con-
sistent with quantum mechanics and relativity, then we must use Quantum
Field Theory. The hadron fields are certainly not fundamental, but they are
nevertheless useful to describe hadron interactions. This is the point of view
of effective field theory [6].

A stable particle is described by a one-particle state that is an eigenstate
of the energy-momentum operator (see Sec. 2.5 of Ref. [6])

PµΨp = pµΨp , (1)

where p2 = m2 is the squared mass of the particle. The zeroth compo-
nent of the operator is the Hamiltonian, P 0 = H, whose eigenvalue is the
energy. Applying the time-translation operator e−iHt to the state yields
Ψ ′
p = e−iEtΨp, which is the familiar time dependence of any energy eigen-

state.



Unstable Particles in Quantum Field Theory 2-A7.3

An unstable particle does not correspond to an asymptotic state, so it
cannot be described by a one-particle state2. Instead, we must create the
unstable particle and watch it propagate in time to learn about its mass and
decay rate.

For simplicity, let us consider a spin-zero particle and its associated com-
plex scalar field ϕ(x). Let us begin with a free field; we will add interactions
momentarily. The field destroys particles and creates antiparticles at space-
time position x, while its conjugate does the opposite. The amplitude for
a particle to be created at the origin and destroyed at x (or an antiparticle
to be created at x and destroyed at the origin) is the propagator,

⟨0|Tϕ(x)ϕ†(0)|0⟩ =
∫

d4p

(2π)4
i e−ip·x

p2 −m2 + iϵ
, (2)

where m is the physical mass of the free particle.
In order for the particle to decay, we must add interactions. Fortunately,

it is not hard to include interactions to all orders in perturbation theory
by summing the series of self-energy diagrams shown in Fig. 1, where the
shaded circle denotes the bare one-particle-irreducible self-energy, iΠ(p2).

+ + + ¨ ¨ ¨

1

Fig. 1. Self-energy corrections to the propagator.

Summing the series of diagrams gives

i

p2 −m2
B + iϵ

(
1−

Π
(
p2
)

p2 −m2
B + iϵ

+ · · ·

)
=

i

p2 −m2
B +Π (p2) + iϵ

, (3)

where mB is the bare mass. The pole of the full momentum-space propaga-
tor, µ2, is the solution to the equation

µ2 −m2
B +Π

(
µ2
)
= 0 . (4)

2 If the particle’s lifetime is much greater than the interaction time, then it can be
approximated as an asymptotic state. We are interested in the general case with no
approximations.
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Combining Eqs. (3) and (4) yields

⟨0|Tϕ(x)ϕ†(0)|0⟩ =
∫

d4p

(2π)4
i e−ip·x

p2 − µ2 +Π (p2)−Π (µ2) + iϵ
, (5)

where we have eliminated the bare mass in favor of µ. If µ is real, this just
amounts to ordinary mass renormalization of a stable particle, and µ is the
physical mass. If µ is complex, however, the particle is unstable, and the
interpretation of µ requires further analysis3.

The propagator by itself is unphysical; one cannot simply create a parti-
cle from the vacuum. Rather, the propagator is an ingredient in the construc-
tion of a scattering amplitude. The scattering amplitude acquires a complex
pole from the propagator of an intermediate unstable particle4

M ∼ 1

p2 − µ2
. (6)

Going to the rest frame of the unstable particle, we can rewrite Eq. (6) as

M ∼ 1

p20 − µ2
=

1

(p0 − µ)(p0 + µ)
. (7)

To find the time dependence of the scattering amplitude, we (inverse) Fourier
transform from energy to time, that is, we perform the p0 integral of Eq. (5)
while setting p = 0

M ∼
∞∫

−∞

dp0
2π

i e−ip0t

(p0 − µ)(p0 + µ)
. (8)

For t > 0, we can close the contour in the lower-half complex p0 plane, as
shown in Fig. 2, since the integral along the large semicircle is exponentially
damped. Using the residue theorem, we pick up the contribution of the pole
at p0 = µ

M ∼ e−iµt = e−iReµt eImµt . (9)

The probability is given by the square of the scattering amplitude

|M|2 ∼ e2 Imµt . (10)

This corresponds to exponential decay with 2 Imµ = −Γ , where Γ is the
decay rate. Hence, we learn that Imµ = −Γ/2.

3 Since the unstable particle is not an asymptotic state, it is not necessary to renor-
malize the field, although one may choose to do so.

4 The propagator also introduces a branch cut; we will discuss this in Section 6.
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p

Fig. 2. Evaluating the Fourier transform of the propagator by closing the contour
in the lower-half energy plane (for t > 0).

For t < 0, we close the contour in the upper-half complex p0 plane and
pick up the contribution of the pole at p0 = −µ. This pole is associated with
the antiparticle propagation. The residue theorem gives M ∼ eiReµt e−Imµt,
and hence |M|2 ∼ eΓt. This also corresponds to exponential decay since
t is negative, and proves that the particle and antiparticle have the same
lifetime, a result that holds for any Quantum Field Theory.

The oscillatory frequency of the unstable particle is dictated by the par-
ticle energy, e−iEt, as for a stable particle. In the particle’s rest frame its
energy is just its mass. Hence, Reµ = m, and we conclude that

µ = m− i

2
Γ . (11)

Equation (11) provides an unambiguous decomposition of µ into physically
meaningful quantities. For this reason, we will refer to m as the physical
mass.

As a sanity check, let us evaluate the Fourier transform of the scattering
amplitude, in a frame with nonzero three-momentum p

M ∼
∞∫

−∞

dp0
2π

i e−ip0t(
p0 −

√
p2 + µ2

)(
p0 +

√
p2 + µ2

)
∼ e−i

√
p2+µ2t ∼ e−iEt e−(m/E)(Γ/2)t (12)
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where the energy E, identified by the oscillatory time dependence of the
scattering amplitude, is

E =
1√
2

p2 +m2 − Γ 2

4
+

√(
p2 +m2 − Γ 2

4

)2

+m2Γ 2

1/2

(13)

which reduces to m when p = 0. As expected, the decay rate is reduced
by a factor of m/E, which is the inverse of the usual time-dilation factor
γ = E/m.

All of these results follow from the presence of a complex pole in the
scattering amplitude, Eq. (6). We introduced that pole via the propagator
of an unstable particle, but there is also another possibility. Rather than
introduce a field for the unstable particle, the unstable particle could arise
as a composite of the other particles involved in the scattering amplitude
(see Sec. 10.2 of Ref. [6]). This generally requires summing certain Feynman
diagrams to all orders in perturbation theory, yielding a real (stable particle)
or complex (unstable particle) pole. Such a particle is said to be dynamically
generated. All of the results above for unstable particles continue to hold
true.

One can go even further and dispense with Quantum Field Theory al-
together, and simply regard a complex pole in the scattering amplitude as
being associated with an unstable particle. This is the point of view of the
S-matrix theory [7] that was popular in the 1960s, before the renaissance of
Quantum Field Theory.

Since scattering amplitudes are physical, we can draw some conclusions
about the complex pole position associated with an unstable particle:

— The pole position is physical. Although the scattering amplitude has
many other contributions to it in addition to the propagator, none of
them affect the position of the pole.

— Since the pole position is physical, it is invariant under field redefini-
tions.

— Since the pole position is physical, it is gauge-invariant (in a gauge
theory).

— The pole position is process-independent. It does not matter what the
initial or final states are, the pole position is the same.

— The pole position is infrared safe. If the unstable particle carries elec-
tric or color charge, the pole position is unaffected by soft photons or
gluons.

These are all highly desirable qualities of a definition of the mass and decay
rate of an unstable particle.
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3. Decay rate

Returning to Eq. (4), and using Eq. (11), we find

Imµ2 = −mΓ = −ImΠ
(
µ2
)

(14)

or
Γ =

1

m
ImΠ

(
µ2
)
. (15)

This is an implicit formula for the decay rate, since µ = m− i
2Γ . In many

cases, it can be solved by expanding in powers of Γ/m,

mΓ = Z ImΠ
(
m2
)

×
(
1− 1

2
ImΠ

(
m2
)
ImΠ ′′ (m2

)
− 1

4m2
ImΠ

(
m2
)
ImΠ ′ (m2

)
+ . . .

)
,

(16)

where the prime denotes differentiation and where Z = [1+ReΠ ′(m2)]−1 is
the analogue of the field renormalization constant that would be necessary
if the particle were an asymptotic state.

The leading term in Eq. (16), mΓ = ImΠ(m2), is the familiar leading-
order expression for the decay rate, via the optical theorem (see Sec. 3.6
of Ref. [6]). That expression is usually derived by treating the decaying
particle as an asymptotic state, which is clearly an approximation valid only
for Γ ≪ m. The exact expression, without any approximations, is given by
Eq. (15).

The leading-order expression for the decay rate, mΓ = ImΠ(m2), treats
the decaying particle as if it is on shell at p2 = m2. However, an unstable
particle is never truly on-shell; on-shell for an unstable particle corresponds
to p2 = µ2, which is complex. There is nothing special about p2 = m2 for
an unstable particle.

4. Width

In the energy region near the pole at p0 = µ, the scattering amplitude of
Eq. (7) can be approximated by neglecting the antiparticle pole at p0 = −µ

M ∼ 1

E − µ
, (17)

where E = p0. The cross section in the resonance region is thus approxi-
mately

|M|2 ∼ 1

(E −m)2 + Γ 2

4

(18)
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which is the well-known Breit–Wigner formula. The resonance shape has
a full width at half maximum of Γ , which is why the decay rate Γ is also
called the width. A similar formula may also be obtained from nonrelativis-
tic quantum mechanics, such as in the original paper [8]. For this reason,
Eq. (18) is sometimes referred to as a “nonrelativistic Breit–Wigner”, but we
avoid this terminology since the equation is also valid at relativistic energies.

The physical process that Breit and Wigner addressed in their original
1936 paper [8], entitled «Capture of Slow Neutrons», is the absorption of
a nonrelativitic neutron of kinetic energy E by a nucleus, resulting in an
excited nucleus of resonance energy ER that then decays to a lower-energy
state by emission of a photon. They derived their resonance formula using
nonrelativistic quantum mechanics,

|M|2 ∼ 1

(E − ER)2 +
Γ 2

4

. (19)

It is the similarity of Eq. (18) to this equation that earns it the name Breit–
Wigner.

Inserting Eq. (11) into Eq. (6) without making any approximations gives
the amplitude

M ∼ 1

p2 − µ2
=

1

p2 −
(
m− i

2Γ
)2 (20)

and hence the cross section

|M|2 ∼ 1(
p2 −m2 + Γ 2

4

)2
+m2Γ 2

. (21)

This resonance formula includes both the particle and antiparticle poles. For
this reason, it is manifestly Lorentz-invariant, and it makes sense to refer
to it as a “relativistic Breit–Wigner”, although those authors never wrote
this formula down. It is common to see this formula in the literature in the
approximation Γ ≪ m, even when applied to particles for which this is not
a good approximation, such as hadronic resonances or the W and Z bosons.

Another way to view the relativistic Breit–Wigner formula, Eq. (21), is
to evaluate it in the rest frame of the particle and antiparticle

|M|2 ∼ 1

(E −m)2 + Γ 2

4

1

(E +m)2 + Γ 2

4

(22)

which is most easily obtained directly from Eq. (7). This makes it manifest
that the relativistic Breit–Wigner formula is simply the product of a Breit–
Wigner resonance for the particle and antiparticle.
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These Breit–Wigner formulae are based on an idealized world in which
the only contribution to the amplitude is a pole. In the real, nonidealized
world, there are also nonresonant contributions to amplitudes. The pole
position continues to define the mass and decay rate via µ = m− i

2Γ .

5. Mass of the Roper resonance

What is the mass of the Roper resonance, the particle called N(1440) by
the Particle Data Group [5]? You would be forgiven for thinking the answer
is 1440 MeV. The physical mass, which we define by the real part of the pole
in the complex energy plane, is approximately 1370 MeV according to the
Particle Data Group5. So what, then, does 1440 MeV signify?

Rather than obtaining the mass from the pole in the propagator, Eq. (4),
let us define it as the zero of the real part of the denominator of the propa-
gator

M2 −m2
B +ReΠ

(
M2
)
= 0 . (23)

For a stable particle, these two definitions are identical, since Π(µ2) is real
for a stable particle. However, they differ for an unstable particle. This
definition of mass is called the “Breit–Wigner mass”, although those authors
had nothing to do with it. From the point of view of mathematics, Eq. (23)
is quite strange, as there is nothing special about the point where the real
part of the denominator of a complex function vanishes. In contrast, the
pole position of a complex function is very special indeed. From the point of
view of physics, Eq. (23) is a disaster. Recall that the pole position has many
desirable properties that we listed at the end of Section 2. The “Breit–Wigner
mass” has none of them. Nevertheless, the “Breit–Wigner mass” caught on
early in the history of hadronic resonances, and despite its many drawbacks
it is still in use today. Almost all the hadronic resonances, including the
Roper resonance, take the numerical part of their name from their “Breit–
Wigner mass”, despite the fact that this mass is not well defined6. The W
and Z boson masses are also defined by their “Breit–Wigner masses”, even
though these masses are gauge-dependent7.

The history of this strange situation is traced in Ref. [2], and we will
not repeat it here. Fortunately, the hadronic community has recognized the
primacy of the pole position, and it is listed first, ahead of the “Breit–Wigner
mass”, for most of the hadronic resonances recognized by the Particle Data
Group [5]. This is not the case for the W and Z bosons, however; you

5 We will have more to say about the mass of the Roper resonance at the very end of
the paper.

6 Another example is the ∆(1232), which has a physical mass of about 1210 MeV.
7 In the context of the W and Z bosons, the “Breit–Wigner mass” is also called the

“on-shell” mass.



2-A7.10 S. Willenbrock

will not find the physical masses of the W and Z bosons listed. As we look
forward to a future collider that can do ultraprecise W and Z boson physics,
we will need to come to terms with this history.

6. Poles and branch cuts

In performing the Fourier transform of the amplitude in Section 2, we
kept only the particle and antiparticle poles, and ignored any other sin-
gularities that might be present in the complex energy plane. We know
that there are such singularities, in particular branch cuts, but they do not
change the fact that a pole in the complex energy plane yields an exponen-
tial time dependence. In this section, we discuss the branch cut associated
with two-particle intermediate states in the propagator.

Let us reconsider the equation for the pole position µ2, Eq. (4). Since the
self-energy is real analytic, Π∗(p2) = Π(p2∗), taking the complex conjugate
of Eq. (4) yields

µ2∗ −m2
B +Π

(
µ2∗) = 0 (24)

which shows that there is also a pole at µ2∗, which we will refer to as the
complex-conjugate pole. Now consider the self-energy on the real axis above
the threshold for a two-particle intermediate state (or, more generally, a mul-
tiparticle intermediate state). Unitarity demands that the imaginary part of
Π(p2) is proportional to the squared amplitude for the creation of the two-
particle state, times the two-particle phase space (see Sec. 3.6 of Ref. [6]).
The phase space for two particles is proportional to q2L+1, where q is the
momentum of each of the two particles in the center-of-momentum frame
and L is their angular momentum. The explicit expression for q is

q =
1

2
√
p2

√
[ p2 − (m1 +m2)2] [ p2 − (m1 −m2)2] , (25)

where m1,m2 are the masses of the intermediate particles. Note the square
root in the expression for q; this means that Π(p2) is a double-valued func-
tion, with a branch point at the two-particle threshold, p2 = (m1 + m2)

2.
There is also a branch point at p2 = (m1−m2)

2, dubbed a “pseudothreshold”.
The analytic structure of the momentum-space propagator in the com-

plex p2 plane is shown in Fig. 3 (see also Sec. 50 of Ref. [5]). There is
a branch point at the threshold, with a branch cut extending to infinity
along the positive real p2 axis. There is a new branch point and branch cut
for each new threshold, but we show only the lowest threshold for clarity
of presentation. The branch cut continuously connects the two branches, or
Riemann sheets, of the propagator. The first sheet is defined by Im q > 0,
and the second sheet by Im q < 0. The pseudothreshold lies on the second
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sheet, with a branch cut that extends to negative infinity along the real p2
axis (not shown in the figure). The physical axis lies on the first sheet, just
above the branch cut. The pole in the propagator lies on the second sheet
at p2 = µ2, which is accessed by passing downward through the branch cut
from the physical axis. The complex-conjugate pole at p2 = µ2∗ is also on
the second sheet, but it is much further from the physical axis than the
pole at p2 = µ2, since one needs to circle the branch point to get from the
complex-conjugate pole to the physical axis.

x

2p

Fig. 3. The analytic structure of the propagator in the complex p2 plane. The poles
lie on the second sheet.

The analytic structure of the momentum-space propagator in the com-
plex energy (p0) plane, with p = 0, is shown in Fig. 4. There is a branch
point at the threshold on the positive real axis as well as on the negative real
axis. There is a particle pole on the second sheet below the branch cut on
the positive real axis, and an antiparticle pole on the second sheet above the
branch cut on the negative real axis. As in the p2 plane, there are also poles
at the complex-conjugate positions, far from the physical axis. Also shown
is the contour of integration for the Fourier transform of the propagator.

The Fourier transform can be performed by closing the contour on the
first sheet, as shown in Fig. 5. Since the poles lie on the second sheet, they
are not shown in the figure, and are not enclosed by the contour. Let the
momentum-space propagator of Eq. (5) be denoted by

G(p0) =
i

p20 − µ2 +Π
(
p20
)
−Π (µ2) + iϵ

. (26)
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xx

p

Fig. 4. The analytic structure of the propagator in the complex energy plane. The
poles lie on the second sheet. The integration contour for the Fourier transform is
also shown.

xx

p

Fig. 5. Evaluating the Fourier transform of the propagator by closing the contour
in the lower-half energy plane (for t > 0) on the first sheet.

Then, for t > 0, the contour integration gives
∞∫

−∞

dp0
2π

e−ip0tG(p0) =

∞∫
thr

dp0
2π

e−ip0t Disc G(p0) , (27)

where Disc G(p0) is the discontinuity of G(p0) across the branch cut running
from threshold to infinity. Let us compare this with the Fourier transform
of the Källen–Lehmann representation of the propagator (see Sec. 6.1 of
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Ref. [3] or Sec. 10.7 of Ref. [6]),
∞∫

−∞

dp0
2π

e−ip0tG(p0) =

∞∫
−∞

dp0
2π

e−ip0t

∞∫
thr2

dM2

2π
ρ
(
M2
) i

p20 −M2 + iϵ
, (28)

where ρ(M2) is the spectral function. For t > 0, we close the p0 contour
in the lower-half plane and pick up the residue of the pole at p0 = M − iϵ,
yielding

∞∫
−∞

dp0
2π

e−ip0tG(p0) =

∞∫
thr

dM

2π
e−iMtρ

(
M2
)
. (29)

Comparing with Eq. (27), we conclude

ρ
(
p20
)
= Disc G(p0) . (30)

Note that the spectral function does not have a delta function contribution
from the unstable particle, as it would from a stable particle, because the
unstable particle is not part of the spectrum of asymptotic states.

The Fourier transform performed by closing the contour on the first sheet
yields an integral over the discontinuity in the propagator, Eq. (27), but it
does not explicitly yield exponential time dependence, since the contour
does not enclose any poles. Nevertheless, the exponential time dependence
must arise from the integration. The pole on the second sheet causes the
imaginary part of the propagator on the first sheet to have a peak above the
branch cut, and the complex-conjugate pole on the second sheet causes the
imaginary part of the propagator on the first sheet to have valley below the
branch cut (see Sec. 50 of Ref. [5]), so there is a large discontinuity across
the branch cut that must yield exponential time dependence.

To see how this works, let us approximate the propagator just above
the branch cut by the pole, and approximate the propagator just below the
branch cut by the complex-conjugate pole. Thus,

Disc G(p0) ∼
i

p0 − µ
− i

p0 − µ∗ =
Γ

(p0 −m)2 + Γ 2

4

. (31)

We now perform the Fourier transform on the right-hand side of Eq. (27),
extending the lower limit of integration to negative infinity since the inte-
gration region to the left of the threshold is far from the poles. This yields
the exponential time dependence we anticipated

∞∫
−∞

dp0
2π

e−ip0t Γ

(p0 −m)2 + Γ 2

4

= e−imt e−(Γ/2)|t| , (32)
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where we have used the well-known formula for the Fourier transform of
a Lorentzian function. The reader will notice that the integrand contains
the formula for the Breit–Wigner cross section, Eq. (18), but recall that we
are evaluating the Fourier transform of the amplitude, not the cross section.

To make the exponential time dependence from the pole explicit without
any approximations, it is necessary to close the contour on the second sheet,
as shown in Fig. 6, rather than on the first sheet as was done above. One
finds

∞∫
−∞

dp0
2π

e−ip0tG(p0) = R e−iµt +

thr∫
−∞

dp0
2π

e−ip0t Disc G(p0) , (33)

where R = (2µ[1 + Π ′(µ2)])−1 is the residue of the pole. This alternative
evaluation of the Fourier transform makes the exponential time dependence
associated with the unstable particle pole explicit. As the contour on the
large semicircle passes the negative imaginary axis in Fig. 6, it crosses the
pseudothreshold branch cut (not shown in the figure)8 onto a third sheet,
where there are no poles. Although the contour appears to enclose a pole in
the lower-left quadrant, that pole is on the second sheet, while the contour
is on the third sheet in that quadrant. The discontinuity in Eq. (33) is
between the first and third sheets from negative infinity up to the origin,
and between the first and second sheets from the origin up to the threshold.

xx

p

Fig. 6. Evaluating the Fourier transform of the propagator by closing the contour
in the lower-half energy plane (for t > 0) on the second sheet.

8 There is a branch cut from the pseudothreshold at p0 = |m1−m2| on the second sheet
that extends to the origin and then up the positive imaginary axis, and a branch cut
from the pseudothreshold at p0 = −|m1 − m2| on the second sheet that extends to
the origin and then down the negative imaginary axis.
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7. Pole trajectories

Let us follow a pole as it moves in the complex p2 plane from being
a stable particle to an unstable particle, by varying some parameter [9, 10].
We study a very simple theory of a scalar particle S coupled to a pair of
scalar particles A, such that the threshold is at p2 = 4m2

A. We also couple S
to another pair of scalar particles B, such that there is a second, higher
threshold at p2 = 4m2

B, so we can study the movement of the pole near
a threshold. The parameter we vary is the “Breit–Wigner mass” of S, with
the caveat that this parameter is not invariant under field redefinitions and is
unphysical. We will simply refer to it as the “mass parameter” to emphasize
that it is not the physical mass of S.

The pole trajectories in the complex p2 plane are shown in Fig. 7, taken
from Ref. [9]. Both the poles and their complex conjugates are shown. We
are using the plural word “poles” because there is more than one, as we
will discuss. The branch points at 4m2

A and 4m2
B are shown (we will refer

to them as branch points A and B), and we have rotated the branch cuts
downward by 90◦ in order to expose the second sheet in the lower-half plane
with respect to these branch points.

Fig. 7. Poles in the complex p2 plane as a function of the mass parameter, indicated
by the dots, for mA = 200 and mB = 250 (arbitrary units). The arrows indicate
the direction of motion of the poles as the mass parameter is increased. The solid
curves lie on exposed sheets; all other curves are covered by one or two sheets.
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Let us begin with the pole labeled by the mass parameter 350 (in ar-
bitrary units). In this case, the mass of S actually is 350, and it is stable
against decay into pairs of A (mA = 200) or B (mB = 250) particles, so the
pole is on the real axis on the first sheet. We increase the mass parameter
to 375 (pole shown but not labeled in the figure) and then to 400, where it
sits on top of branch point A, still a stable particle. Note, however, that
there are also a pole and its complex conjugate labeled 400 on the left-hand
side of the figure, lying on the second sheet. These are far from the physical
axis, which begins at branch point A and lies on the first sheet just above
the positive real axis.

As we increase the mass parameter further, the pole drops through the
branch point onto the second sheet and moves backwards. This surprising
behavior only happens for L = 0. The result is a pole on the real axis below
the branch point and on the second sheet. This corresponds to a stable
particle that is not an asymptotic state. The S particle cannot be an external
line in a Feynman diagram, but it can be an internal line coupled to pairs
of A or B particles. It is impossible for an internal S line to be on shell,
since its mass is less than 4m2

A. Such a particle is called a virtual state9.
Remarkably, this seemingly exotic state exists in the two-nucleon system.
There is the well-known JP = 1+, I = 0 bound state, namely the deuteron,
but there is also a JP = 0+, I = 1 virtual bound state. Both of these are
examples of dynamically-generated states.

If we increase the mass parameter further, the pole moves off the real
axis into the complex plane on the second sheet. To be more precise, as
the mass parameter is increased, the pole and its complex conjugate labeled
400 on the left-hand side of the figure move towards each other and meet
on the real axis, and then one goes left and one goes right. The one going
right collides with the backwards-moving pole, and they then move off the
real axis as a pole and its complex conjugate. This pole corresponds to an
unstable particle, even though the physical mass of the particle (the real part
of the pole in the complex energy plane) is less than 2mA. This apparent
paradox is resolved if we recall that an unstable particle should never be
thought of as being on-shell at some real value of p2. An unstable particle,
like a virtual state, is always off-shell and never an external particle. As we
mentioned at the end of Section 3, there is nothing special about p2 = m2 for
an unstable particle; an unstable particle does not have to satisfy m2 > 4m2

A
(for L = 0).

As we increase the mass parameter further to 425 (pole shown but not
labeled), the unstable-particle pole crosses the rotated branch cut, and can
be seen moving on the exposed second sheet to 450 and 475 (pole shown but

9 Although it is called a virtual state, it is not an asymptotic state. The same is true
of an unstable particle, which is often referred to as an unstable state.
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not labeled). When we increase the mass parameter to 500, the pole crosses
the rotated branch cut associated with branch point B. The pole is still on
the second sheet of branch point A, and it is still on the first sheet of branch
point B. Meanwhile, a pole and its complex conjugate, also labeled 500,
come in from the left on the outer trajectory on the second sheet of A and
the second sheet of B. This pole crosses the rotated branch cut associated
with the branch point B at the mass parameter 525 (pole shown but not
labeled), and continues on to 550. This pole at 550 is close to the physical
axis, as it is on the second sheet with respect to both branch points, so
it is directly below the physical axis. The pole labeled 550 on the inner
trajectory, although seemingly close to the physical axis, is far away from
it, since it is on the first sheet with respect to branch point B, so one must
circle around this branch point to arrive at the physical axis.

Consider the poles in the range from 500 to 525 that lie below the branch
point B. The poles on the inner trajectory and the outer trajectory are both
fairly close to the physical axis. They will both make their presence known
in the scattering amplitude on the physical axis. Are these two distinct
particles, or one? I think the right attitude is that it is one particle with
two poles. After all, these two poles are not independent of each other, as
they would be if they were from two distinct particles. But what then is the
mass and width of this particle? We must conclude that it has two masses
and widths. While this seems like an exotic situation, it is actually not
uncommon to find hadronic resonances near a threshold. We need look no
further than the Roper resonance for an example; it lies near the π∆(1232)
threshold and has two poles associated with it, one on the first sheet and
one on the second sheet with respect to the π∆(1232) branch point, a fact
uncovered by Dave and collaborators twenty years after the discovery of the
particle [11]. Thus, the Particle Data Group should list two pole positions
for the Roper resonance. Particles near a threshold, including the Roper
resonance [12–14], are candidates for dynamically-generated states.

I am grateful for the correspondence with Tanmoy Bhattacharya, Christoph
Hanhart, and Ulf Meißner.
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