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Ever since its discovery in 1964, the nature of the N∗(1440) nucleon res-
onance has been a perpetual and one of the outstanding puzzles in hadronic
physics. The Ljubljana group joined the global effort in the late 1990s,
first from the theoretical viewpoint and later experimentally. This paper is
a short overview of our attempts to understand this elusive resonance.
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1. Introduction

The first excited state of the nucleon with the same quantum numbers,
the N∗(1440) or the “Roper” resonance [1], has evaded detailed understand-
ing by the hadronic community for decades. One of the reasons is that
it is anything but conspicuous, being hidden below much more prominent
neighboring resonances, in particular the ∆(1232) (P33) and the N∗(1520)
(D13) which were already known at the time of the discovery, possessing an
unusually large width and exhibiting a very atypical behavior of ImTπN in
the P11 partial wave. Indeed, Professor L.D. Roper himself appeared to be
reluctant to accept the rather peculiar feature in the Argand diagram and,
as quoted in [2], lamented: “I spent [a] much time trying to eliminate the P11

resonance.” The progress brought about by partial-wave analyses was not
as fast as one would hope for and did not converge well, and I can still recall
Professor Arndt’s response at the 2004 conference at ACU to a question on
how one could best improve the determination of the P11 mass(es?), width,
pole position, and decay properties. It was indicative of the issues that the
partial-wave community was facing: “I’ve expressed my position on this sub-
ject many times. It just isn’t possible to fit P11 with a ‘simple’ Breit–Wigner
form; the amplitude is determined by nearby singularities consisting of two
poles and a very prominent cut (π–∆). It’s like doing a polynomial fit to
a sine wave. [. . . ] I believe that the ‘problem’ with P11 is that people keep
trying to stuff a square pole in a round hole.”
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As members of two hadron-physics groups from the Jožef Stefan Insti-
tute and the Faculty of Mathematics and Physics in Ljubljana, Slovenia,
consisting of Professor Mitja Rosina, late Professor Bojan Golli, and the
Author, we were motivated to investigate the Roper resonance partly due
to our existing know-how in statical and dynamical properties of the nucle-
ons studied in terms of quark models. These model calculations, initially
performed in collaboration with our Portuguese colleagues from Coimbra
(J. da Providência, J. Urbano, M. Fiohais, and P. Alberto), were initiated
even prior to that, and were thriving on an earlier substrate of the Peierls–
Yoccoz projection technique, coherent states, and the “hedgehog” ansatz for
the baryon wave functions [3].

2. The Roper resonance in the chromodielectric model

Our first attempt at explaining a specific feature of the Roper resonance
in terms of a quark model was to calculate the transverse and scalar helic-
ity amplitudes for the nucleon–Roper transition, A1/2 and S1/2. The Roper
resonance was described in a chiral version of the chromodielectric model
(CDM) as consisting of a three-quark core with one of the quarks promoted
to the 2s orbit, surrounded by a cloud of pions and σ-mesons, and furnished
with a chromodielectric field χ which ensures that the quarks remain dy-
namically confined [4]. The χ field is a peculiar ingredient of the CDM,
and this feature of the model has also been relevant in other contexts, in
particular in quantifying the role of the pion cloud, that is, “counting pions
in the nucleon” [5].

The wave functions of the physical nucleon and the Roper resonance were
obtained by performing the Peierls–Yoccoz projection on the baryon wave
function in the form of a “hedgehog” coherent state and making them orthog-
onal to one another. The Roper resonance was represented as a breathing
mode of the three valence quarks in the bare core (the source), with all three
meson fields adapting to the changes in the source; all fields were computed
in a self-consistent manner. (Alternatively, the Roper could be modeled by
retaining all three core quarks in the ground state but letting the χ field
and/or the σ field oscillate.) We have computed the Q2 dependence of the
helicity amplitudes Ap

1/2 and Sp
1/2 in the range of 0 ≤ Q2 ≤ 2 (GeV/c)2 and

obtained correct signs and reasonable trends at a time when the world data
consisted merely of three points with unspecified (possibly huge) uncertain-
ties which, moreover, were at odds with the rather accurately determined
helicity couplings at Q2 = 0. We also computed An

1/2(Q
2) for which the

only experimental reference was at the photon point, missing it by a factor
of approximately two.
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3. Coupled-channel approach with chiral quark models

Since in the CDM the χ field takes care of the confinement, the ac-
companying pion field is accordingly weaker, resulting in a smaller average
number of pions and, we presumed, in a relatively minor contribution of
the pion cloud in the photo-excitation amplitudes. The abundance of the-
oretical and experimental studies of the N–∆ transition at the turn of the
millennium — see, for instance, [6] and references therein for a review —
provided ample evidence that the pion cloud indeed plays an important role,
especially at small Q2. This motivated us to open a much wider front and to
construct a coupled-channel framework that would allow for the analysis of
the electro-magnetic excitation parts of the photo- and electro-production
processes as well as their strong decay parts. The framework that we de-
vised [7] is in principle able to accommodate any underlying quark model,
but we have chosen to perform all our calculations by using the Cloudy Bag
Model (CBM), for the simple reason that the quark–meson interaction ma-
trix elements were relatively easy to compute and, in addition, due to its
presumed advantage of featuring a much stronger pion cloud than, say, the
CDM.

In our coupled-channel K-matrix formalism, we only consider models
in which the meson fields couple linearly to the quark core, and there is
no meson self-interaction. The part of the Hamiltonian corresponding to
mesons has the form

Hm =

∫
dk

∑
lmt

{
ωk a

†
lmt(k)almt(k) +

[
Vlmt(k)almt(k) + Vlmt(k)

† a†lmt(k)
]}

,

(1)
where a†lmt(k) is the creation operator for an l-wave meson with the third
component of spin m and — in the case of isovector mesons — the third
component of isospin t. In the case of the p-wave pions, the source can be
cast in the form

V1mt(k) = −v(k)

3∑
i=1

σi
mτ it , (2)

with v(k) depending on a particular quark model and containing the in-
formation about the underlying quark structure. Note that Vlmt(k) may
also induce radial excitations of the quark core, in particular 1s → 2s,
1s → 1p1/2, and 1s → 1p3/2 transitions. In the model of choice, CBM, the
relevant operators are

V s→s
1mt (k) =

1

2f

k2√
12π2ωk

ωs

ωs − 1

j1(kRbag)

kRbag

3∑
i=1

σi
mτ it ,
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V s→2s
1mt (k) =

1

2f

k2√
12π2ωk

√
ω2sωs

(ω2s − 1)(ωs − 1)

j1(kRbag)

kRbag

3∑
i=1

σi
mτ it ,

V
s→p1/2
00t (k) =

1

f

k2√
4π2ωk

√
ωp1/2ωs

(ωp1/2 + 1)(ωs − 1)

j0(kRbag)

kRbag

3∑
i=1

τ it ,

V
s→p3/2
2mt (k) =

1

2f

k2√
2π2ωk

√
ωp3/2ωs

(ωp3/2 − 2)(ωs − 1)

j2(kRbag)

kRbag

3∑
i=1

Σi
2mτ it ,

involving p-wave, p-wave, s-wave, and d-wave pions, respectively.
The next step is to construct the K matrix. The idea is to include

many-body states of quarks (and mesons) in the scattering formalism in
a Chew–Low-type approach [8]. This is most easily accomplished in the JT
basis in which the K and T matrices are diagonal. The K matrix has the
form

KJT
πNπN (k, k0) = −π

√
ωkEN

kW

〈
ΨN
JT (W )

∣∣ |V (k)||ΨN ⟩ , (3)

and we introduce the principal-value states

∣∣ΨN
JT (W )

〉
=

√
ω0EN

k0W

{[
a†(k0)|ΨN ⟩

]JT
− P

H −W
[V (k0)|ΨN ⟩]JT

}
, (4)

where [ ]JT denotes coupling to good J and T , W is the invariant energy
of the system, ω0 and k0 are the energy and momentum of the pion, and EN

is the nucleon energy.
This set of formulas has then been extended to the multi-channel case,

assuming that two-pion decays proceed through some intermediate unsta-
ble particle, either a baryon or a meson, as shown in Fig. 1. The task at
hand, then, was to devise principal-value states with suitable orthogonality

(k  )π 2
(k  )π 2

(k  )π 1

N

B*

B*

π

∆ (Μ)

(k )1

(µ)m

N

Fig. 1. Two-pion decay of an excited baryon involving an intermediate unstable
baryon with the invariant mass M like the ∆ (left) or an unstable meson with the
invariant mass µ, for instance, the σ meson (right).
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and normalization properties, and use them to construct a multi-channel
K matrix with the general form

KNN KNB(M
′) KNσ(µ

′)

KBN (M) KBB′(M,M ′) KBσ(M,µ′)

KσN (µ) KσB(µ,M) Kσσ(µ, µ
′)

Once the K matrix is obtained, the T and S matrices are given by the
relations

T =
K

1− iK
, S = 1 + 2iT . (5)

In integral form, the first equation in (5), T = K + i TK, amounts to the
set of coupled integral (Heitler) equations

TNN = KNN + iTNNKNN

+ i
∑
B

W−mπ∫
MN+mπ

dM TNB(M)KBN (M)

+ i

W−MN∫
2mπ

dµTNσ(µ)KσN (µ) ,

TNB(M) = KNB(M) + iTNNKNB(M)

+ i
∑
B′

W−mπ∫
MN+mπ

dM ′ TNB′
(
M ′)KB′B

(
M ′,M

)

+ i

W−MN∫
2mπ

dµTNσ(µ)KσB(µ,M) ,

TNσ(µ) = KNσ(µ) + iTNNKNσ(µ)

+ i
∑
B

W−mπ∫
MN+mπ

dM TNB(M)KBσ(M,µ)

+ i

W−MN∫
2mπ

dµ′ TNσ(µ
′)Kσσ(µ

′, µ) . (6)

The desired principal-value states |ΨB
JT (W,M)⟩ corresponding to the πB

channel (where B stands for any intermediate baryon, for instance, the ∆)
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were introduced in a form analogous to (4)

∣∣ΨB
JT (W,M)

〉
= N1

{[
a†(k1)

∣∣∣ Ψ̃B(M)
〉]JT

− P
H−W

[
V (k1)

∣∣∣ Ψ̃B(M)
〉]JT}

,

(7)
where ˜ signifies that orthonormality has been accounted for. The K-matrix
elements computed with such states are

KJT
πBπN (k, k0,M) = −π

√
ωkE

kW
⟨ΨN

JT (W )||V (k)|| Ψ̃B(M)⟩ ,

KJT
πNπB(k, k1,M) = −π

√
ωkE

kW
⟨ΨB

JT (W,M)||V (k)||ΨN ⟩ ,

KJT
πB′πB

(
k, k1,M

′,M
)

= −π

√
ωkE

kW
⟨ΨB

JT (W,M)||V (k)|| Ψ̃B′
(
M ′) ⟩ ,

describing, from top to bottom, a process in which the initial πN system
with the invariant mass W decays into a pion and a πN system with the
quantum numbers of the intermediate baryon B; the πB → πN transition;
and the πB → πB′ transition, for instance, π(k1)+∆(M) → π(k)+∆(M ′).
Similar expressions are derived for the channels involving the σ mesons. (For
purposes of brevity and in tune with the scope of the paper, the lengthy
expressions with a similar structure for different inelastic channels shall also
be omitted in the following; consult [7] for details.)

One of the obstacles encountered was that in formal expressions such
as (4) or (7), the interaction V (k) generates bare three-quark states with
quantum numbers different from the ground state, as well as superpositions
of bare three-quark states dressed with mesons. This problem has been
resolved by exploiting general expressions for the matrix elements of the
pion field between the eigenstates of the Hamiltonian whose pion part has
the form (1); see Appendix A of [7]. As an illustration, the elastic channel
has been represented by the ansatz

∣∣ΨN
JT (W )

〉
= N0

{∑
R

cNR(W ) |ΦR⟩+
[
a†(k0) |ΨN (k0)⟩

]JT
+

∫
dk

χNN
JT (k, k0)

ωk + EN (k)−W

[
a†(k) |ΨN (k)⟩

]JT
+
∑
B

∫
dM

∫
dk

χBN
JT (k, k0,M)

ωk + EB(k)−W

[
a†(k)

∣∣∣ Ψ̃B(M)
〉]JT

+

∫
dµ

∫
dk

χσN
JT (k, k0, µ)

ωµk + EJT (k)−W
b†(k)

∣∣∣ Ψ̃JT

〉}
(8)
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with the following structure: the first term is the sum over bare quark states,
denoted ΦR; the second term corresponds to the unmodified (free) pion and
defines the channel as well as determines the normalization; the three integral
terms incorporating the meson-field amplitudes χ correspond to the meson-
cloud contributions, specifically, to the one-pion state superposed on the
ground state, to one-pion states around different excited states, and to the
one-σ state around either the nucleon or the ∆, respectively. In an analogous
manner, one can then construct the principal-value states for the inelastic
channels, in particular |ΨB

JT (W,M)⟩ for the πB channels, and |Ψσ
JT (W,µ)⟩

for the σN channel.
In the channels including the pion and unstable isobars, the meson am-

plitudes χ above the one- and two-pion thresholds are related to the elastic
and inelastic elements of the K matrix,

KNN (W ) = πN 2
0 χNN

JT (k0, k0) ,

KBN (W,M) = πN0N1 χ
BN
JT (k1, k0,M) ,

KσN (W,µ) = πN0Nµ χ
σN
JT (kµ, k0, µ) , (9)

while above the two-pion threshold, the relations read

KH′H

(
W,m′

H ,mH

)
= πNH′NH χH′H

JT

(
kH′ , kH ,m′

H ,mH

)
. (10)

Here, H stands for either the πB or σN channels, and mH is the corre-
sponding invariant mass, M or µ, respectively.

Next, the equations for the pion amplitudes χ, the coefficient cR in the
ansatz (8), and the analogous coefficients ĉBR appearing in |ΨB

JT (W,M)⟩ and
ĉσR appearing in |Ψσ

JT (W,µ)⟩, must be obtained. The appropriate equa-
tions can be derived by invoking the Kohn variational principle ⟨δΨP|H −
W |ΨP⟩ = 0, where ΨP is a trial state, and requiring stationarity with respect
to the variation of the coefficients cNR , c̃BR , and c̃σR. This procedure results
in the set of equations

(
W −M0

R
)
cNR(W ) = VNR(k0) +

∫
dk

VNR(k)χ
NN
JT (k, k0)

ωk + EN (k)−W

+
∑
B′

∫
dk

V
MB′
B′R (k) χ̂B′N

JT (k, k0,MB′)

ωk + EB′(k)−W

+

∫
dk

V mσ
NR(k) χ̂σN

JT (k, k0,mσ)

ω̃k + EJT (k)−W
, (11)
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(
W −M0

R
)
ĉBR (W,M) = V M

BR(k1) +

∫
dk

VNR(k) χ̂
NB
JT (k, k1,M)

ωk + EN (k)−W

+
∑
B′

∫
dk

V
MB′
B′R (k)χ̂B′B

JT (k, k1,MB′ ,M)

ωk + EB′(k)−W

+

∫
dk

V mσ
NR(k)χ̂σB

JT (k, k1,mσ,M)

ω̃k + EJT (k)−W
, (12)

(
W −M0

R
)
ĉ σ
R(W,µ) = V µ

σR(kµ) +

∫
dk

VNR(k) χ̂
Nσ
JT (k, kµ, µ)

ωk + EN (k)−W

+
∑
B′

∫
dk

V
MB′
B′R (k) χ̂B′σ

JT (k, kµ,MB′ , µ)

ωk + EB′(k)−W

+

∫
dk

V mσ
NR(k) χ̂σσ

JT (k, kµ,mσ, µ)

ω̃k + EJT (k)−W
, (13)

where

VNR(k) = ⟨ΦR||V (k)||ΨN ⟩ = Z
−1/2
N ⟨ΦR||V (k)||ΦN ⟩ ,

V M
BR(k) = ⟨ΦR||V (k)||Ψ̂B(M)⟩ = Z

−1/2
B ⟨ΦR||V (k)||ΦB⟩ ,

V µ
NR(k) = ⟨ΦR||V µ(k)||Ψ̂N ⟩ = Z

−1/2
N ⟨ΦR||V µ(k)||ΦN ⟩ .

Here, ZB is the wave-function normalization, while the reduced matrix ele-
ments ⟨ΦR||V (k)||ΦN ⟩ and ⟨ΦR||V (k)||ΦB⟩ are calculated by using the un-
derlying quark model of choice, for instance, the CBM in our sample calcu-
lations.

Requiring stationarity with respect to the pion amplitudes leads to the
Lippmann–Schwinger equation for the K matrix. The equation for the χNN

JT
amplitude, which is related to the elastic part of the K matrix, reads

χNN
JT (k, k0) = KNN (k, k0)−

∑
R

cNR(W )VNR(k)

+

∫
dk′

KNN (k, k′)χNN
JT (k′, k0)

ω′
k + EN (k′)−W

+
∑
B

∫
dk′

KNB
MB

(k, k′) χ̂BN
JT (k′, k0,MB)

ω′
k + EB(k′)−W

+

∫
dk′

KNσ
mσ

(k, k′) χ̂σN
JT (k′, k0,mσ)

ω̃′
k + EJT (k′)−W

, (14)
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where we have introduced the kernels

KNB
M (k, k′) = −

∑
mtm′t′

⟨ΨN (k)|a†m′t′(k
′)

×
[
V †
mt(k) + (ωk + EN (k)−W )amt(k)

] ∣∣∣ Ψ̂B(M)
〉

×C
J
1
2

JB
1
2−m′1m′

C
T
1
2

TB
1
2−t′1t′

C
J
1
2

1
2
1
2−m1m

C
T
1
2

1
2
1
2−t1t

.

(For B = N , Ψ̂B(M) reduces to ΨN and M to MN .) The pion amplitudes
involving the πB channels, in turn, satisfy the equation

χ̂B′B
JT

(
k, k1,M

′,M
)

= KB′B
M ′M (k, k1)−

∑
R

ĉBR (W,M)V M ′
B′R(k)

+
∑
B′′

∫
dk′

KB′B′′
M ′MB′′ (k, k

′) χ̂B′′B
JT (k′, k1,MB′′ ,M)

ω′
k + EB′′(k′)−W

+

∫
dk′

KB′σ
M ′mσ

(k, k′) χ̂σB
JT (k′, k1,mσ,M)

ω̃′
k + EJT (k′)−W

, (15)

with a similar structure of the kernels KBB′
MM ′(k, k′) and KB′σ

M ′mσ
.

Equations (14) and (15), as well as an analogous consideration for the
amplitudes involving the σ meson, imply that the pion amplitudes can be
written in the following form:

χNN
JT (k, k0) = −

∑
R

cNR(W )VNR(k) +DNN (k, k0) , (16)

χ̂B′B
JT (k, k1,M

′,M) = −
∑
R

ĉBR (W,M)VM ′
B′R(k) +DB′B

M ′M (k, k1) , (17)

χ̂Bσ
JT (k, kµ,M, µ) = −

∑
R

ĉ σ
R(W,µ)VM

BR(k) +DBσ
Mµ(k, kµ) , (18)

χ̂σB
JT (k, k1, µ,M) = −

∑
R

ĉBR (W,M)Vµ
σR(k) +DσB

µM (k, k1) , (19)

χ̂σσ
JT (k, kµ, µ

′, µ) = −
∑
R

ĉ σ
R(W,µ)Vµ′

σR(k) +Dσσ
µ′µ(k, kµ) , (20)

where V are the dressed vertices and D are the background parts of the
amplitudes.

Two simplifications are possible at this point and will be only sketched
here. The first one consists in neglecting the terms involving the integrals
in Eqs. (11)–(15), resulting in the Born approximation for the K matrix. In
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this approximation, the K matrix is constructed from the meson amplitudes
(16)–(20) by using Eqs. (9) and (10), and replacing the dressed vertices VBR
by the corresponding bare vertices VBR, as well as D by K.

The second simplification is the averaging over invariant masses, for in-
stance, the averaging over the ∆ invariant mass M in the σ∆ channel, and
invariant mass µ of the two-pion system occurring in the decay of the σ me-
son. The averaged invariant masses M̄ and µ̄ have been found by suitable
smooth numerical approximations. Consequently, this type of averaging can
be applied to the K matrix and T matrix themselves, and the big advantage
of the averaging procedure is that the set of integral Heitler equations (6)
becomes a set of algebraic equations.

In the figures below, the results obtained within the Born approximation
for the K matrix are shown, but we have also solved the coupled integral
equations (11)–(15) beyond Born by introducing further approximations,
which have allowed us to write the kernels KNN , KNB, and KBB′ in sepa-
rable form. The advantage of using separable kernels is immense as one is
then able to solve the system exactly. (Since the quark-σ vertex is not as
well determined as the quark-π vertex, the σ-meson vertices have only been
treated in the Born approximation.)

Finally, we obtain a set of algebraic equations for the coefficients cHR,
where H stands for πN , πB, and σB channels∑

R′

ARR′(W )cHR′(W,mH) = bHR(mH) ,

where

ARR′ =
(
W −M0

R
)
δRR′ +

∑
B′

∫
dk

VMB′
B′R (k)V

MB′
B′R′(k)

ωk + EB′(k)−W
,

bBR = V M
BR(k1) +

∑
B′

∫
dk

DB′B
MMB′ (k, k1)V

MB′
B′R (k)

ωk + EB′(k)−W
= VM

BR(k1) ,

bσR = V µ
NR(kµ) .

Organizing the coefficients and V functions into vectors, cH = (cHR, cHR′ , . . .)T

and VH = (VHR,VHR′ , . . .)T , the solution can be written in the form
cH = A−1VH . The zeros of A occur at the positions of the poles of
the K matrix related to the resonance R; the corresponding energies are
MR. The coefficients cR have then been determined by the following proce-
dure. First, we have established the zeros of the A-matrix determinant.
Second, by adjusting the energies of the bare states, M0

R, the poles of
the K matrix have been forced to acquire some desired values. Third, A
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has been diagonalized, UAUT = D, such that D = diag[λR, λR′ , . . .] =
diag[ZR(W )(W − MR), ZR′(W )(W − MR′), . . .], which defines the wave-
function normalization ZR pertinent to the resonance R. Finally, this al-
lowed the solution for the c coefficients to be cast in the form

cH = UTD−1UVH ,

while the resonant parts of the χ amplitudes take the form

χH′H = −VT
H′cH = −VT

H′UTD−1UVH

= −
∑
R

ṼHR
1

ZR(W )(W −MR)
ṼH′R = −

∑
R

c̃HR ṼH′R ,

where

ṼHR =
∑
R′

uRR′VHR′ , c̃HR =
ṼHR

ZR(W )(W −MR)
. (21)

The interpretation of (21) is that the resonant states R,R′, . . . are not eigen-
states of the Hamiltonian and therefore mix

Φ̃R =
∑
R′

uRR′ΦR′ .

In the following, the results for the scattering amplitudes in the P11

partial wave are shown. As mentioned above, we have used the CBM as the
underlying quark model since it is one of the most popular representations
of quark–pion dynamics. Figure 2 (left) shows the real and imaginary parts
of the T matrix, and Fig. 2 (right) shows the inelasticity.

Our study has shown that elastic and inelastic pion–nucleon scattering in
the energy range from the threshold up to W ∼ 1700 MeV is governed by an
intricate interplay of the πN , π∆, and σN degrees of freedom. In particular,
the correlated two-pion decay in the relative s-wave by the σ meson turned
out to be the crucial ingredient that allowed us to explain the peculiar feature
of the inelasticity in the P11 partial wave just above the two-pion threshold,
which quickly increases from zero to unity and remains almost constant in
a broad energy range. Our findings also imply that one is able to explain the
features of the Roper resonance without invoking exotic degrees of freedom,
and to establish a specific benchmark for an assessment of the underlying
quark models. It would be naive to expect, however, that the scattering
analysis alone would be able to provide a definitive criterion for feasible
models, so we next turned to the application of the coupled-channel method
to full electro-production amplitudes.
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Fig. 2. Left: The real and imaginary parts of the T matrix for the P11 partial
amplitude. Shown are the Born approximation with resonant terms only (dotted
lines), the result including the background (dashed lines), adding the σ channel
(thin solid lines), and the full calculation (thick solid lines). Right: The inelasticity
in the P11 partial wave (the same labeling).

3.1. Calculation of photo- and electro-production amplitudes

Photo- and electro-production have been incorporated into the coupled-
channels K-matrix formalism by including a new channel, γN . Since the
electro-magnetic interaction is considerably weaker than the strong interac-
tion, we have assumed KγN γN ≪ KγN πN ≪ KπN πN , and similarly for other
channels. The electro-magnetic interaction Hamiltonian has been taken in
the form

Hγ =
1

√
2π

3

∫
dk⃗γ

∑
µ

[
Ṽ γ
µ

(
k⃗γ

)
aµ

(
k⃗γ

)
+ h.c.

]
,

where k⃗γ and µ are the momentum and the polarization of the incident
photon, and

Ṽ γ
µ

(
k⃗γ

)
=

e0√
2ωγ

∫
dr⃗ ε⃗µ · j⃗(r⃗ ) eik⃗γ ·r⃗ . (22)

The K-matrix elements for electro-production corresponding to different
channels MB (πN, π∆, σN, . . .) are introduced as expectation values of
(22) between the state representing the photon–nucleon system, ΨN , and
the principal-value states,

MK JI
MB = − Nγ√

k0kγ

〈
ΨMB
JI (mJmI ; k0, l)

∣∣ Ṽ γ
µ (k⃗γ) |ΨN (msmt)⟩ ,



Studies of the Roper Resonance by the Ljubljana Group 2-A9.13

where J and I denote spin and isospin, respectively. They are related to
the electro-production amplitudes through M = MK + i TMK , a relation
that follows from the Heitler equation, Eq. (5). For the P11 partial wave in
the region of the Roper resonance it turned out that only the π∆ and σN
inelastic channels are needed, and we end up with [9]

MπN (W ) = MK
πN (W ) + i

[
TπNπN (W )MK

πN (W )

+

W−mπ∫
MN+mπ

dM∆ TπNπ∆(W,M∆)MK
π∆(W,M∆)

+

W−MN∫
2mπ

dµTπNσN (W,µ)MK
σN (W,µ)

]
. (23)

Close to a resonance, R the K-matrix element between the elastic channel
and an arbitrary channel MB can be split into the resonant and background
parts,

KπN MB = −π

√
ω0ωMENEB

k0kMW 2
c̃MB
R Ṽπ

NR(k0) +Kbg
πN MB ,

and this allows us to split the electro-production amplitudes in the same
way: the resonant part takes the form

M(res)
πN = −

√
ωγE

γ
N

π2ω0EN

√
ZR

VNR

〈
Ψ̂
(res)
R (W )

∣∣∣ Ṽ γ |ΨN ⟩ TπNπN ,

while the background part satisfies

M(bg)
πN = MK (bg)

πN + i
[
TπNπNMK (bg)

πN + T̄πNπ∆M̄K (bg)
π∆ + T̄πNσNM̄K (bg)

σN

]
.

The remaining steps are the multipole decomposition and calculation of
helicity amplitudes. Omitting all details, let us just write down as an il-
lustration a sample relation between the specific electro-production and the
helicity amplitude. We obtain

Im pM
(1/2)
1− = −1

3

√
kWEγ

N

6π2ω0EN

√
ZR

Vπ
NR

ImTπNπN

(
− 3√

2

)
×
〈
Ψ̂
(res)
R

(
ms =

1
2

) ∣∣∣Ṽ M1
∣∣∣ΨN

(
ms = −1

2

)〉
, (24)
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where

ΓπN = 2π
ω0ENVπ

NR(k0)
2

ZRk0W

is the elastic width of the resonance. We thus obtain

Im pM
(1/2)
1− = −ξR

√
kWEγ

NΓπN

6πk0MRΓ 2
Ap

1/2 .

Phenomenological studies of electro-production reveal a relatively strong
contribution of the ω meson already at low energies, whereas in the cal-
culation of the (strong) scattering amplitudes, the contributions of vector
mesons are negligible. The contribution of the ω meson to the K matrix in
the elastic channel has therefore been modeled by the expression

pM
(1/2)
1− (ω−meson) =

1

3

MN

4πWmπ

gγπωgω1 kγkπ ρω(kω)

m2
ω −m2

π + 2kγωπ
,

where ρω(kω) is the appropriate form-factor; see [9] for details.
Figure 3 shows a sample result for the pM

(1/2)
1− amplitude by using the

same parameters for the CBM model as in the calculation of the scattering
amplitudes. One of the more interesting findings in the P11 case was that
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Fig. 3. Real (left) and imaginary (right) part (see Eq. (24)) of the pM
(1/2)
1− photo-

production amplitude. The experimental points are the single-energy solutions of
the SAID partial-wave analysis [10, 11]; the “SAID” curve shows the corresponding
fit; the MAID result is based on the parametrization provided by [12].
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at energies below the resonance, the amplitudes are dominated by the back-
ground, which is marked in contrast to the P33 partial wave in the region
of the ∆(1232), where the photo-production amplitude is clearly dominated
by the resonant contribution and follows the shape of the elastic T matrix.

As a further example, Fig. 4 shows the scalar helicity amplitude, evalu-
ated at W = 1520 MeV, the pole of the K matrix. We observed an inter-
esting feature that the effects of the pion cloud which, understandably, are
most pronounced at small Q2, have the opposite sign with respect to the
contribution from the quark core, which is small at the origin — with the
same mechanism also governing the behavior of the magnetic helicity ampli-
tude (not shown). The large spread of various quark-model predictions for
the scalar helicity amplitude near the real-photon point and the uncertain-
ties of the helicity couplings Sp

1/2(0) found by SAID and MAID motivated
us for an experimental exploration mentioned in Section 4.
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/
2
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2
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0
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Fig. 4. Scalar helicity amplitude Sp
1/2(Q

2) evaluated at the pole of the K matrix
(W = 1520 MeV). Separately shown are the contributions of the 3q core (“bare”),
the γππ′ interaction (“pion”), and the pion-cloud corrections to the γBB′ vertex
correction (“vertex”). An additional “total” curve is plotted for a non-standard bag
radius of 1 fm (otherwise 0.83 fm).

3.2. Including the “second Roper”

An additional impetus to investigate the structure of the Roper resonance
came as part of a larger enterprise to study eta and kaon photo-production
on nucleons within the same coupled-channel approach as described above.
The required energy range necessarily extended up to ≈ 1800 MeV, and
this naturally led to the inclusion of the “second Roper”, the N∗(1710), for
which we assumed that it decays only into the σN channel. Furthermore,
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the production of strange mesons in the P11 partial wave required us to
specify its quark configuration, which is not obvious; it may consist of the
(1s)3, (1s)2(2s)1, (1s)1(2s)2, (1s)1(1p)2, (1s)1(1d)2 . . . configurations or even
a component with the excitation of the σ cloud [4]. We have restricted our
investigation to the type of excitation in which only a single 1s quark is
promoted to a higher orbit, which resulted in the following structure of the
two Roper resonances [13]:

N∗(1440) = cosϑR(1s)
2(2s)1 − sinϑR(1s)

1(1x)2 ,

N∗(1710) = sinϑR(1s)
2(2s)1 + cosϑR(1s)

1(1x)2 .

Here, x stands for l > 0 quark orbits not involved in the transition matrix
elements. Note that the N∗(1440) and the ground state also mix, which
leads to an important nucleon–pole contribution to the amplitudes.

3.3. Genuine quark state versus dynamically generated structure

Our last theoretical effort was motivated by the recent lattice QCD stud-
ies (Graz, Adelaide) that have found no clear signal for a dominant three-
quark configuration below 1.65 GeV and 2.0 GeV, respectively, that could be
interpreted as a Roper state. It seemed that the πN channel alone does not
render a low-lying resonance and that coupling with ππN channels seems
to be important, supporting the dynamical origin of the Roper. With our
coupled-channels machinery in place, we decided to investigate whether such
a dynamical mechanism for the formation of the Roper would be possible.
This work has been performed in collaboration with Tuzla (H. Osmanović)
and Zagreb (A. Švarc) groups [14].

The pion–baryon vertices in the underlying quark model (still CBM) have
been fixed, while the s-wave sigma-baryon interaction has been incorporated
phenomenologically with the coupling strength, the mass, and the width of
the σ meson introduced as free parameters. The Laurent–Pietarinen expan-
sion has been used to extract the parameters of the S-matrix pole. The
Lippmann–Schwinger equation for the K matrix with a separable kernel has
been solved to all orders. The main finding was that for sufficiently strong
σNN coupling, the kernel becomes singular and a quasi-bound state emerges
at around 1.4 GeV, dominated by the σN component and manifesting it-
self as a pole of the S matrix. As an alternative, we have added a (1s)22s
quark resonant state, and studied the interplay of the dynamically generated
state and the three-quark resonant state. It turned out that for the mass of
the three-quark resonant state above 1.6 GeV, the mass of the resonance is
indeed determined solely by the dynamically generated state, yet with the
caveat that the three-quark resonant state remains imperative to reproduce
the experimental width and the modulus of the resonance pole.
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4. Experimental studies of the Roper resonance

The Ljubljana group also led an experimental effort within the A1 Col-
laboration at the MAMI facility. We have precisely measured the proton
recoil polarization components in the p(e⃗, e′p⃗ )π0 process in the energy range
of the Roper resonance and, by using the MAID unitary isobar model, have
been able to determine (in a model-dependent manner) the scalar helicity
amplitude S1/2 at a Q2 very close to the real-photon point [15]. In view
of the cancellations of bare-core and pion–cloud contributions seen by some
models at low Q2, this region is relevant as a kind of “elimination ground”
for quark models. Our extracted value (see Fig. 5) is consistent with the
non-hybrid nature of the resonance, which implies that the interpretations
of the Roper as an entity characterized by strong meson–baryon dressing
may be favored, in other words, there is no need for non-quark degrees of
freedom. Our result, therefore, supports those models of the Roper in which
the interplay of quark and meson contributions results in a small value of
S1/2 near the real-photon point.
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Fig. 5. The scalar helicity amplitude for Roper electro-excitation at Q2 =

0.1 (GeV/c)2, denoted “A1 (2017)”, compared to CLAS data, MAID, the JLab-
MSU parametrization, and two light-front quark model results. The “MB” curve
shows the meson–baryon dressing contribution. The immense range of various
model predictions is indicated by shading; see [15] for detailed references.

With this paper, the Author would like to pay tribute to the late Pro-
fessor Bojan Golli, who for many years was the driving force in nucleon
resonance-related theoretical efforts of the Ljubljana group.
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