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The complete <et of kinematic constraints on the regularized helicity amplitudes (RHA)
for 140 - 1/24-1/2" reactions is given. All interesting external mass configurations are
covered and both parities of the reaction are taken into account.

1. Introduction

The question of kinematic singularities and zeros of two body helicity amplitudes
and the existence of relationships between various two body helicity amplitudes at kinematic
thresholds, pseudothresholds, and at ¢ = 0 (f-square of c.m.s. energy), have received
considerable attention in the past few years. The first problem — the kinematic singularity
and zero structure of two body helicity amplitudes — has been investigated thoroughly
from a number of points of view (see e.g. Refs [1-15]) since the original work of Hara [1]
and Wang [2]. Now it seems the problem has been solved; one knows how to construct, in
a quick and effective way, helicity amplitudes free from kinematic singularities and zeros
(see e.g. Cohen-Tannoudji, Morel, and Navelet [4]). These regularized helicity amplitudes
(RHA) are extensively used in Regge-pole models.

The problem of the existence of relationships between various helicity amplitudes
has also been investigated extensively by many authors (see e.g. Refs [3-12, 16-30)]. The
general method which has been formulated by Cohen-Tannoudji, Morel, and Navelet [4]
consists in writing the crossing matrix for transversity amplitudes and looking for the
singularities of its elements. This yields linear combinations of helicity amplitudes (and
sometimes of derivatives of helicity amplitudes) that vanish for some special value of the
t-variable. Concerning the case of all four external masses different, Cohen-Tannoudji,
Morel and Navelet [4] have reached the conclusion that no constraint on helicity ampli-
tudes can be found for vanishing c.m.-squared energy. However, in a Regge-pole model
one is interested, first of all, in relationships between natural parity conserving amplitudes
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(NPCA). Taking into account the kinematic constraints on NPCA, one obtains some
information either about possible relations between the residues of given Regge poles
cr about the existence of familics of trajectories, depending on the ideas one may have
about the question of evasion or conspiracy. The consequences of such relationships
can propagate through interchannel and vertex factorizations to other channels (see e.g.
Refs [29, 38]). We emphasize the importance of constraints on NPCA instead of constraints
on helicity amplitudes, because, as has been noted by Frautschi and Jones [27]
(for N — pd-type reactions) and by Ball, Frazer, and Jacob [30} (for yN — VN-type
reactions), there are constraints on NPCA, which yield no constraints on the helicity
amplitudes.
For the s-channel process a+b — c+d the differential cross section is

7d_0' _ 1 . 1 —\: iij:c,juﬂZ, (1)
dt  64spi, (s, +1)Q2sp+1) L4 ™7
{4}

where *M;=}¢ are the s-channel helicity amplitudes. In order to describe scattering in terms
of exchanges it is more convenient to rewrite do/dt and decay density matrix elements in
terms of the t-channel amplitudes [31] (but see also Ref. [41]). The first obvious tequirement
in using the f-channel amplitudes is to incorporate the proper kinematic singularity and
zero structure. This is done automatically in perturbation theory or with the use of in-
variant amplitudes. But in Regge-pole models with helicity amplitudes, the requirement
must be explicitly imposed and this is usually imposed by multiplying the Regge-type
term with the proper kinematic factor. However, this quite natural parametrization includes
some disadvantages which can lead to incorrect inferences concerning, e.g., the dynamic
behaviour of reduced residues. The examination of such formulae shows that if the kinematic
singularity and zero structure is imposed but the constraints ate not imposed then

a) assumed Mandelstam Analyticity of invariant amplitudes is violated, so the self-
-consistency of the model can be questioned;

b) the phenomenological expressions for the physical differential cross section and
decay density matrix elements contain small #-dependent kinematic factors as denomina-
tors which may strongly influence results of the analysis of experimental data, at least for
small £ < 14 (I15] — the lowest physical 1] for the s-channel process) (see e.g. Refs [6, 23]);

¢) the expressions for do/dt and decay density matrix elements are of the form which
seems to be sensitive to details of a routine such as, e.g., the interpolation step, at least
for small ¢ < ¢,.

Let us consider, e.g., the p+ K~ — A+ 0° reaction. Using the formulae (17) and (B3)
one can find that, e.g., the invariant amplitude A4 (see next Sections for the explanation
of the symbols) contains the term

F2~A,A;21,o - (%4)-2(‘”["12)1‘"{— 4,4;22,0
t

B

so if the constraint (18) is not imposed, the assumed analytic structure of A, is violated
at t = 0, the point which, at least in principle (for s - ), is the physical point of the
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s-channel. From the equations (B3) it follows that the Regge-type expression for the
helicity amplitude M{:§ will contain the factor ¥3, so the phenomenological differential
cross section! will contain the factor

(my—m,)* 1",

The quantity |(m,—m,)>—1t| vanishes for t = (m,—m,)*> = 0.045 (GeV/c)* which is near
to t = 0. Therefore this sharply peaked kinematic factor governs the small ¢t-behaviour
of the Regge-type term and requires a kinematic “dip” in the corresponding reduced
residue function in order to fit the experimental data. The presence of such small terms in
the denominators of the phenomenological expressions for the differential cross section
and decay density matrix elements is also highly undesirable as regards computational
techniques. If interpolation steps are small enough (they have to be small!) then the presence
of such terms can yield unpalatable, rapidly varying, reduced residues (for small ¢ < ¢,
at least). It is clear that all these disadvantages can be removed by building in the constraints
on RHA in a Regge-type parametrization of the t-channel helicity amplitudes. The price
one has to pay following this line — an additional smoothness of reduced residues — does
not seem to be too high.

To the best of our knowledge the constraints on RHA for 1) (1+0— 1/2+1/2",4 = +1)
reactions? and 2) (1+0 — 1/2+4-1/2', y = —1) — for all external masses different, are
not available in the literature (constraints on the helicity amplitudes for ¥ +P - N+ N
are already known, see, e.g., Refs [19, 24, 27]). The purpose of this paper is to present
the complete set of constraints on RHA for 140 ~ 1/2+1/2’ reactions. All interesting
mass configurations are covered, and both parities of the reaction are taken into account.
No great originality is claimed; the paper is technical in nature. We have selected 1+0 —
— 1/2+1/2 reactions for considerations because

a) there is much experimental high energy data for 1/2'+0 — 1/2+1 reactions
available at present, so one may readily apply our results for a fitting;

b) our personal interest in the problem of helicity conservation in processes like
N+7 — N+ A4; where Regge-pole analysis seems to be very sensitive to such constraints.

It seems to us that for low spin reactions the generality of the C-T.M.N method [4]
results in too tedious calculations with many peculiarities and subtlties which must be
handled with great care (see e.g. Ref. [35]). So we have decided in favour of the use of
invariant amplitudes which, with the kinematic structure exhibited explicitly, offers a more
painless approach for low spin reactions.

2. Kinematics

We define now the notation which will be used all along this paper for the
1+0 — F, +F, reaction (Fig. 1) where 1 stands for a spin 1 meson, 0 stands for a spin
0 meson, F; stands for a spin 1/2 baryon, F, stands for a spin 1/2 antibaryon. We shall

! We do not discuss the behaviour of do/dt when the variables (s, t) lie outside the physical region
of the s-channel. We refer the reader to Refs [32-34] for a discussion of such case.
2 The parity of the reaction 7 is the product of intrinsic parities of particles: % = %;%,73%4.
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call ¢, g., p;, p, respectively, the four-momenta of spin 1 meson, spin 0 meson, baryon
and antibaryon and p,, y, M, m their masses. We define the (1, s, ) variable as follows:

t=(a:1+492)% s=(:—-p)% u=(a—-p)
In the centre of mass frame we write the four vector as
(@) = (@1, @), @)= -9, GD=E.p, @) =(E -p
and
Pq = pqz, z = cos 9.
Finally it is worth noticing the useful identities® [4;:
A(wxm) (w;£mP}? = [1(m+m)™ 2P,y i=1,2j=2,1
2(w;+m) (0, Fmp]'? = [1i(mi—mj)t'”2]<p,.j} i=3,4ej=43,
where
@i; = [t=(m+mp)*]'2,
¥, = [t—(m—mp*]'"

my =, My s pumy=Mm,=m and o

ij

i

w,w; = F, 0, =E.

2

3. Helicity amplitudes, RHA and constraints on RHA

We expand the helicity amplitude My on six following terms

6
M3 = Y Au(p, #*)e(q, HKio(p, D), @)

i=1
where A4; are invariant amplitudes, K} kinematic covariants and A* (1) stands for the helicity
of baryon F, (antibaryon F,) respectively and A stands for the helicity of spin 1 meson.

The explicit forms of the wave functions are given in Appendix A.

It is important that the kinematic covariants should be chosen in such a way that the
decomposition (2) does not introduce kinematic singularities and zeros into the invariant
amplitudes A4;. We have chosen the sets of kinematic covariants K] proposed by Scadron

3 The expressions for w;, cos &, sin &, in terms of the (¢, s, u) variables can be easily obtained, e. g.,
by the trivial change of the symbols: s« ¢, in the corresponding formulae of Ref. [4] (p. 247).



37

and Jones [37] (see Table 1V of their paper). These sets possess the required property that
the invariant amplitudes 4, are free from the kinematic singularities and zeros. We refer
the reader to Ref. [37] for the detailed discussion of this and related problems. We postulate,
as usual, that the invariant amplitudes A; satisfy Mandelstam Analyticity.

Since the explicit form of the kinematic covariants depends on the parity of reaction
we separate the rest of this section into two parts. In the first part we consider n = +1
reactions, e.g., 4;+P — N+N, and in the second we deal with # = —1 reactions, e.g.,
¥V +P —» N+N. In both parts we use the same set of symbols for the kinematic variables
and the invariant and helicity amplitudes to avoid an orgy of indices. We hope it will not
bring about a misinterpretation of our formulae. It is obvious that, in general, no physical
connection exists between # = +1 and n = —1 reactions.

Part I: n = +1
Our choice leads to the following set of covariants {K}} [37]:
Ki=P, Ki=0%0,
Ky=9Q', Ki=y,
Ky =P0, Ki=["0] ©)
where
2P = pi—-p3 20" =g5-q1, Q =70,
After some algebraic manipulations, one obtains the helicity amplitudes in terms of in-
variant amplitudes A;. The result is

20 KMEE = 3 {[20,pz+q(E—E)]A,—qt'"*4,} (A*+ DpV ¥ —
— H{[20,pz+ (E—E')]A;—qt'* A} [(A*+2) (0—w)pV ™ +2qYR™ ]+
+As[(A*+DpqV ™ —w,; YR+ 44[2¢* + 0, (w—w,)]YR",
204 J2KME$ = (Q*+)p*xV 1 A, — 4 px[(A*+2) (w—w)pV ™ +29YR™]A4;~
—2MR™As—[24pqV " +(w—w,)R*]A4¢}B, 4)
where
x = sin 9,
B = (A*+ Dx— A(A*=2) (1 —2442),
dmM 12 .
K=|-—o©o—| , R¥=1141%A
(E+m) (E' +M)

2A*
= — + R
E+M  E+m

E—m
E'+M

)

£

Y = 2A(A* + D)z —(A*— A)x,

here and through the rest of the paper (barring Appendix A) the symbol A is taken to
be (F1).
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The expressions (4) contain all information of interest concerning kinematic singularity
and zero structure of helicity amplitudes because the only singularities and zeros of 4;
are dynamical ones. The relations between RHA and helicity amplitudes (HA) depend
critically on external mass configurations in contrast to the relations (4) (HA versus A4,),
which hold for any external mass configuration (provided m; # 0). We focus our attention
on the two-mass configurations (u # py, m# M) and (u # py, m = M) as the only
ones important for applications. Using Tables (IV, VIII) given in Ref. [4] one easily
obtains RHA in terms of HA and, for the convenience of the reader, the corresponding
expressions are given in Appendix B. Combining the relations (4) and (B1, B2) (see Appen-
dix B) one can get the regularized helicity amplitudes F f ain terms of invariant amplitudes 4.
The examination of such relations (i.e. F{lz} versus A;) shows that forz — 0, t - (mF M)?,
and f — (u; F u)? the relations among F (1) exist, requiring only that invariant amplitudes 4,
are finite at these points*. After some calculations one gets

Lojg # p, M# m,

t— 0,
Fl—;.,a;z;.,o"(Susz;)—2(41P‘12)F2—z,z:2z,0 ~ 1 3
t = (M—m)?,
F%,z;a,o“u(M"“m}f_’FZ—;..z;z;.,o ~ ¥ (6)
t = (T ),
1111‘11—/1,;,;0,0_/I \/5- (t+ﬂ%_#2)t—1F1—A,,‘.;2z,o ~ ¢1,%¥1a, Q)
4, FF 00— A J2(4pqz) (H 13— 1)F ] sa0 ~ 712 P12 (8)
t — (M+m)?,
42#&3,1;0,0"#1[(’”‘“"[) (s—u)+(m—M) (Hz“ﬂg)]Fiz,z;o.o ~ @34, )
A(’n+M)Fi,A;A,O_F£A,l;Zl,O ~ ‘P§4- (10)
L puy # p, M = m.
t—0,
2;1F1—A.;.;2).,0+’"(#%“N2)F§,A,A,o ~ 1 (1
t = (T ).
HlFl»z,x;o,o_';- \/j (t+11§_112)t~11:1—2,).;2;.,0 ~ ‘szwfz» (12)
SﬂlFi,A;O,O —\/§ (t+15—p) (S_u)AF}l,l;A,O ~ 91, ¥1s; (13)

* This may be shown by expressing A; in terms of FE,-_}.
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t = 4m?,
4AN1F}1,A;0,0”H1m(S_U)F1—,1,/1;o,o ~ 99%4, 14
2mAF)1.,/1;A,0—F1—}.,/1;2}.,0 ~ ¢§4- (15)
Eight relations (5)-(10) (or seven relations (11)~(15)) are just the constraints on RHA
which have to hold in any Regge-type model® for 1/2'+0 — 1/2+1, (4 = +1) reactions
which pretends to be at least kinematically correct. The physical information one may
extract from the relations (5)-(15) are similar in many respects to information one may
obtain from relations (18)-(28), so we postpone the discussion of both cases to Section 4.

Part II: n = —1

One can get the set of the covariants {I~<f} for the (n = —1) reactions by multiplying
each term of the set (3) by the ys-matrix® i.e.:

K} = ysK]. (16)
Starting from the set (16) one obtains HA7 in terms of invariant amplitudes 4;:
20, KMé s = =4 {[2w,pz+q(E—E)]A, —qt'?4,} (3*+)R™ +
+1 {[20pz+q(E—E)]A;—qt'?A,} [(A*+7) (w—w)R™ +2pgYV " }—
—As[(A*+ )R — 0 pYV |- p[2¢* + 0 (0— )] YV Aq,
22A 2 KMYS = —(2*+)pxR¥ A +3 p[(A*+2) (0—w,)R™ +2pq YV " JxA;+
+24{pV " As—[24gR™ + p(w—w,)V " ]4¢}B. )

Combining relations (17) and (B3), (B4) (see Appendix B) one can obtain the regularized
helicity amplitudes F{il} in terms of invarian‘.[ amplitudes and likewise for the n = +1
case one can show that the relations among Fy;, exist. After some calculations one obtains
the following constraints on Fj,;:

L wyy#u, Ms#m

t—0,
F2 5 5200 (@32) 2(Mpg2)FL; 5050 ~ 15 (18)
t = (M—-m)?,
1 F3 0,0+ A [(m— M) (s—w)+(m+M) (1 — gD 1FZ; 500 ~ ¥ias (19
F2, 20+ A(m—M)F3 ;40 ~ V345 (20)

5 We use the term “Regge-type model” as a synonym for the expression “the formulation of a Regge
pole and cut model in terms of the #-channel helicity amplitudes™. For the other point of view see e. g.
Ref. [41].

¢ We work in a representation where yZ = 1 (see Ref. [39]).

7 For the determination of the T matrix see Ref. [37].
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t > (U F ),

42p,F2 2,4;0,0 \/-3- 1N+l — #Z)Fz—x,z;zi,,o ~ 91, ¥1,, (21
4pyF} 200—A \/i (t+pi—p?) (4qu)F§,A;A,0 ~ @1, %55 (22)
t > (M+m)?,
2AF}1,1;A,0—("1+M)t_1F1—,1,/1;21,o ~ @ls (23)
I gy #p, M=m
t—0,
lliFi,z;o,o —mMpi —p*)F2 ai0,0 ~ 1 (24)
A(ui —ﬂz)Fix;A,o —2'”99%2 W%2(¢34)_2F1—1,A;22,0 ~ 1 (25)
t— (p F
43 F2 ;00— \/l§ (t+ui —WHF2 200 ~ 912P10, (26)
4#1F;1.,A;A,o — AP+ pi — 1) (s— u)Fi,A;A,O ~ 91, %15; 27
t — 4m?,
2ilF11.,}.;A,0 - mFl—z,z;zz,o ~ @34 (28)

From relations (24), (25) one easily obtains well known results of Hégaasen and Salin [19]
for VP — NN-type reactions (see also Eqs (2.3) and (2.4) of Ref. [27]).

Before we discuss the content of the constraints on F {il} it seems worthwhile to make
two remarks about the amplitudes Fiy.

1. It is worth noting that for the (m; # m,) mass case there exists a formal “sub-
stitution rule” that may be used for the verification of a part of our calculation.

Let us denote the RHA for the two reactions

n = _1, (1’ my, ll)+(0: m, 0) - (1/27 ni3, }'3)+(I/2’7 My, 2'4)

and
n=+1, (1, my, A)+(0, my, 0) = (12, m3, A3)+1/2', my, Ay),
by
toiaanol— 15 my, my; may, my)  and Fiyyraano(+1;my, my; mg, my)
respectively.
Now if we replace every symbol 4; in an expression for F{‘l}(-—l, my, My, My, My)
(i.e. F; versus A4;) by a corresponding symbol for the = +1 reaction (i.e. 4(y = —1) —

— Ai(n = +1)) then the following “‘substitution rule” holds:
i2)~4(—1)H"+IM_1F§3,A4;11,0(—12 my, my; —ms;, my) — F;,,z,,;zl,o('*‘l; my, my; my, my),
where

A=Ay, p=A—A, (=8mM)'* = +@8mM'?, k%1 kI=12.
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We emphasize that this formal rule, which has no dynamical content, exists for
the (m3 # m,) mass case only.
2. Define the natural parity amplitude f; {Ajl}

N  ayAnd M+p+u—S3yisA '
Sanagani: = Mt +Nin(—1) TEMZ (29)

where N = F1 is the naturality, M = max {{1], iul}, S = s;+s,, v = 0 for integer S
and v = 1/2 for half -odd-integral S (for the explanation for other symbols see Appendix B).
For the cases we deal with, the expression (29) takes the form

N . AqA3:40 M+ pa%ris,Aa
fz;,u;ax,o = M;}o —=Nnn(—1) M™%

If follows from the definitions of amplitudes F {il} (see Appendix B) that they are proportio-
nal to corresponding natural parity, amplitudes f, gv,{}

i _ Ni
A3,A4341,0 Rif)-s,l4;1110

where R; is a kinematic factor that can be determined from the relations between the
amplitudes Fy; and amplitudes M73:g*. From now on we will call the amplitude Fj;
a regularized natural (unnatural) parity amplitude RNPA(RUNPA)if N; = +1 (N, = —1)

respectively. Using Table I one can easily show that in the (4 = F1, n;59, = +1) case

TABLE I
RHA versus naturality N

MmNz = -+1 Nz = —1 ninz = +1 M2 = —1

FL, 100 [RUNPA(N = —1)RNPA (N = +1)| Fiz0,0 |RUNPA(N = —1)[RNPA (N = +1)
Fiu00 |RUNPA(N = —1)JRNPA (N = -+1) FX 100 |RUNPA(N = —1))RNPA (N= +1)
Fiiao |RUNPA(N = ~1))RNPA (N = +1)| Fii40 |RNPA (N=-+1)RUNPA(N= —1)
Fiaa0 |RNPA (N = +1)RUNPA(N = ~1); F§ 40 IRUNPA(N = —1)RNPA (N = -+1)
FL; 2210 [RUNPA(N = —1)RNPA (N = +-1)| FL; 1220 [RNPA (N = +1)RUNPA(N = —1)
F2 32220 RNPA (N = +1)RUNPAN = ~1)| F2;2.0,0 [RUNPA(N = —1)RNPA (N = +1)

only, RUNPA (N; = —1) contribute to the helicity amplitudes with A, = 0 (i.e. spin 1
meson helicity O-states), whereas in the (n = F 1, 7,17, = —1) case only RNPA(N; = +1)
contribute to the helicity amplitudes M{%**. Both RNPA and RUNPA contribute to the

helicity amplitudes M ff_b’l‘ (i.e. spin 1 meson helicity T l-states) in each of the cases®.

4. Discussion of results

1. Since each of the amplitudes F {i,.} can be decomposed into amplitudes of definite
signature ¢

2Fy, = Fyy +Fiy,

8 This is the obvious generalization of well known resuits for ¥+ P — N-+N reactions.
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(the T superscripts to the amplitudes F refer to the value of ¢) then our constraints, which
are exact properties of RHA, are in the framework of a Regge-pole model constraints
on reduced residues and trajectory functions. If the amplitudes F fz} are dominated by
Regge-poles, different poles will dominate different RNPA(RUNPA). The amplitudes
F‘,’,M;u,o and Fi;.,z;u,o are the amplitudes of different naturalities (see Table I) so, e.g.,
the constraints (5) and (18) are of a nontrivial nature.

2. Neither the relation (5) nor the relation (18) imposes a constraint on the helicity
amplitudes M»{¢. This is in agreement with the general conclusions of Cohen-Tannoudji,
Morel and Navelet [4] about the lack of conspiracy between the helicity amplitudes at
t = 0 for all external mass different.

3. The examination of our constraints shows that in general there is no continuity
in terms of the masses of external particles. However, if one supposes that F{i;.} are smooth
functions of external masses then one observes a different pattern. Let us consider, e.g.,
the relations (5) and (6). From these relations it follows that

(m—M)_lFZ—z,A;z;.,o = [(/ﬁ—#z) (”7"'1”)]_11'{).,;.;21.0 at  t =0, (30

and
(m—M)anz-;,,,a;z;,,o = —ZJLF?‘,«‘;A,O at = (M—m). (31

A

Now, if one supposes that lim (m—M)_‘FZ_;”l;”,O exists, then it is easy to see that the
m-M

relations (11)—(15) are the limits of the relations (5)-(10) as the baryon mass differ-
ence is put to zero. Consider now relations (18)-(23). One can find again that if

lim (m—M)_lFZ_M_;“.O exists, then the relations (24)—(28) are the limits of the rela-
m-M

tions (18)—(23) as m — M?®,

If one accepts such additional assumptions then our constraints are practically
indifferent to small mass differences so the mass difference between proton and neutron
does not change drastically the structure of kinematic constraints on RHA and, as a con-
sequence, does not change the dynamics.

Taking vinto account that (m,—m,)*> = 0.045(GeV/c)* one may also expect that

W= m+M)'FL, 00 x —AFS 40 at t=1,, 1,30 32)
for the p°+ K~ — A+p reaciion
and
22[ (i — 1) (m+M)]TFL 0 & —Fi a0 at 1=1,1,%0 (33)

for the A9+ K~ — A+p reaction.
Since the amplitudes FL1,,,., and F%,).:A,O are the amplitudes of different natu-
ralities, the relations (32), (33) are of a nontrivial nature.

? The definitions of some amplitudes Fg,:} (see Appendix B) differ by the factor 2 for (m+#AM) and
{m = M) cases and this has to be taken into accoumnt in order to obtain the exact limiting form of cons-
traints as m — M.
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4. Tt is worth noting that in the framework of a Regge-pole model each of the terms
involved in a constraint that belongs to the sets (5)-(15) or (18)-(23) simulates the same
type of asymptotic behaviour. This is not the case for the (n = —1, yy # u, M = m)
mass configuration; the relation (24) consiraints the two amplitudes —F},x;o,o and
Ff".,.,&-;o,a — having a different type of asymptotic behaviour (see also the relation (27)).

5. Each of the terms involved in the constraints is a kinematically regular function
of the vector-meson mass y,. Nevertheless it is a hard task (if possible at all) to obtain a limit
form of our constraints in the limit of vanishing mass of the spin 1 particle. The reason
is very simple; for u, = 0 the (1, 2)-particle’s threshold and pseudothreshold kinematic
singularity locations coincide with the dynamic singularity location — a pole at ¢ = u2.
It seems to us that owing to the constraints on RHA, one cannot obtain RHA for the
1-40- — 1/2* 4+ 1/2* reaction (here 1~ stands for photon) from RHA for the corresponding
massive vector-meson reaction by setting the mass of vector particle equal to zero and
simply dropping out the helicity amplitudes Méf{)’“. It is not enough to assume an additional
smooth vector-meson mass dependence of the regularized helicity amplitudes, but one
also has to check that limiting forms (if they exists at all) of all constraints obtained
by such a limit procedure, correspond to the forms one can get by a direct eduction of
constraints on RHA for the reaction with photon.

6. We have tacitly assumed that there are no poles or resonant states at thresholds
and pseudothresholds. Otherwise the constraints at thresholds and pseudothresholds
would have to be modified.

7. If s = u then the definitions of some F{i,t} have to be modified. This, of course, will
also change some constraints. One cannot automatically use the results of Cohen-Tannoudji,
Morel, and Navelet [4], e. g., for the (§n = +1, m, £ m,, my = m,, s3 = §,) case (see
Table VIII) of their paper) when s = u. They have considered the most singular case,
e. g, cos 9, ~ (pg)~ ! at thresholds and the pseudothreshold. This is not the case if
s = u; if m = m, or my = m, thencos §, = 0 on the s = u line. Neither explicit expres-
sion for RHA nor constraints on them in the s = i case are given in this paper because
they are obviously not of interest at present.

8. Sometimes it is more convenient to discuss the physical content of the constraints
in terms of the reduced helicity amplitudes Mﬁjjﬁ; instead of RHA (see e. g. Ref. [42]).
Following this traditional line we discuss below the implications of the constraints at # = 0
in terms of NPCA for the twe important (for applications) mass configurations.

Ay iy #F u, M#*Fm,

In each of the amplitudes (M;,{T’O’I-T- MZ%}) the kinematic factor allows a maximum
singularity 7' at # = 0. So the ¢ = 0 constraint can be satisfied either by having the contri-
bution of each natural parity amplitude vanish separately like 7, or by conspiracy among
coefficients of the singularities.

By u, # 1, M= m.

The ¢ = 0 constraints can be satistied either by having the contribution of each
NPCA vanish separately like ¢, or each of the two NPCA can retain the singular ¢~*/?
behaviour at ¢ = 0. In this last case the two terms in the equations must approach the same
constant.
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0

An example of a solution of the constraints at # = 0 is given in Tables II and IIL
We have not written down examples of solution for other mass configurations because they
are obviously of academic interest at present.

TABLE II
Amplitudes for (xy # 1, M = m) mass configuration
Amplitudes i p Dominiant parity Kinematic | Extra factor in
M = 41 | qms = —1 factor no comnspiracy case
Mzz{ol%»ﬂ'/\l—'z‘ito 24 =24 (—1)'+ -1y’ 1 ¢
M;A%bl—ﬂzlzlf,o 24 ~24 (-t (=1)+ 1 t
Mih +8he | 4 0 (—1y (—1yf+ -2
My -#the | A4 N Y il
M(;,()S’A 0 —22 (—1)y¥+ (—1)/ 17z
M 0 0 (=1y/+ (-’ I
TABLE 11
Amplitudes for (u; # #, M = m) mass configuration*
Amplitudes 7 p Dominant parity Kinematic | Extra factor in
nime = A1 | mme = —1 factor no conspiracy case
i
157 0 0 | (=p' | (=1’ i '
- Ao_‘(/)l"l 0 -2 (— 1)+ -1 (-2 ‘
:| a0~ M=% 0 4 0 (—p'+ (-1’ 1=t t
o| Mome—M 3ol 22 | =24 | (=1 (-1 -1 ¢
Tio+Miio | 4 0 (-1’ (—1J+ 1
Maio+M_hlol 22 | =2 | (—pyn (-1 1
Y Z_AAE)"%M:é),):o 22 —24 =1+ (-1 102 ‘
| Fge M. | 4 0 (-1’ (—1)7+t 142 ‘
T Mis-mti, A 0 (— 1)+t (-1 1
O AA =4, .
2o —M Zuo| 24 | —24 | (=1 (=17t 1
M3 0 0 | =Y !
| Mop” 0 | -22 | (e | -1y 1
* The solution for the (§ = —1,7,m, = +1) case is exactly that which has been obtained by Frautschi

and Jones [27] (see Table 1 of their paper) through a different method.
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9. In practice the constraints at the pseudothresholds are more important than the ones
at thresholds because of the proximity of these pseudothresholds to the physical s-channel
region. For the p°K~ — Ap the (A, p) pseudothreshold is at ¢ = 0.045 (GeV/c). It is
closeness to 1 = 0 and the degree of the kinematic singularity that demands careful atten-
tion to the constraints at this pseudothreshold.

5. Summary

We have given the complete set of constraints on RHA for the two important (in
applications) mass configurations for 1+0 — 1/2+1/2' reactions (no *‘chance coinci-
dences™ of masses, e. g. (m, F m,)? = (m;F m,)?, were taken into account). These constraints
can be used as the remedy for disadvantages of the Regge-type parametrization discussed
in Section 1, and they can also serve, e¢. g., as a guide in selecting approximate models
for reduced residues. We also discussed the question of the continuity of the constraints
in terms of masses of external particles. We have found that under some assumptions
about the external mass dependence of the regularized helicity amplitudes (see Section 4)
our constraints are practically indifferent to small mass difference, e. g., between proton
and neutron. It has been also pointed out that owing to small masg difference between
A-hyperon and proton the constraints at ¢+ = 0 and at ¢ = (m,—m,)* lead to nontrivial
approximate relations between the amplitudesF'.M;u,0 and Ff,,.m,o for the o(A,)+K—A+p
reactions (see relations (32)-(33)). An example of a solution of the constraints at r = 0
has also been given (see Tables II and III) for the two most important mass configurations.,
The constraints are given in a form which seems to be a convenient one for applications in
the framework of a Regge-pole model for the reactions under consideration. We hope
that the results of the paper will stimulate phenomenologists (see Ref. [43] for the explana-
tion of this term) to use the constraints in fitting procedures. It seems to us that by giving
the explicit form of constraints we make the question of taking them intg account in
a Regge-pole model for 1/2'+0 — 1/2+1 reactions a somewhat less difficult task than is
usually expected (see Ref. [41], p. 413).

This work was partially done at the Institute of Theoretical Physics, University of
Goteborg and the Chalmers Tekniska Hogskola, Go6teborg, Sweden. 1 would like to
thank Professor Ture Erikson for the warm hospitality extended to me at ITP in the
spring of 1973.

APPENDIX A

Wave functions

[4] . — .
”185 = (C], WX, 0, LDIZ), X = s ‘93

V25D = (0, ¥z, —i, £x), z =cos?,
giA,)(q)gzﬁS,;(A)(q) = —5/1’,/1! gOO = 1 = _gkk7 k = 11 25 3:

1—i* [L4+ A
Aang) = 24* > za(ny) = ( s

- L
++4 A

2



46

;;i = -IBifPa X;,(?li))(i,z(;;i) = 5;.1,;.2,

E'+M\V? XA*(HL)
u(p, A*) = ( ) ,
M 24%p
E M )CA*(’H)
24p
Eam\12 ET‘X A( z)
u(p, 4) = 21( ) ,
2m -
x-a(n2)

ﬁ(p.. i*)“(P, ;*) = 51‘,;*’ l_/(pa /:)U(p, )") = _51,)."

See also Refs [36, 37, 39, 40].

APPENDIX B
RHA versus HA

Part 1. y = +1

L opu#yu, m#=M.
Flii00 = 251!2(‘1{’34)_1&?&8’1,

F%,;.;o,o = 2¢I2T34¢34Mé:35
Fiun0 = 11/2('1’ 1) {(MEE— MY ),
F a0 = 13501212930 T (MG + M2 o),
FL om0 = (W) (M35 + M5,
F2 5200 = €912 ¥12934)” (Mz “M—zzo .

IL uy, #up, m=M.
FL))OO-zMO )

F3 100 = ‘P12W12¢’34Mo','({n
Fj a0 = MML _‘M)—ﬁ 0
F} sia0 = 27595 ¥ 120:0) T (MS+ MY ),
Flixaio = t”z(Mz +M:z Sro)
F—,uuo = 2@12¥12P34)" (Mz M uo
Part II. n = —1

Lou#p, m#M.
Fi,a;o,o =2V 1,012 ¥3. M5,

(B1)

- (BY)
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F2 500 = 20" (p34)” 1Mo 0
Fiaao =tV 1501,¥34)” (MA o+ M 24,00
Fia0 = t1/2(¢34)_1(1\’/\1f{ - M 4,0)s (B3)
FLy a0 = (¥ 1201, P30) (M35 — M%),
F2, 0200 = 0@39) (M35 + MZEL).
oy, #pn, m=M.
Fiuo0 = 20"7¥ 0, M54,
F2 5 500 = 4% (34)” 1Moo >
Fiuao = (Pe0) " (MEL+ MY, ),
26 (p30) T (M5 — M o),
FLonzno = PP 1000) (M50 - MZ5 ),

2
F).,}.;A,O

F2~z,z;u,o = 2(‘?34)—1(1\2;1{62'*'1{\1:/21)1{0 . (B4)

The reduced amplitudes M3} are defined as usual
Myl = MJ35 cos ™Iy 2 sin ™14 #ly 2

where 4, is the helicity of i-th particle,e.g. 4y =0, 4,4, =0,4; = 1% 1, = 4,1 = £1/2.
It is worth noting parity conservation condition for F {il} [4]:

i — Z(si+2) i
Fl;,l«;;l[,lz = 7I(_-l) 'F_AJ,"}J;“}A’"';»Z'
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