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ASYMPTOTIC BEHAVIOUR OF THE PLANAR ONE-LOOP
CORRECTION TO THE REGGE TRAJECTORY IN THE DUAL
MODEL

By H. DorN
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AND H. J. KAISErR
Institut fiir Hochenergiephysik der Akademie der Wissenschaften der DDR, Zeuthen**
( Received November 7, 1973)
The planar one-loop amplitude of the dual resonance model gives a first-order correc-
tion to the Regge trajectory. The analytic structure of this correction is investigated and

its asymptotic behaviour calculated. The problem of analytic continuation into the right
half-plane is discussed.

1. Introduction

In the present paper we continue our investigation [1] of the correction to the linear
input trajectory caused by the one-loop contribution to unitarity in the dual resonance
model. Neveu and Scherk [2] have found the following expression for the asymptotic
behaviour of the planar one-loop diagram

Flotg, o) ~ g*(—o)*[In (—a)l'(— o) (o) +
+ (=) —I'(—o)2(x)],
o = — 0. (1)
This can be interpreted as the g* term of the expression

gzﬁnew(l)r( - anew(t)) ( - “s)anew“) (2)
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expanded in powers of the coupling constant g. We are using
Onew(t) = o, +87Z()+0(g"),
Baew(®) = 1+g7B(1)+0(g"),
o = otg+1/2. 3

If the dual loop approach has indeed some resemblance to a perturbation theory one
must expect i) that the corrections at the one-loop level are small compared with the
linear input trajectory and if) that higher loop corrections are in turn small compared
with the one-loop terms.

We will investigate the analytic structure and the asymptotic behaviour of the cor-
rection term 2(a,), in particular whether the condition a,..(¢)/o, — 1 is fulfilled for asymp-
totic values of z. X(x,) contains all the corrections produced by planar loops because,
for s - o0, ¢ fixed, the u~t box diagram has the same behaviour as the s—¢ box but «, is
replaced by —a, in (1). The s—u contribution vanishes exponentially. The case of nonplanar
loops was studied by Alessandrini, Amati, and Morel [3]. The analytic continuation of
the planar amplitude F(x,, ,) into the right half-plane of s is much more difficult than
in the twisted case [3], so we will consider only the continuation of Z(a,).

2. Analytic structure of X(a,)
We start from the renormalized expression for X{«,) given in [2]. We will use the
variables
In x
w=xy, v=—r\, gq=e&"Mm 4
Inw

and the p functions of [4]

2]

20" — " — n(1=v)
¥(x, y) = p(vlo) = 0”@ Vexp o"— (,: _
n(l —w )

This allows us 1o write

1 1

~ao—1
Z(O(,) = 47'52 de J\dl) E) [(1 —a)") (1 _wl—v)]ao"l «

—Inw

V] ]

x (1—w) [flw)]™*en [ ~1], ©®
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where

) 2ni
ng=—-2nygy, T=-—-—/,
Inw

oD

flw) =[]0~

1

H=In [wlz _ T'U_tpl_’] = In |:9’1(UIT)2—91(Ui‘t)9'1'(v§‘t)] _

In® w 1(0]7)?

~ wnu+wn(1—v) 1
=2Inp+in n———— — —|. (7
l—w In @
1

The notations for the theta functions are taken from Bateman, and the prime denotes
differentiation with respect to the first argument.

As we show in the Appendix, #; and H have no singularities in the interior of the
integration region. Therefore, divergencies of the integral (6) can arise only from the
boundaries. Thus we have to examine the behaviour of the integrand near the bound-
aries.

a) Near w = 1 no divergencies do appear. This is due to the choice of renormalization [2].
b) Near @ = 0, and for v # (0 or 1) we can approximate

agh

e agr{l— v)’

= 1‘0-2“0 oW

Q0

_ wnu+wn(1—u) e _ _ B
e = y**(—In w)™* l:l—lnco E n———— | o ") (~hw),

1—-o"
1

flw) ~ 1. ®

This gives for the integrand the behaviour
w—ao— 1-tu(1 ~v)/2( _ ln (D)— 1 —ay w—ao— 1+agv(l —u)(_ln 60)—. 1. (9)
From (9) follows convergence near w = 0 if

- 2“0
v(l—v)

Ret <

and oy < 0.

Minimisation of the r. h. s. with respect to v yields the convergence condition Re ¢t <
< —8uay = 4u2.

c) Near v = 0 we use 0,(0jr) = 07(0]r) = 0 and derive

8,()] "
%o = [—ln wﬁ(;ﬂ ~ (—In w)~ 2%y~ 2%,
1

et~ 1+ ah(w)?,

[(1—o) (-0 ' 2 [-vho]* '(1-0)° " (10)
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The integrand, therefore, behaves as v~**3
near v = 0 if a, < 0.

d) Near v = 1 the behaviour of the integrand is the same as near v = 0 because of the
symmetry under v - 1—v.

Thus we have shown that (6) determines for «, < 0 a function of ¢ holomorphic in
the left half-plane Re ¢ < 4u% Now we change the integration path in (6) to obtain an
analytic continuation into the right half-plane. This change is necessary only in the neigh-
bourhood of @ = 0. In terms of the variable £ = In w the integrand behaves near § = —o
(i.e. w=0) as

and consequently the integral is convergent

Pl e ~v)/2)(_§)— 1—a:_eé(—ao‘*dov(l—v))(_é)-l_ (11)

If we change the integration contour from

&= ", 0L <
to a contour which becomes paraliel to |¢| ¢™+# at infinity, the integral along the new
contour is convergent if

Re (€°t) < 4u* cos ¢. (12)

We can change the contour without crossing singularities of the integrand® provided ¢
1s in the range —n/2 < @ < n/2. The case {¢| > /2 must be excluded because this would
imply |} = |e®| > 1 and lead out of the region of existence for the theta functions.
Thus we have proved that Z(«,) is holomorphic in the whole 7 plane except on the real
positive axis ¢ > 4u®. The singularities there are branchpoints (normal thresholds). The
discontinuities across the cut have been investigated in the previous paper [1].

3. Asymptotic behaviour of ()

It is shown in the Appendix that H(v|w) > 0 in the interval 0 < (v, w) <1 and
that H = 0 if and only if v = (0 or 1}, or ® = 1. For Re t - — o0 the asymptotic behav-
iour of Z(a,) is determined, therefore, by the behaviour of the integrand in the vicinity of
v=(0,1), w = 1. If t - oo parallel to the imaginary axis in the left half-plane, we use
the method of stationary phase [3, 5].

To get a Fourier-type integral we differentiate Z(a,):

1 1
—ap—1
Z'(a) = 4n* jdw fdv [(1-0) (- "] '(1-w)x
—lnw
o 0
x [ flw)]™ *He™e™H, 13)

! No singularities are crossed in changing the contour because the theta functions are holomorphic in
iql = exp 27%/§) < 1,

hence singularities of the integrand in the left half-plane could arise only from zeros of exp H. We can
restrict the change of the contour to small @, where exp H ~ w1 ~?)(—In w). Obviously this expres-
sion is without zeros except at w = (.
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The asymptotic behaviour is determined by the critical points of H(v|w). We show in the
Appendix that there are no critical points of the first kind (0H/0v = 0H/Cw = 0) in the
interior of the integration domain. Furthermore, by investigating the limits of H on the
boundaries we find that v = (0, 1), @ = 1 are critical surfaces and that there are no critical
points on the surface w = 0. Therefore, the asymptotic behaviour parallel to the imaginary
axis is controlled by the same contributions as for Re ¢z - —oo0.

Let us now consider the asymptotic behaviour in the right half-plane. To get an in-
tegral representation of 2’(a,) valid for

t = ]t[ei(; “’), 0<a<nf2,

we change the integration path in the w plane in the way indicated in Sect. 2. As has been
already discussed, this change is necessary only near @ = 0. This allows us to demand
arg H = « as a second condition on the changed path. Then o,/ is purely imaginary and
we have a pure Fourier-type integral in the real asymptotic variable |¢{. The asymptotic

integration surface convergence in t-plane

v Imt

originally

Im
U< Ret
Req
Imnt.
changed
4,uz Ret
Req s

Fig. 1. Integration surface in the v ® w plane and convergence domain in the ¢ plane

behaviour is then governed by the critical points on the integration surface in the complex
o® real v space (Fig. 1).

This procedure poses the following questions:
(i) Is the condition arg H(v, g) = a compatible with the convergence condition near
w=01iL¢e g=17?
(ii) Are there really curves in the g plane for each 0 < v < 1 satisfying arg H = « and
passing through ¢ = 0 and g = 1 so that an analytical integration surface is defined in the
q®v space?
(iii) Is the planned change of the integration surface possible without crossing singular-
ities of the integrand ? (In Sect. 2 this was proved only for the case when the change is
restricted to the vicinity of w = 0.)
{iv) Will there be stationary points of H on the changed surface?



Ad (i). From Eq. (7) we derive

H=v(v—Dlnw—In(-In w)+

z 6om:_(‘on(l—v) d 2wn_wnv_wn(l~v)
+nji—-lno n———— +2 . 14
“[ Z i—o' ] Z (1= o) 1
1 1

For0 < v <1 we get H~ v(v—1) In o near w = 0. That means arg H ~ n+arg In .
The condition of constant phase arg H = « reads near @ = 0 therefore £ =In w =
= |&]| ™%, From (12) convergence is guaranteed if

Re [¢jt]e G _u)] < 4y cos a.

This is true if |¢j < n/2. For v = (0 or 1) we have H = 0 (see Appendix), hence no change
is necessary and on the other hand any change of the path in the ¢ plane is compatible
with convergence.

Ad (ii). In the following we understand always arg H = Im In H as the analytic
continuation along the curves under consideration. Using (14) near ¢ = 1 and the power
expansion of the 0, function near g = 0 we get

2

2% v(1—1) , ) 1 2n? ‘
- ———~ +In(—-ing)—In27°+0 | — exp min (v, 1—v) ||,
In g Ing

Ing

H =

qg—1 (15)
and
H = 16¢* sin® no[1—2¢%(4 sin* 7v—3)+% ¢*(64 sin® nv—
—72sin* v +12 sin®> 0+ 9)+0(q%)], q—0 (16)

respectively. This yields the following well behaved solution to our problem arg H{v, q) = «
in the vicinity of ¢ = 1 and ¢ = 0, respectively.

+sinch1 R « 1 In27%\ | Rt sianxR21 R
=g+ —Rln —coso— |-+ sin o
¢ A 45T T4 ] 24z R

2

+ |2 cos? L1 In2eh o) R*+O(R® In® R)+0 e
— a—|— - — sin 2a
pE 12" 44" 247 n R )

g =1—Re™™ A= 2n(1-v), (17)
(for g — 1).

a 8
y = 5 +sin a(4 sin* 7o —3)r® —4 sin 20 (3 sin® 7w+ 2 sin® m)—3) r*+0(r°),

g = ré”*, (for g — 0). (18)
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For general g we have investigated the function arg H(v, g) by computer calculations.

Here one must take care in choosing the sheet of the logarithm in order to get the proper

analytic continuation of arg H if in the [0 —0,07]/6,(0)> plane the origin is encircled.
A limiting case is v — 0. Here we can expand

0/1112 _ 9;0(15)

. v* 6,607 —6,67"
arg H = arg R —_

+ ;
v=0 15 912

+ 0(04)] ) (19)

v=0

H is holomorphic in the neighbourhood of v = 0 and in 0 < |¢| < p, p < 1. Therefore
(19) is valid uniformly in g for 0 < |q| < p. The curve obtained from

2 5

072 0,05

o = arg — T
Jv=0

is for » — 0 approached uniformly in 0 < |g| < p too. Due to the fact that H has an
essential singularity at |g| = 1 this uniformity is lost at ¢ = 1. The behaviour of the
limiting curve is given by

1 1 L 2
p=-+|— —: R51n§+O(R),

n 2
qg=1—Re™™, =0, 20)

near ¢ = 1 and by
¥ 32 4
x—§~3; sin o+ 0(r"),

g=ré", =0, @1

near g = 0.
Fig. 2 shows the curves arg H = « for several values of v and a. Note the symmetry
H(t—v) = H(v). The figure very strongly suggests a positive answer to (if).

Im q 4
a=7/2
v=05 igl=7
04
t
fj’rgz «=Tl4
02- o —— v=05
—
P «=1/4 \\\
L 7 v—=0 J
= ——— NG
. i
0 02 04 06 08 10
Req

Fig. 2. Curves of constant phase « of the function H in the ¢ plane (v as a parameter)



Ad (iii). H is holomorphic in the circle |g| < 1 except at the zeros of 872—0,07.
As it is proved in the Appendix, no such zeros exist for real v and real q. However, we
must further exclude the possibility that zeros for complex values of g, crossed in chang-
ing the integration path, will reach the real v axis.

Assume for a moment that there are zeros of 8 —6,07 at ¢ = q,, q,, ..., q, in the
region crossed by changing the integration surface. Then by expanding [07* —0,07'1/67(0)?
we get H = In(¢—q,)+ ... +In(g—gq,)+ H, where A is holomorphic in the region under
investigation. Encircling all the zeros ¢, ..., g, would increase H by 2nr=i i. e. change
arg H. Using the behaviour of the trajectories arg H = « (Fig. 2) we can choose for
fixed v a closed path ABCDA in the g plane (see Fig. 3) and return to the same arg H.

Jmc”
rg H=a

B (o
=3 > lD 1
1
agH=0
Fig. 3. Illustration to the proof that the function H has no singularities inside the region bounded by the
original and the changed integration surface

Consequently, we have no zero ¢g; inside ABCDA. Note that we could move the segments
AB and CD arbitrarily to g = 0 respectively. g = 1 because, from (15) and (16), there
are no zeros ¢; near ¢ = 0 or ¢ = 1 (except g = 1 itself).

Ad (iv). The phase arg H = Im In H as the imaginary part of an analytic function
is a potential function of Re g, Im ¢. The stationary points of In H as a function of g are
the points where 0H/0q = 0, H # 0. Therefore the profile of arg H near stationary points
of H at which H # 0 would look like Fig. 4. Stationary points of H at which H = 0 can

Fig. 4. Profile of a potential function near a saddle point

be excluded by noticing that a zero of H at some point in the interior of ABCDA (Fig. 3)
would cause an increase of arg H by a multiple of 2z if one goes from A via BCD back
to A. Our results (Fig. 2) exclude the saddle behaviour (Fig. 4) between arg H = 0 and
arg H = nj2.

Thus we have shown that in the right half-plane the asymptotic behaviour is, owing
to the absence of interior critical points, governed, as before, by the end-point contribu-
tions. The asymptotic expression derived below is therefore valid in the whole ¢ plane
except the positive real axis.



a) Asymptotic contributions from w =1

In terms of the variable
q = exp 2n*/ln w)

and using

L™ =2 o5 g,

we get from (6) for the contribution under investigation

I ~ 4n4} dv j dgo'* ™1 —o) [(1-0") (1—e'")]* g *3*(~Ing)~3 x
0 0

X [fgH] e e 1],
Expanding for small ¢

2n?
-0~ ,
—Ingqg
__1 —-2ap+2
[(1-o")(1-0'™)]* ! ~ [v(l—v)]""—l( znzq ,
m

aohs 27%0,(vjr) T ( 2n? )"2“" /sin 7o\~ 2%
oM = | o ~ —_— ,
—In ¢61(0|7) —Ing ( n

H =~ 164 sin* no,

we arrive at
1

i —2ap
Z(t) ~ 277 Jdv[v(l—v)]“"" (sm nv) §

T

0
x | dgq™**(—1In q)~? [exp (1647, sin* nv)—1].
4]
To perform the g-integration we calculate (4 = 16 sin* 7o)

[ daq™**(~In )7?[**'~1] =

—&£2Aa,

=2(—)"® [ dx(e*—1x" 7 [~Inx+In(~0A)] ? =
[s]

(—aed)-1

:2(—oz,A)”6{ [ dx(e™*—1x""*[~Inx+In (—aAd)] >+
4]

o —82a;4

\ _2 An
+ Z( " >(—1)"[ln (““:A)]“z_";—ﬁn J dx(e_x—l)xﬂ_llﬂ=—1/6} ~

#=0 (—aed)t

25

(22)

(23)

29

(25
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~ 2('—(1“4)1/6 Z(:E) [In(——a,A)]_z" (_1)n1-v(n)(_ _1_) ~
(Re g2+ ~0) n 6

~ 2(—0)"°[In (—a)]7*I(— A", (26)
In this manner we find from (25) finally
(1) ~ 4n*(—a)%[In (— )] 72 (—1) x

1

x Jdu[u(l—-v)]“_l (
0

sin v

— 20
) (2 sim 7)*/3, @n

This expression is well-defined for a, < 2/3. The behaviour (—¢)/¢ was, for t - —oo,
already anticipated in [2].

One could try to derive the higher terms of the series in powers of 1/In (—«,). To
do this one has to expand the integrand of (23) near ¢ = 0 in powers of ¢ and 1/Ingq.
Each term of the form ¢~ %3 (In ¢)™™ yields a series

0

(=)' ¥ ep[In (—2)]7", (28)

n=n

all of them have to be combined in order to get the 1/ln (—x,) expansion of (23). It does
not seem to be entirely hopeless to calculate the coefficients of (In(—a))™" in the

limit n — oo, which should allow a closer inspection of the analytic properties of Z,(¢) to
be made.

b) Asymptotic contributions from v =0 and v =1

Because of the symmetry 6,(1 —v) = 8,(v) the whole integrand is symmetric under
v = 1—v. The asymptotic contributions from v = 0 and v = 1 are therefore equal and
we can restrict ourselves to the investigation of

Zy(t) ~ 3714} dCIfde%_“"(l“w) [(1-") (-0’ )] q7**(~In g)"*x
0 0

x [f(gH] et e ~1]. (29)
Using (A19) we can approximate
[1-0) (1-w'")]*"" = [(~Inw) (1-a)]*7,
M x (—In ) 2%y %,

& ea:[v“h+0(v“)],

1 0,2-0,0
12 6112 u=0’

(30)
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which gives for (29)

Z,(1) ~ 4n*Q2r?)” “"f dgow*™q " *(~In gy [ f(g"]* x

£

x (1 =) | dov™ %" [ 1], (31)
(4]

and finally

0

2,(1) ~ n2(2m%) "% —a Y T ( ~ j—) x

x f dga® "1 —w)°q " *P(~1n gy° [ f(g®)] *h*'*. (32)
0

For o < 2/3 this contribution is dominated by X (¢). The resuit (32) needs some
discussion as it appears to be divergent for oy < 2/3 since & = 16n*q%+ O(q*). The origin
of this divergence lies in a double counting of the vicinity of (v, ¢)=(0, 0). A more careful
examination of this corner yields the result that the correct asymptotic contributions from
the boundaries v = (0, 1) and g = 0 are given by the series (28) for X,(¢) and by (32)
replaced by the real part of the analytic continuation of (32) from above the branch point
oo = 2/3 where the integral is convergent.

4. Conclusion

The main results of our investigation of the planar one-loop correction X(«,) to the
Regge trajectory are

a) the calculation of the explicit form of the leading term in the asymptotic behaviour
of 2(2,) and

b) the proof that the result holds in the whole ¢ plane except the positive real axis.

It would be interesting to extend the calculations beyond the leading term and to
determine the general asymptotic term of the series in 1/In z. This would allow one to
achieve a better insight in the analytic properties of X(x,). Maybe one could then find
a correspondence with the previously calculated [1] discontinuity disc Z(x,). Of course,
the discontinuity of the leading term of an asymptotic expansion may in general differ
from the asymptotic behaviour of the discontinuity.

The leading term of X(x,) was calculated along the rays

n
= |t] exp i<~—a , O0<a< -, Jff— o0
2 2

The investigation should be supplemented by a calculation of the asymptotic behaviour
along parallels to the positive real axis.

A further remark regards the proof of the possibility to continue the asymptotic
expression of X(x,) into the right half-plane. In our argument we had to refer to numerical
calculations of arg H, which should be avoided in a straightforward proof.

q
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Finally, we should stress again that our investigation pertains only to X(«,), i. e. to
the asymptotic loop contribution for a; ~ — 0. No claim is made as regards the asymptotic
behaviour of the full planar one-loop amplitude in the right s half-plane.

APPENDIX
Properties of the function H

In this Appendix we compile some properties of the function

01(v12)* ~ 8, (0|08} (vl)

H =1
’ 6,(07)° ’

(AD)

in particular for real @, 0 <C @ < 1 and complex v. The notations for the theta functions
are taken from Bateman, furthermore

= — , q= eim‘ = ean/'ln © (AZ)

The derivative with respect to the first argument is

J H = H(lo) 0,67 —6,67" A3
—H = H'(vjt) = ———+,
v 02 —-0,07 (A3)
1
for the other derivative we use §; = —4—_0'1', and find
/[9]
a . 1 20,07 —072—0,0Y" 1 67(0)
—H = H(v|t) = — - . A4
ot O =2 e 0,67 A a9
From the periodicity properties of the theta functions
6,(v+17) = 0,(—v[) = —0,(v|7),
91(U+‘le) — e—iu(2v+r)61(v'l.t)’ (AS)
we derive
H'(+1lt) = H'(v|[t) = —H'(-vj1),
H'(v+kzit) = H'(vitn)—4nik, k=0, +1, +2,..., (A6)
and
H@+1|7) = H@wit) = H(—vl7),
H@+ktt) = Helt)—kH'(vj1)+2nik?, k=0, +1, +2, ... (A7)

Both H' and H are meromorphic functions of v with poles at the zeros of 8> —6,0} .
To find these zeros we look at the function

R 60— 6,000/
80) = — 55 0,0) = 5

; (A8)
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which is a double periodic function with periods 1 and 7. It has a double pole in each
periodicity cell namely the zeros of 8, at v = m+nt, consequently there must be two zeros
of g in the periodicity cell. We will prove now that the zeros of g are — for real ¢ — located
on the parallels to the real axis going through (m+1/2)r. We notice

07 —0107,402 = €72 TIVOL —0,07)), (A9)

and calculate

2 2 q2n—1
07 —0401,=0,1 = —87°q5 E (1-g*™H* E (=g 1y < 0,
n=1 n=1

® < 2n—1
X - q
0/2_6 9// e — 87'52 2 1+ 2n—1\4 > 0’
4 104 lo=1/2 do ) (1+4q ) 4 (1+q2n—1)2

O0<g<l1. (A10)
It follows that the zeros of g are situated at
o
b= (m+¥+ , 0<5<4. (A11)
1-6
N

v -plane

X poles

O Zeros
o 3 fold zeros

T T+

Fig. 5. Periodicity cells of the functions H and H’ in the v plane

Now we are ready to determine the zeros of H’. Their number N in the double cell
(Fig. 5) is given by (see (A6))

1 H"
N—4=—@dv— =
2xi H
1
1 » HII H”
Lfg A® __ _HE | (A12)
2ni H'(v)+4rni H'(v)—4ri

0o

The related indefinite integrals are In (H'(v) +4ni). Since H' is real in the interval 0 < v < 1,
the image of (0,1) in the (H'+4xi) plane does not encircle the origin. Thus from H'(0) =
= H'(l) we conclude that the integrals vanish, and N = 4, consequently.
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It follows easily from
0,(0) = 67(0) = 67"(0) = 61(}) = 0,"(H) = O (AL3)
that there is a threefold zero at v = 0 and a zero at v = 1/2:
_ 67(0)* = 0,(0)65°(0)
- 304(0)°
. 0@ =0,87"() ( 1) (( 1)3> 1
H = = v— -} +O0{{lv—=] |, v=x_. Al4
0,10 2 2 2 (Al
By determining the sign of H''(1/2)
o (1) _ @ -0,107'®) _
2 —0,(1)07(H)

H v’ +0(0%), v=0,

[27[2 z et ”(2n+1)2]2-4n4 Z gy Z gt Y2n+1)*
- 5 = - <0 (A1)
4?52 an(n+1) an(n+ 1)(2n+1)2
° 0

0<g<1

we find that H'(v) behaves qualitatively as shown in Fig. 6.

.k
H'tv)

7/2‘\/7r v

Fig. 6. Qualitative behaviour of the function H'(v)

The zeros of H(v) can be located in a similar manner. Their number N in the double
cell (Fig. 5) is

1 [ H
e —— v — =
2ni

N-4
O H)+ H@y+ami] 2 [ - H'(0)+ 2ni
a}[ (v)+ H'(v)+2ni] 5;[ ()~ H'(v) +2xi]

dv - ) (A16)

1
2ni H(v)+ H'(v) +2mi H)— H'(0)+ 27i

B 2ni

O(—....ﬁ -

The related indefinite integrals are
In (H(v) + H'(v) + 27i).
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Since H(v) is purely imaginary we see using Fig. 6 that the image of [0, 1] m the
(H + H'+27i) plane does encircle the origin if and only if iH(1/2) > 27. In particular
we find

0 < 2
N—4 = for iH®) . (A17)
-2 > 2n

By explicit calculation we find a fourfold zero at v = 0. Then, from (A17), no other zeros
are situated in the double cell.

Summarizing we can state that for real w, 0 < w < 1, there are no saddle points
(H = H’ = 0) in the interior of the double cell (Fig. 5), and in particular no saddle points
in the interior of the integration domain of (6).

Finally, we study the properties of H-.on the boundaries. From (A13) we see that

H(O|7) = 0. (A18)

Hitv)

Fig. 7. Qualitative behaviour of the function H(v)

Together with Fig. 6 this yields the qualitative behaviour sketched in Fig. 7. Further-
more, from (Al14) we get

_ 870’ - 0,(0)657(0)

0(v®), A19
o7 ° Tow) (A19)

and (cf. (16)) in the limit v —» 1, i.e. g = 0
H(v|t) = 16 ¢? sin* nv+ O(g*). (A20)

The critical surfaces are, therefore, ¢ =0, v =0, and v = 1. In the case w — 0,
0 <v <1 wefind H- o. Extending the arguments of [5] to unbound functions multi-
plying the asymptotic variable we see that w = 0 is not a critical surface.
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