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ESTIMATIONS OF HALF-LIVES OF FAR-SUPERHEAVY
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The spontaneous fission and alpha-decay half-lives of doubly-even superheavy nuclei
with Z = 154-164 are calculated microscopically. The beta stability is also investigated.

The longest total half-lives of the order of 10°-107 years aré obtairied for nuclei in the
neighbourhood of doubly magic nucleus 472(164).

1. Introduction

Theoretical calculations of the lifetimes of superheavy nuclei close to the doubly-magic
nucleus 22%(114) have shown (cf. e. g. Refs [1-6]) that the shell effects may result in very
long, as for such nuclei, half-lives. The half-lives are of the order of 10'° years.

According to the extrapolated single-particle spectra of various realistic nuclear poten-
tials, the nucleus 278(114) is expected to be the closest doubly magic nucleus to the empirical
region.

A natural question is whether one can expect heavier doubly magic nuclei with
reasonably long lifetimes.

The calculations with spherical Nilsson potential [7-9] predict the number Z = 164
as a good candidate (large energy gap) for the proton closed shell. The shell is rather stable
against changes of the potential parameters. However, the neutron energy gaps obtained
in these calculations are small and rather sensitive to the potential parameters.

The calculations {10] with the Woods-Saxon potential support the number Z = 164
as a good candidate for the proton closed shell.

However, additionally, a subshell at Z = 154 and a whole region of a low level density
in the proton spectrum at Z = 154164 appear in these calculations. Also in distinction to
the calculations with the Nilsson potential, these calculations lead to the strong and rather
stable neutron shells. The shells appear at N = 228, 308 and 406. The shell at N = 228
is slightly weaker and less stable than these at N = 308 and 406.

The situation is illustrated in Fig. 1 taken from Ref. [10]. After the first superheavy
island of increased stability 1, concentrated around the nucleus 2°3(114), which attracts
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now much of theoretical and experimental interests, there appear the islands 2-3 and 4.
The island 4 is connected with the large and stable neutron shell N = 308. The island 2-3
is connected with the smaller and less stable shell N = 228.

The crude estimations [10] of the alpha-decay and spontaneous fission lifetimes, 7,
and T, respectively, show that very short T, are expected for region 2-3 due to the strong
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Fig. 1. Positions of the predicted doubly magic very heavy nuclei on the mnuclear chart. The extrapolated
empirical beta stability line is shown

neutron-deficiency of this region. However, rather long lifetimes, both T, and T, are
expected in region 4. Also in this region the beta-stable nuclei may appear in connection
with the nearness of this region to the extrapolated empirical beta-stability line.

The purpose of the present investigation is to perform the microscopic calculations
of the half-lives T, and T, and also the calculations of the positions of beta-stable nuclei
in both regions 2-3 and 4.

In Sect. 2 we describe the calculations, in Sect. 3 we present the results and in Sect. 4
we discuss them. Sect. 5 gives the conclusions.

Some of the results of the present research have been given in Ref. [11].

2. Description of the calculations

As mentioned in the Introduction, we aim at calculating the spontaneous fission
and the alpha-decay half-lives of doubly even nuclei in their ground states and at finding
the position of the beta-stability line in the regions 2-3 and 4.

2.1. Method of the calculations
The spontaneous fission half-life 7; is calculated according to the formula

T:;f=___> (1)
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where n is the number of assaults of a nucleus on the fission barrier per unit time and P
is the probability of penetration of the nucleus through the barrier for a given assaulit.
The frequency of a vibration leading to fission (here beta-vibration) is usually taken
for n.

In the one-dimensional case, considered here, the WKB approximation gives for the
penetrability P through the barrier

P= {1+exp (2jJ2 %gj—) [W(e)—E] ds)}— , 2

where ¢ is the deformation parameter, W{(e) is the potential energy barrier and E is the
energy of the nucleus in the fissionning state, as illustrated schematically in Fig. 2. The
mass parameter B(¢) describes the inertia of the nucleus with respect to the deformation e.
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Fig. 2. Schematic fission barrier. For nuclei close to a doubly magic nucleus Eeq =0
To get the energy barrier, we calculate the binding energy of a nucleus as a function of

deformation. We assume the energy to be composed of a smooth phenomenological part,
described by the liquid drop model, and of the shell correction, i. e.

E(Z5 N9 8) = ELD(Za N: 8)-I'AESHELL(Za N, 8)' (3)

The shell correction is calculated microscopically by the Strutinsky method [12]. It
consists of the proton and the neutron contributions

AEupi(Z, N, &) = AEgup1(Z, &)+ AEgy; (N, 8), @

each of which, after inclusion of the residual pairing interaction by the BCS formalism,
is of the form [3]

AESHELL(X: 8) = {Z evzv\% - AZ/G - G(Z Uj - Z, 1)} - {E(g) + <Epair>}’ (48.)
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where X stands for Z (protons) or N (neutrons). In Eq. (4a) e, is the energy and v? is the
occupation factor of the single-particle state |v), G is the pairing force strength and 24
is the pairing energy gap. The term G 'l is the diagonal pairing energy corresponding
to the sharp Fermi surface.

The quantity E(g) represents the sum of the energies of the single-particle levels when
these levels are smeared out to give a continuous density g(e). The corresponding formula is

eF
E(g) = [ 2eg(e)de, %)
where the Fermi energy ey is given by
ep
X =Z(or N) = | 2g(e)de. (5a)

The level density function g(e) smeared out with the help of the Gauss function is

T

1 O a2
g(e) = W— Lfcorr(uv)e s (6)

v

where v, = (e—e,)/y. The role of the function f,,(1,) is to correct, reconstruct the long-
-range (the range of the order of the Fermi energy ey) behaviour of the level density distor-
ted by smearing out of the short-range (of the order of the shell spacing fw,) fluctuations
of this density. We have taken here y = 1.0 hw, for the smearing parameter and the
sixth-order polynomial for the correction function £, (u,). For the average pairing energy
(E,air»»> here, we take after Ref. [3], the value —2.3 MeV.

The mass parameter B is calculated microscopically in the adiabatic approximation.
The corresponding formula is [13]

1 25, [00\?
__B=_"22 (%
h? @2z,)? (68) ’ ™
where
Zn - <#Iéiv>2(uuvvtuvvu)2 +AZ",
(E,+E,)

By

with n = 1 or 3. Here g is the single-particle quadrupole moment operator, u, and v, are
the BCS variational parameters and E, is the quasiparticle energy corresponding to the
single-particle state {v). The quantity Q is the total (mass) quadrupole moment of a nucleus
and AZ, is the contribution to Z, coming from the coupling of the quadrupole collective
motion to the pairing vibrations as discussed in Ref. {i13].

In Sect. 3 we compare the microscopic values of B obtained from Eq. (7) with the
phenomenological ones obtained from the spontaneous fission lifetimes of heavy nuclei [1].
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To estimate the alpha-decay half-lives T,, we use two alternative phenomenological
formulae. One given by Taagepera and Nurmia [14]

log T(y) = 1.61 [z_—_z —(z—2)2/3] —28.9, ®)
V0
and the other by Viola and Seaborg {15]
log T,(sec) = ﬁi +B,, )
NL®

where

Az = 2.11329 Z—48.9879
B; = —0.39004 Z—-16.9543.

In both formulae (8) and (9) Z is the atomic number of a parent nucleus and Q, is the
alpha-decay energy in MeV. To obtain Q,, we calculate the difference between the ground-
-state energies of parent and daughter nuclei, both obtained from Eq. (3), and diminish
it by the empirical alpha particle energy.

To find the position of the beta-stability line, we need, besides the ground-state
energy of a doubly even nucleus, also the energy of doubly odd nucleus. We find the last
one in two variants. One when the energy of an odd number of protons or neutrons is
calculated with blocking of the single-particle state occupied by the odd particle, and the
other without blocking. In the variant with blocking, we get a lower number of beta stable
nuclei due to a smaller pairing energy gap 24 obtained in this case. The blocking of one
single-particle state lowers the efficiency of the pairing interaction, and thus it lowers
the gap 24.

2.2. Details of the calculations

To describe the dependence of both the energy and the mass parameter of a nucleus
on deformation, we use the Nilsson potential. We require, however, of the potential to
reproduce the Woods-Saxon potential spectra at zero deformation. This is because the
Woods-Saxon potential appears to be relatively reliable for extrapolations of the spectra
in the mass number, as discussed in Ref. [10].

In other words, we adopt here the spectra of the spherical Woods-Saxon potential
obtained [10] for the regions 2-3 and 4, and use the simple Nilsson potential for descrip-
tion of the deformation dependence of these spectra. This procedure was used in the earlier
paper [5] for the calculation of life-times of nuclei in the region 1, i. e. in the region of
Z =~ 114,

Fig. 3 shows two variants of the Woods-Saxon spectra for protons. None of them is
a spectrum of a definite nucleus with specified Z and -4, but each is rather a “universal”

spectrum of beta-stable nuclei, the spectrum which only locally corresponds to a definite
nucleus.
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Fig. 3. Single-particle schemes for protons in a spherical nucleus: a) Nilsson scheme used in the present
paper b) Woods-Saxon scheme based on the Blomgqvist-Wahlborn parameters ¢) Woods-Saxon scheme
based on the Rost parameters

Fig. 4. Same as Fig. 3 for neutrons

The spectra are obtained in the following way. For given Z, the mass number 4 is
found from the empirical formula [16] for the beta-stability line

3 0.442
T A+200°

(10)

Then, with the potential parameters appropriate to those Z and A, few energy levels close
to the Fermi level are found. Changing Z by few units, the next few levels are found and
so on.

The “universal” spectrum obtained that way is locally good for the appropriate Z.
In particular, it reproduces all empirical magic numbers, of which only Z = 82 is shown
in the figure.

The corresponding spectra for neutrons are given in Fig. 4.
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The spectra 3b and 4b correspond to the variant (i) of the potential parameters discussed
in Ref. [10], i. e. to the parameters

ro = 1.27fm, a¢ = 0.67fm, 1 = 32.0,
and

N-Z
VE® = 51 (1 +0.67 —A—> MeV, (11)

where R = r, A'® is the radius, a, the diffuseness, 4 the spin-orbit coupling strength
and ¥, the depth of the potential. The values of ry, ao and A are kept constant as functions
of A, while the dependence of ¥, on A and Z, related by Eq. (10), is shown explicitly
in Eq. (11). This variant of parameters is related to the analysis by Blomqvist and Wahl-
born [17] for the Pb region (cf. also Ref. [18]).

The spectra 3c and 4c correspond to the variant (i) of the parameters discussed
in Ref. [10], and are related to the analysis by Rost. [19]. Here, the geometrical parameters
ro and aq, as well as the parameter A, are again assumed to be constant with 4, while the
depth V, is

N-Z
VI = 49.6 <1 +0.86 T) MeV. (12)

The spectra 3a and 4a are those of the spherical Nilsson potential with the parameters
Kk, u and hw, fitted to the Woods-Saxon spectra 3b and 4b. The values of x and g,
each being a function of the oscillator shell number N, are given in Table I. They
are changed with respect to those used in Ref. [5] for the calculations of the lifetimes
of superheavy nuclei in the region 1. The change comes mainly from the fact that here the

TABLE 1
The Nilsson scheme parameters x and u, used in the present calculation, versus shell number N
N Kp Kn HMp Hn
0 - - 0 0
1 0.150 0.143 0 0
2 0.098 0.091 0.27 0.05
3 0.078 0.078 0.40 0.22
4 0.071 0.064 0.53 0.35
5 0.052 0.051 0.72 0.54
6 0.047 0.038 0.83 0.61
7 0.043 0.043 0.94 0.48
8 0.036 0.041 1.12 0.52
9 0.033 0.040 1.26 0.50
10 0.032 0.037 1.28 0.52
11 0.029 0.044 1.40 0.48
12 0.029 0.041 " 1.40 0.51
13 0.029 0.041 1.40 0.51
14 0.029 0.041 1.40 0.51
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oscilator strength hw, is also fitted to the Woods-Saxon spectra, as described below,
while in Ref. [5] it was kept according to Eq. (13'). This allowed us to improve the fit.
As x and p of Table I correspond to the *““universal” spectrum they may be also used for
other regions of nuclei than those analysed here.

The oscillator strength hw, multiplied by 43 reveals to be also a function of N
(or A), similarly as ¥ and g are. It is obtained that for protons

A3 x hob ~ 47.5 MeV (13a)

for both 2-3 and 4 while for neutrons

454 MeV  for 2-3,
AP xhop = (13b)
43.9 MeV  for 4.

Thus, for neutrons they are about the same and for protons they are larger than the
values taken usually [3]

1 N-Z
AV X hot™ = 41 <1¢ 3 T) MeV. (13")

All the results given in the present paper are obtained with the described ‘“‘universal”
Nilsson scheme fitted to the Woods-Saxon spectra 3b and 4b (Blomgvist-Wahlborn
variant) at zero deformation. The effect of using the scheme fitted to 3¢ and 4c levels (Rost
variant) instead of 3b and 4b is discussed in Sect. 4.

The pairing force strength is taken according to Ref. [3], i. e.

N-Z
AxX Gy = 192474 —— MeV, 14

with 2 V15 Z(N) levels nearest to the Fermi level, accounted when solving the pairing
equations. As discussed in Sect. 4, also for so heavy nuclei as those in the 2-3 and 4 regions
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Fig. 5. The average minimum potential energy paths for regions 2-3 and 4
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the strength (14) leads to 4 not far, on the average, from the extrapolated empirical values
A4 ~ 12472 MeV, especially for neutrons.

Concerning the dependence of the strength G on deformation, we assume G to be
proportional to the surface area of the nucleus, G oc S.

The potential energy of a nucleus is calculated as a function of the quadrupole and
hexadecapole deformations, ¢ and ¢,, respectively. We assume a nucleus to undergo
fission along the static path, i. e. along the path of the minimal potential energy. The
average path found for nuclei in the region 2-3, as well as the average path found for the
region 4, are given in Fig. 5. All the results of T; are obtained with the use of these paths,
the appropriate path for each region.

The liquid drop model parameters, needed in Eq. (3), are taken from the Lysekil
paper by Myers and Swiatecki [20].

In the calculation of the fission probability P, Eq. (2), we assume, similarly as in pa-
pers [1, 3, 5, 6], that the height of the barrier is lowered by the zero point vibration energy
E—W(eq) = } hoy, = 0.5 MeV. The number of assaults on the barrier n = 10?°® sec-!
corresponding to hw,;;, = 1 MeV is taken.

3. Results

To see how quickly the shell correction 4Fgyg;, decreases when we go with the
neutron or proton numbers off the magic values, we plot the contour maps of AEgyp;.-
The maps give an idea of the size and of the shape of each island of the increased fission
stability. They also give an idea of how large is the shell correction contribution to the
alpha decay energy.

Fig. 6 presents such map for region 2-3. It can be seen that the largest, in absolute
value, shell correction is obtained for the nucleus 3°2(164), i. e. for the nucleus with Z = 164

168

60 [N\ % T
...\ "'k —l‘/ A
L 9 ]

152 rl 1 1 M-zmlj
220 228 236 244 252

Fig. 6. Contour map of the shell correction AEgyg;y in MeV for region 2-3. The correction is calculated
for the spherical shape of nuclei, using spectra (b) of Figs 3 and 4
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and N = 228. The value of the correction is about 10 MeV, i. e. only slightly smaller than.
the value obtained [3] for 2°8Pb (about 12 MeV). It can also be seen that the large correc-
tion obtained for the nuclei with the closed shell at N = 228 shows a tendency to extend
to heavier nuclei, up to these with N = 246. This is due to the presence of a rather strong
subshell at N = 246. The shell correction for the nucleus #!°(164) is around 9 MeV.
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Fig. 7. Same as Fig. 6 for region 4

The respective contour map for region 4 is presented in Fig. 7. Here, the largest value
of AEgue; Is especially high, around 18 MeV. It comes mainly from the very strong
neutron shell at N = 308.

Both figures 6 and 7 are obtained with the single-particle levels of the spherical
Woods-Saxon potential, Figs 3b and 4b.

Examples of the fission barriers are given in Fig. 8 for few isotones with N = 228
and in Fig. 9 for few isotopes with Z = 164. The barriers are calculated along the minimum
potential energy paths of Fig. 5. The contribution of the liquid drop energy to each barrier
is shown. It is seen that the barriers appear only because of the shell effect. On account
of a large value of the fissility parameter (owing mainly to large Z), the contribution of the
liquid drop to the barriers is negative and quite strong. Due to this the barriers are thin.
They are about two times thinner than the barriers [1, 3, 5] in region 1.

Fig. 10 illustrates the dependence of the microscopic mass parameter B™°* on the defor-
mation for three isotopes with Z = 154. We take the same deformation paths of Fig. 5
as for the calculation of the potential barriers. The phenomenological values B***® = 0.054
A5/3 h? MeV-! obtained [1] from the spontaneous fission half-lives of actinides are shown
for comparison. It is seen that B™°", averaged in deformation, are larger than BP"*",

The spontaneous fission half-lives T, for region 2-3 are presented in Fig. 11. They
are calculated with B™", The shapes of the lines of constant T are rather similar to the
shapes of the corresponding lines of constant 4Eg,g, ; of Fig. 6. It is because the last ones
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220 228 236

Fig. 11. Map of the spontaneous fission half-lives Ty for region 2-3

correspond, roughly, to the lines of constant height of the barriers. It is seen that the largest
value of T, in region 2-3 exceeds 10°y.

The half-lives T for region 4 are given in Fig. 12. They are even longer than these
for region 2-3. This is because of larger values of both barriers and mass parameters.

1074s
168 | £
1Y,
164
102°y’
160
L Ay~
156 +
152 + 4074 ¢~
1
300 3

1 n "
04 308 3142 346

Fig. 12. Same as Fig. 11 for region 4

Before considering the alpha-decay half-lives 7,, let us look at the alpha-decay ener-
gies Q,.

They are given in Fig. 13 for region 2-3. It is seen that the lines of constant value of
Q, have rather complicated shapes as compared to regular shapes obtained from the pure
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Fig. 13. Map of the alpha-decay energies O, for region 2-3. The numbers on the contour lines give the
values of Q, in MeV

liquid drop. These “‘complications” come from the shell correction 4 Egyg; ; which manifests
in Q, through two effects. One is the direct change of Q, by 4Egyg;, when the alpha transi-
tion occurs between spherical nuclei. The other is the effect of the deformation energy
on @, when the transition between nuclei with different deformations takes place.

168 | Z Te. .

160

152 r

i
220 228 236
Fig. 14. Map of the alpha-decay half-lives T, for region 2-3

For given Z and N of a parent nucleus, the first effect increases Q, when the decay
proceeds towards the magic nucleus and decreases it when the decay proceeds outwards
the magic nucleus. The second effect results in just the opposite, but it manifests mostly
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in the transitional region between spherical and deformed nuclei, i. e. around 6-10 mass
units apart from a magic number, while the first effect is strongest in the closest neighbour-
hood of a magic number, i. e. for spherical nuclei.

Both effects can be easily seen in Fig. 13.

The alpha-decay half-lives T, are given in Fig. 14. They are calculated from for-
mula (8). Formula (9) usually gives 7, slightly shorter.

The lines of constant T, are similar in shape to the lines of constant Q,, Fig. 13.
The lines corresponding to 7, smaller than 10-'#s, are not shown in the figure.

A comparison between Figs 14 and 11 shows that T, are shorter than T in almost all
region 2-3. Thus, the longest half-lives, with respect to both alpha and fission decays,
occur for nuclei for which T, is the longest. These longest half-lives appear for nuclei
around 3°2(154) and around 3®%(158) and are of the order of 10~°—10-Cs.

No beta-stable doubly-even nucleus is found in all region 2-3 presented in Figs 14
or 1l

The appearance of very short T, in region 2-3 is due to the large value of Z and
additionally to strong neutron-deficiency of nuclides in this region. The alpha-decay
energy (,, described in gross by the liquid drop model, is very large for such nuclides,

68 -

164

156

152 -

300 304, 308 342 316
Fig. 15. Map of the alpha-decay energies Q, for region 4

and even a remarkable shell correction cannot change it much. As can be seen in Fig. 6,
this shell correction to Q, does not exceed 3.5 MeV, while the liquid-drop part of Q, is
about 20 MeV.

For example, the decomposition of Q, to liquid drop and shell correction parts for
392(164) is Q, = QP+ OSHEL = 23.6—3.5 = 20.1 MeV. This Q, results in 7, = 10~ s.
The corresponding decomposition of Q, for the nucleus ?°%(114) from region 1is @, =
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= 9.4-2.7 = 6.7 MeV. This Q, results in T, ~ 10*y. Thus, although the shell correction
in region 2-3 is slightly larger than in region 1, it cannot compensate the strong increase
in the liquid drop part of Q, when going from region 1 to 2-3.

The alpha-decay energies Q, for region 4 are given in Fig. 15 and the lifetimes T,
in Fig. 16. The lifetimes 7, are calculated from formula (8).

It is seen that 7T, here are much longer than for region 2-3. It is because the nuclei
in region 4, having the same number of protons Z, have about 80 neutrons more than
the nuclei in region 2-3.

As a result, taking also into account the larger Ty, the total half-lives with respect
to both alpha-decay and fission are much longer than in 2-3. The longest lifetimes are
obtained for nuclei around *%°(152) and are of the order of 1030-104Cy.

168

164

160

156

152

300 304 308 312 316

Fig. 16. Map of the alpha-decay half-lives T, for region 4. The beta-stable even-even nuclei are shown
(solid points). The crossed solid points denote the beta-stable nuclides obtained when the blocking proce-
dure is used. The position of the extrapolated empirical beta-stability line is indicated (dashed line)

However, if one takes into account only beta-stable nuclides, the longest half-life is
obtained for the nucleus *7°(162) and is of the order of 10° y, when the variant of calcula-
tion with blocking (cf. Sect. 2) is taken, and for the nucleus #68(160), and is of the order of
107 y in the variant without blocking.

The positions of the beta-stable even-even nuclei are indicated in Fig. 16 by solid
points. The crossed solid points denote the nuclides which are beta-stable in both variants
of the calculation. Each beta-stable nucleus in variant with blocking (smaller pairing
energy gap 24) is also beta-stable in variant without blocking but not vice versa. The
number of beta-stable nuclides in variant without blocking is slightly larger.

As can be seen in Fig. 16, all beta-stable nuclei obtained microscopically are situated
below the extrapolated empirical beta-stability line [16] given by Eq. (10), and indicated
in Fig. 16 by dashed line.
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4. Discussion

Let us first relate our results to the previous estimates [8, 9]. Doing this we should
remember that we base on other single-particle spectra than those used in Refs [8, 9].
‘The spectra are especially different for neutrons. Due to this the different positions of the
increased stability islands are obtained in our research and in the previous ones [8, 9].
Additionally, owing to stronger neutron shells in our spectra we generally get longer
lifetimes. In fact, the longest lifetimes obtained in Ref. [9] (only in this reference both T,
and T and also the positions of beta-stable nuclei are investigated microscopically)
are about 10~2-10~' s and appear in the neighbourhood of the nucleus 5¢(164). In our
calculations, the longest lifetimes are about 10°-107 y and occur nearby the nucleus 472(164).

Now, let us discuss few factors influencing the lifetimes.

4.1. Pairing force strength

It is found (cf. e. g. Ref. [18], p. 170) that the empirical pairing energy gap 24 is well
reproduced, on the average, by the formula

4 = 124712 MeV. (15)
OB et I8k T
A \M eV) ,12 A—1/2 - =
/'~ -
7/
A / -
O‘IO - n /\\ /\ -t
/ </ Bp
02+ ]
N=232
0+ i ) 1 1 ]
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04 4
02t 1
(O 4
06 1
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0-2 L -
S ] A i | N

0 02 04

Fig. 17. Neutron and proton pairing energy gap parameters 1, and 4, respectively, calculated as functions

of the deformation, for three isotopes of Z = 154. The extrapolated empirical average values A4 =
= 12 A2 MeV are shown for comparison
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The pairing interaction strength G and the number of levels we use in the cal-
culations (cf. Sect. 2) allow us to reproduce quite well the empirical 4 of Eq. (15)
in the rare-earth and actinide regions [3]. It is interesting to see how well are the A of
Eq. (15) reproduced by our calculations in the regions of very heavy nuclei we in-
vestigate here.

Fig. 17 shows 4, and 4, calculated as functions of deformation for three isotopes of
Z = 154, the same isotopes as chosen in Fig. 10 for illustration of the deformation de-
pendence of the mass parameter B. We can see that the theoretical values of 4, are quite
close, on the average, to the values given by Eq. (15). The theoretical values of 4,, how-
ever, are smaller than the values (15).

Concerning the dependence of the pairing strength on deformation, the two cases:
one of G constant with deformation (G = const.), and the other of G proportional to the
area of the nuclear surface (G oc §) are usually used. We use here only the second case,
G o S, leading to smaller barriers and mass parameters, and thus to smaller lifetimes 7,
as discussed in Refs [3, 5]. This choice corresponds to our intention of estimating rather
ower than upper limits of the lifetimes.

4.2. Single-particle level scheme

As mentioned in Sect. 2, all the results for T, and T, presented in the paper are ob-
tained with the Nilsson scheme fitted, at zero deformation, to variant b (Figs 3 and 4)
of the Woods-Saxon levels.

Let us take a quick look at possible effects of using the scheme fitted to variant ¢
of the Woods-Saxon levels, instead of b. This variant corresponds to more recent than b
analysis {19] of the empirical data.

We can see in Figs 3 and 4 that the energy gaps in variant ¢ are: at Z = 154 slightly
larger, at N = 228 considerably larger, at N = 308 about the same, and at Z = 164 slightly
smaller than the respective gaps in b. We can expect then that the lifetimes for region
2-3, and in particular for region 2, may be considerably longer. Especially, if the increase
in both shells at Z = 154 and N = 228 is strong enough to make the nucleus 378(152),
which is the daughter nucleus of 332(154), spherical. In variant b this daughter nucleus is
deformed while the parent nucleus is spherical. This fact results in a rather small alpha
lifetime 7, ~ 10-!! s of the parent nucleus. In the case when the daughter nucleus is also
spherical, the decay ehergy Q, is decreased by about 3.5 MeV and T, is respectively in-
creased by about 6 orders.

Concerning region 4, the use of variant ¢ of the scheme, instead of b, may result
in some, rather not large, decrease in the lifetimes 7, and T;.

43. Use of B*™" instead of B™ in the calculations of T

We have seen in Fig. 10 that the microscopic values of the mass parameter B™" are
in both regions 2-3 and 4 larger, on the average, than the extrapolated phenomenological
values BP™" = 0.054 h245/3 MeV-!. For actinides B™*" are rather close or even slightly
smaller than BP™". This is illustrated in Fig. 18 for 238U.
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Fig. 18. Mass parameter B calculated microscopically as function of the deformation for 23®U. The pheno-
menological value is shown for comparison

Then it looks that B™**" increase more quickly with A than B**" for which the hydro-
dynamical dependence on A is assumed.

The use of B*"*" instead of B™" in the calculations leads then to smaller values of T
in both regions 2-3 and 4. However, the longest lifetimes among the beta-stable nuclei
in region 4 are not decreased by this change, as T, is decisive for these nuclei. Similarly,
the longest lifetimes in region 2-3 remain almost unaffected by this change.

5. Conclusions

Summarizing the present research we can state the following:

1) Ater region 1 situated around the nucleus ?°%(114) and closest to the empirical
region, the next two, rather far, regions of an increased stability 2-3 and 4 are obtained.

2) Nuclei of region 2-3 are strongly neutron-deficient. They are far off the beta-
stability line. Due to the large Z and the strong neutron-deficiency, their alpha lifetimes
are short. They are of the order of only 10-°-10~1% s or in the case of more favourable
single-particle scheme (cf. discussion in Sect. 4.2) about 6 orders longer.

Although one can find out [10] reactions between known heavy nuclei in which, in
principle, they could be produced, the real chance of such production may be very small.
The effect of the centrifugal barrier may reduce the cross section of the reaction practically
to zero [211.

3) Nuclei of region 4 have long lifetimes, of the order of 105-107 years, which is quite
impressive if one remembers how large Z they have. However, because of the large number
of neutrons they have, it is difficult to imagine a way of getting them in the earth condi-
tions. Their creation would need rather special astrophysical conditions.
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4) At last, one should stress the rough and estimative character of the results due to
the very far extrapolations. Still, when having a choice in all uncertainties in getting them,
we tried to keep close to lower rather than upper limit of the lifetimes.

The authors would like to thank Professor Z. Szymanski and Dr. K. Pomorski for
helpful discussions.
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