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The method of formal series can be applied to solving the variable phase equation
for partial amplitude, to relativistic potential, theory and quasipotential approaches. The
partial amplitude is represented by the ratio of two power series of the coupling constant.

1. Introduction

It is well-known that for the determination of the phase-shift §,, S;-matrix and partial
amplitude of the scattering f; in the nonrelativistic quantum theory one can use regular
and irregular solutions of the radial Schrodinger equation. During the last years for the
finding of these magnitudes the method of variable phase approach was formulated as
presented in the papers by Calogero [1] and Babikov [2]. The variable phase approach
in the case of local spherically symmetric potentials is based on an ordinary nonlinear
first-order differential equation for the phase shift or for the partial amplitude. The method
of variable phase approach was generalized to describe relativistic problems in the quasi-
potential approach {3}, [4].

In the present paper we apply the method of formal series to solve a nonlinear variable
phase equation for partial amplitude. This method, due to Dubois-Violette [5], [6], seems
to be well suited for programming by computers and also for theoretical considerations.

An exact expression for the partial amplitude may be represented by the ratio of
two power series of the coupling constant. The obtained approximation is valid for strong
and weak coupling. When the series in the numerator and denominator are approximated
by two polynomials, instead of the corresponding series the Padé approximant is ob-
tained.

In Section 2 the partial amplitude for the nonrelativistic local potential theory is
considered. The variable phase approach for the nonlocal potential problem is discussed
in Section 3. In Section 4 relativistic partial amplitude in quasipotential approach is conside-
red.

* Address: Department of Theoretical Physics, University of Plovdiv, Tzar Assene 24, Plovdiv,
Bulgaria.
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2. Partial amplitude for nonrelativistic local potential theory

In the present context we shall consider spherically symmetric potentials

Vo= AVo(r), )
with the coupling constant 2, satisfying the following conditions:
a) Vo(r) is almost everywhere continuous function in the interval 0 <r < oo,
ro
b) J(ro) = jxiVO(x)idx < o0,
)]
5) J(ry) = | x[Vo(x)ldx < oo,

ry

for any positive numbers r, and ry.
The nonrelativistic partial amplitude fj(r) defined by the relation

filr) = €77 sin §(r), (2)

where §,(r) is the phase shift produced by the potential up to the distance r, satisfies the
non-linear differential equation

df(r) _ V) Lidkr)+ i), ©))
dar k

H0)=0, Qu=h=1). (4)

The functions j(kr) and A{"X(kr) are two linearly independent solutions of the correspond-
ing radial Schrodinger equation when F(r) = 0:

nkr inkr
ikkr) = \/7 Jis 1/2(1{"), h:l)(kr) = \/_2‘ H;i)xiz(kr)‘ &)

Introducing the new unknown function F(r) by the relation

ijlkr)
Fm=m%5%5, (6)
we obtain instead of the equation (3) and the condition (4)
dF(r) 3 k K(_r) m -
e vt R LGOI EHO) ™
F(0) = 0. 8

The problem of solving the equation (7) with the initial condition (8) is reduced to the
discussion of the integral equation

Fr)+29[F(r), 1] = (), ®
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where
ijkr)
(Pt(r) - hfl)(kr) B (10)
Vo(x) ‘
G[F (), r] = — [—% [A(kx) P FE(x)dx. (11)
g
Let us assume that the formal series in the variable U is given
S(U) = U+A%(U), (12)

where A is a real or complex number and % is a given formal series of order 2 at least.
Suppose that U is also the formal series in the other variable Uj:

U = U(Uy), (13)
with
U@ =0, (14)

and such that the U formal series is the inverse of the S(U) series with respect to substitu-
tion of formal series:

S(U(Uo)) = S = U(U,) =
= S(U(Uo) +2A9(U(U,))) = U,. (15)

According to a classical theorem of the substitution of formal series [5], [6] there exists
a unique inverse U of the S such that

UOS(Uo) = U(Uo+ig(Uo)) = Uo, (16)
or
‘EW(UO)U(UO) = U,, 17

where 7 19w Uo) is the translation operator for U corresponding to a translation 1%(U,)
of its argument.

For the non-linear integral equation (9) the composition of formal series in a well-
-chosen functional space is

SeoU(Upy = Fl(r)+}'g[Fl(r)= 7'] = @r), (18)
and its solution takes the form

_ P ki) T exp {—A[dysd[on y]p(»)}edr)
014, k) Iexp {—4§dyé%[e, yllop(n} -1

Fy(r) (19)
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In the last expression the symbol I' indicates that all functional derivatives must be on
the left, acting thus on all functionals which are put on their right. Keeping in mind this

rule for the numerator and denominator we get

PfA, k;r) =T exp {—4[ dys%[ o, y1/dp(y)}odr) =
- E P™(, k;r) = E —f—'f...J‘dxl...dx,,x
nt
n=0 n=0 6 0

Xy Xn

5!1
X
opxy) - 5‘Pt(xn)0

Qi(4, k) = I'exp {—A [ dyd4[ s, y1/dp(r)} - 1 =

eed w an

ZQ;W ky = } p f dx ..
_J ¢

Xn

o
* Sk - 5¢z(x,.)j j dxy e dq 2k X5 gx) .. 2k, X35 k),

0

where
2k, 9100 = 0 0T ().

The solution of partial amplitude may be represented by the ratio

Py(4, k; 1 — gr)Qi(4, k)

fi(r) = .
' (4, k)
It is an easy exercise to verify that
ij,(kr)
P(O) ﬂ, k; — - Ul(
1 (/“ r) (pl(r) h;l)(kr) 3
V Aj(k V
P4, ks r) = — J o 2y — D Vo)
h, Y(kr) k
]

x jlkx)hi(kx)dx, QO k) = 1,

Q14 k) = —iZ | dxVo(x)ji(kx)h{P(kx)]k,
4]

f dei e dx, 2k, X35 x)) - Zk, x5 @K plr),
0

20)

2D

(22)

(23)
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0P(4, k) = — -;7(3 dx{Vo(x)h{(kx)j(kx) x
(]
X :f VoWiky)h{V(ky)dy +2Vo(x) [h{V(kx)]? E Vo(Mit(ky)dy}. (24)

In the approximation obtained by stopping to the first degree of the numerator and de-
nominator we get

2] Vo))
o

S = > ) (25)
k-2 J. Vo(x) {(— 1)lj_,_1(kx)j,(kx)+ ij,z(kx)}dx

A relation analogical to (25) was obtained by Drukarev [7] by another method. The approx-
imation (25) may be found by Drukarev’s expression after multiplying the numerator
and denominator by the appropriate expression.

Since the denominator of (23) is a regular function of A the partial amplitude can be
developed formally as a power series

70 = 3 fu 6)

The [N, M} Pad¢ approximant to the function £, is the quotient Py (1) On(2) of two poly-
nomials of degree M and N, respectively. These polynomials are defined in a unique way
by the relation

F(NQN(A) = Py(D)+0(M M), (27)
For the [1,1] Pad¢ approximant obtained by (23) we have

—~ 1 { Vo(x)j(kx)dx
(4]

PP, ks )= (NP4, k)
PiV(4, ks 1) = @(NQi (A, k)

The proposed method for determining the partial amplitude can be applied to the
variable phase equation in the quasipotential approach, describing the relativistic two-body
system obtained and discussed by Todorov [8]

dfi(rn _~ 2m

a —;V'-n— V(r) Libr)+ih{"(br)f(r)]*. (29)

A1) =

(28)

1+0i7(2, k)—

The magnitudes m; and m, in the equation (29) are the masses of the two particles. W is
the total energy of the system and

b* = QW) [W*=2(mi—mHW? +(mi—m3)’], (30)

is the on-shell value of the center of mass momentum squared of each of the two particles.
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3. Partial amplitude for non-local potential

The present method for solving the variable phase equation for partial amplitude is
also applicable to the nonrelativistic problem with non-local potential. In this case the
radial equation of Schrodinger is an integro-differential equation

o0

d? I(1+1
un [kz- (—)] () - JVl(r, ()i’ = 0, (31)
dr r
0
where
+ 1 .
Vi(r, ¥y = 2nrr’ | Pfcos 0)V,(z, ¢)d cos 0 = AV (r, ). (32)
-1

The equation for partial amplitude in this case is of the type:

dafy(r)
dr

1 . ke 4 ’ ’ > ’ . ’ L
= - l—{‘[jz(kr)ﬂfz(r)h;”(kr)] Jd" Vir, 1) Lidkr )+ iR (kD] (33)
4]
After introducing the new unknown function by (6) we have

dF d y
iFAr) _ 1pdr) + = Fi(nhiP(kr) | dr' Vo(r, iR P(kr)F (), (34)
dr dr k
0

(0) = F(0) = 0. (35)

So, the problem is reduced to the discussion of the integral equation

F(r)+Ag[Fyr), r] = o(r), (36)
where
glF(r),r]= — ;deFz(x)hf”(kX) Jdr'Voz(x, r YOk )F (). (37
0 0

The solution of the equation (36) takes the form

Pl kir) _ T exp (=] dxoglen x1sp0}gr) _
a0 T exp {4 [ dxdgly, x]jopix)} - 1

F(r) =

- zo PG ki) (T a0} (39)



where

@D

L 5 d
W0k r :_j__jdx dx, __jjd o dxx
P - ' S@i(X1) ... dgpi(x,) :
[0} 0 0 [0}

X @l(ks x5 X)) - fgl(k, Xns @(X) i),

Wum:i .
qi 2 !
n.
o

x Z(k, x7; @x1) ... Zi(k, x5 @lx,),

Xn

& )
dx, ... dx, - , - J dxy ... dx,x
j ' dqi(xy) ... 0 fx,) s '

o

o)

N 17 ,
Fle,x; @) = J GO (k)R (r Woy(x, (Y.

0

After the evaluation of the functional derivatives in (40) and (41) we have

iji(kr)

P04 kir) = @) = — hf”(k?) >

“’(/ kiry=

E W

% [d}«;,(\)h‘ D(kx) J‘dx’hﬁ"(kx’v)VO,(x, x')x
O

X @x')+ @ fr) j dxhi"(kx) j dxhy(kx"YWo(x', x)pdx") +
0 0

+3 ) § dxh{Vkx) § dx Bk Yo, x’)qa,(x’)} :
0 (¢)

q;O)(;‘" ky =1,

oL

jdxlﬁ”(kx) j dx Bk YWolx, X pdx") +

0

a1 (4 k) =

ww.
Nr»—»

A
+ }o dxh{"(kx) I dx' by (kx")o(x's x)‘Pl(x')} .
0 )

By using the expressions (42)—(45) we obtain the partial amplitude

Pt(ia ir)— ‘Pt(")‘b@ k)
fi(r) = =70 kkI)ka) i
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(40)

(41)

(42)

43

(44)

(45)

(46)
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When we stop in the first degree of A in (46) we get

i = -2 jrj,(kx)dx }0 dx' Vo x, x")j(kx") {k—ii[% Of dx %
[} () o

x h{V(kx) | dx'Vodx, x)jdkx)+ | dxh§"(kx)jdx'vo,(x', x)j(kx')]} 1. 47N
0 4] 0

The considered method for solving the phase variable equation for the non-local
potential may be very useful for the discussion of the quasipotential equation of Logunov-
Tavkhelidze [9]-]11] for partial wave function

d’u (I1+1) , , ,
d‘rzl + [kz- 2 :l u = V(r, k%) fd" K(r, ru(r’), (48)
0
where
qdq
K(r,r'y=n J1+1/2(qr)~]1+1/2(qr) 49)
\/q +m?

4. Partial amplitude for a relativistic problem

Several years ago a quasipotential equation for partial wave function with local
potential was proposed [8]

G i ~
[2 chi~— + oy ‘ —2EK+V(r)] Y Xk, 1) =0, (50)

Ex = V1+k? = ch Xy,

which described relativistic two body system of identical masses. On the basis of equation
(50) the corresponding variable phase equation for partial amplitude was obtained and
discussed [9]

d V(r)

— (X 1) = — ———[5(r, Xp) +fi(Xx, NeXr, X ). 51

drfl( k1) Wi, Xy) [sr, X)) +f( Xk, e (r x)] (51)
The functions s,(r, Xx) and e{'X(r, Xg) are two linearly independent solutions of equation
(50) when ¥(r) =0

n . rGr+i4+1) _
S[(r, XK) = \/5 ShXK(—l)l+l 1_.( r) T e~ Plrz 1%2( h XK)a (52)

rGr+l+1) .,

n
ef”(r, X)) = \/i sh XK(_i)l+1 TGr) — Q@ Ji(ch Xy), (33)
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and W(r, Xx) are their Wronskians. It is not difficult to show that in the non-relativistic:
limit

nkr nkr
Sl(r, XK) b d \/T Jl+1/2(kr), e§1)(r, XK) - -] \/‘7 Hg-lf-)l/Z(kr)‘ (54)

Analogically to the nonrelativistic case, the solution of (51) with the initial condition
fi(Xx,0) = 0 may be represented by

fl(XKa 1‘) = —Q’t(”, XK)+
Fexp{—4 T dxSH [ g1, x)/0(x. X} oi(rs Xx)

+ - , (55)
Fexp {~4 [ dxoH [, x]/bp(x, X0} - 1

@ir, Xg) = si(r, XK)/efl)(", Xx), (56)-
s V
Hl[(pl(ra XK)> r] = Wl_(—)%(x)%s [el(l)(xa XK)]Z(plz(x5 XK)dx’ (57)'
)

if we assume that the integral

5"
j...J‘dxl o dx, X
: oy, Xi) ... 0p(X,, Xk)

(=

X1 Xn
Vo(x1)
x | ... |dx}...dx, S eV, X )T e2(x), X -
J J 1 {Wz(xluxx)[l (x1, X1 @i (x1, Xi)
VO(xt’l) (1) 2 2
X — X XK =0,1,.., 58
{W,(x;,, X Lel (xn X)] 91 (% Xx) n (58)
exists. It is an easy exercise to verify that
V,
-2 -i@wsf(x, X )dx+ ...
I/Vl(xa XK)
0
Xk, 1) = % . (59)
Vo(x)
L—A | dx ———— s/(x, X)e§(x, Xg)+ ...
f X Wi(x, Xg) si(x, Xgep ( )

The expression for partial amplitude (59) may be very useful for the problems of bound
states and resonances of the two-particle relativistic system. For the appropriate model
of potentials we can also get some information about high-energy scattering of the par-
ticles.
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5. Conclusion

The method of formal series allows us to solve the approximate variable phase equa-
tions for the nonrelativistic potential theory and the relativistic two-body problem in the
quasipotential approach of Logunov-Tavkhelidze, Kadyshevsky and Todorov. The approx-
imation is valid for strong and weak coupling constants, and can be applied to several
physical problems.
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