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The topological cross sections and some characteristics of the multiplicity distribution
for central diffractive production via double pomeron excharnge are discussed.

Recently experimental data concerning proton distributions and charged particles
multiplicity have become available (for a review of the experimental situation see Ref. [1]
and references therein). The data clearly show the existence of two competing mechanisms
known as pionization and diffractive dissociation. However, the dynamical description
of those mechanisms is to a large extent an open question and, in fact, numerous models
have been proposed to account for them. Perhaps the most natural model for the diffrac-
tive dissociation consists in assuming the single pomeron exchange with the excitation
of beam or target proton (Fig. 1a). This mechanism present already in the nova model is
of course not unique and might be replaced or complemented by other term, as those
shown in Fig. 1b and 1c (double diffractive dissociation and central diffractive produc-
tion). We wish to concentrate our attention on the last mechanism. We are aware of the
fact that convincing theoretical arguments exist against a large contribution of this mechan-
ism at present energies. Those arguments cannot, however, give mote than an estimate
of the order of magnitude. Thus, the first aim of this paper might be to examine the prop-
erties of that mechanism in order to propose experimental tests which could directly
measure its contribution at present energies'. Even, however, if this contribution is really
very small, we believe that the mechanism in question may play quite important, if not
dominant, role at higher but still experimentally accessible energies. This belief would
be justified, e. g., if the coupling constant of the pomeron to proton with a large mass
transfer were vanishing function of that transfer. This is, in fact, explicitly assumed in
certain models of diffraction [3]. In that case contiibution of the nova type (single or
double) would become relatively small at higher energies and diffraction would be mainly
due to the central diffractive production. As is seen from Fig. Ic we assume that the
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! An experimental estimate for pp collisions at 205 GeV/c one can find in [2].
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central diffractive production (a) is due to a double exchange of factorizable Pomeron
pole. Moreover we shall assume that (b) pomeron-pomeron collision is similar to the
particle-pomeron collision (at least as far as {n.,) is concerned). For definiteness we
shall take pion-pomeron collision (two bosons) and use the reaction np — Xp to get

a O=—""" a m/
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b 2
(c)
Fig. 1 a) Single diffractive excitation, b) double diffractive excitation,c) central diffractive production
diagrams

the dependence <{n,(M,)) (where M, is the pion-pomeron c. m. energy).
Consider then the diagram presented in Fig. lc, and denote, as usual,

§ = (pa+pb)2s §; = (pj+pk)2, (i’js k = 1’ 2, 3)
ty = (p—p)% 1= (p,—p2)% M*=p}
and let m(u) denote proton (pion) mass. Given s there are still 5 independent kinematical
variables, which can be chosen as M, s,, $,, #;, ,. Let o(M, 54, 55, 1,, 1,) denote mass
distribution of the central fireball at given values of s,, s,, #;, #;. Then the contribution
of the central diffraction production to the total cross section is given by
Opp = j Q(M, Sy5 82, tl’ tz)desldSZdtldtz. (1)

On the basis of the triple Regge approximation and the generalized optical theorem it
is easy to find the asymptotic expression for g in the kinematic region defined by the fol-
lowing conditions
s> M2, s, > M, s,>M, My»m, t xt,~0. @)
This expression reads
exp [2a(t,+t2)]( s \22? /s, \ 2
M, sy, syt 1) = —5—————| — — MO+ 12
Q( 12 925 %1 2) SZ \/—A 1'”2 MZ ( ) > (3)

where exp (at) is the p—p-P vertex function, ap(¢) = 1+0.2 7 [4] and «(0) is the intercept
of the leading Regge trajectory appearing as a dual equivalent of the sum over M2 In the
following we shall assume that @ ~ 4 GeV-2,
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Notice that the condition 4 < 0 defines the physical region. It is easy to perform
the integration over #; and ¢,. Denoting

' St ’ S2
A=a+oc1nM—5, B=a+oclnj\7 @
and assuming that m? < s and s; € s we get
2.2 2\a(0)+1/2
5155(M") 2AB {55, 2
M,sy,8)=—S—F————¢ep| ———| — —-M*}].
oM, 51:52) = = S A+ B) p[ A+B\ s )

To get the distribution of central fireball mass at a given s one now has to integrate
(5) over the Dalitz region. In the triple Regge limit this region has a simplified shape
given by the formula

(5,45, —s—M?) (s; s,—sM?) = 0. (6)

Unfortunately the integration cannot be performed analytically. It is, however, easy to
find its leading term for s> M?2. It reads

Q(Ma S) = .
4aM?(2a+d In S
Mz)

M

We have now two possibilities. If pomeron trajectory has a slope different from 0 (& # 0),
then for s > M?

(MZ)a(O) _ |
oM, s) - oyl MEHO-3 ®

If, on the contrary, this trajectory were flat then
oM, 5) » M** O 3 [n s, )

We shall assume the first possibility. If the triple pomeron coupling does not vanish [5],
we should assume that our fireball is dual to pomeron and put «(0) = 1. In that case
we get

o0, 5) = - (8a)

It is easy to see that integrating (7) over M from M, to /s (assuming «(0) = 1) we get
the following expression as a contribution to the ¢, coming from the central diffractive

production
— ] (10)




52

Taking into account that single pomeron exchange (diffractive excitation of the
beam or target particle) gives contribution growing with the energy like In(ln s) [6] and
two reggeon exchange (central pionization) keeps the o, constant, one may conjecture
that the relative importance of the mechanism discussed by us may become greater for
larger though not asymptotic energy.

This argument, of course, should be treated with caution for at least three reasons.
Firstly, the mass distribution cannot behave in all the region (from M,, to \/s) as given
by the triple Regge formula, since this formula is supposed to be valid only for M being
far from both the limits. Secondly, as follows from the paper by Finkelstein and Kajantie
[7] when adding a new link in a multipomeron chain we change the asymptotic behaviour
of the contribution to ¢, by a factor In(In s), what is clearly not fulfilled in our case.
Thirdly, one could expect some absorptive corrections to appear which may change the
asymptotic behaviour to the contributions to o,,. All those objections, however, are not
necessarily fully convincing. One could argue that it is the M ™! term in (7) which deter-
mines the asymptotic behaviour and that this behaviour does not essentially change even
if we multiply (7) by reasonable factors making it to vanish at M, and /s (at least for
some of such factors). The results obtained by Finkelstein and Kajantie are not immedia-
tely applicable in our case as in that paper fixed (and small) masses have been assumed
to be produced in the multiperipheral chain so that there is no obvious contradiction
here. Finally it is very hard to say at what energy possible absorptive corrections start to
influence visibly the s-behaviour of the amplitudes. Taking into account all those arguments
and counterarguments one realizes that the situation is confused and that there is a pos-
sibility of CDP dominance (or, at least, importance) at a certain, perhaps limited, energy
region, certainly higher than this which is accessible to day.

After this general discussion we wish to examine a little bit closer possible physical
consequences of the proposed mechanism at finite energies. One could look at two things:
(a) inclusive distributions of protons and (b) multiplicity distribution of the produced
pions. Unfortunately very little is known, as we have stressed above, about the numerical
contribution of the central diffractive production to the total picture of the collision.
This leaves too much freedom to the model and forces us to make our discussion rather
qualitative than quantitative.

To get proton distributions consider formula (5). In this formula the exponential
function falls rapidly when the argument goes further and further from the kinematic
border of the region given by the equation s,5, = sM?2. Taking this into account we can
insert, instead of the exponential, a delta function of the same argument.

Denoting the rest of the g function by § we get

2AB [sys, 2\ .
o(s1, 5) = | dMs ‘Eé(? ~M?) | 6M, 51, 5,) =

s s\]7!
= [83132 (a +a'ln ——) a+d In —)} . €3))
Sy Sz
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As is easily seen this distribution factorizes in §; and s,. Introducing Feynman variab-
les x; and x, by the formulae

sy = 8(l—x1), 82 =s8(l+x,), (12)

we get
o(x1, X2) = f(x1) f(—x2), (13)

where
fx) = [(1=x) (@~ Inj1—x]" " (14)

It is clear that g(xy, x,) has the largest value in the region x; & 1, x, ® —1. This should
be contrasted with the case of single pomeron exchange where either x; =~ 1 or x, & —1 re-
gions are populated the most (the sum and not the product of the two regions). Looking
at the single proton distribution one would not be able to see it, and it is necessary to
measure two proton correlations in order to have an idea of the numerical importance of
the proposed model.

Let us come now to the examination of the multiplicities. We start with a comment
that whereas the proton x distribution gives us the idea of the behaviour of the function
o(M, s, s,) at large M (where it falls down like 1/M), the multiplicities will be sensitive
to the shape of this function for smaller M where o(M) has its maximum. This region
corresponds to x very close to 1 which are not very easily accessible from experimental
point of view. The data for single proton distribution show roughly the behaviour of o(x)
of the type (1—x)™* for x < 0.98. This value corresponds to M2 2 0.02 s (M 2 0.14 \/s)
and it is in that (at least) region where o(M) ~ 1/M. For smaller M values the data are
still lacking and we are forced to make some plausible guesses concerning the o(M) func-
tion in that region. Firstly notice that in the present energy region, where s < 10° GeV?
and if M2 is of the order of few GeV?, the In s/M? is of the order of 5 (even for M? at the
threshold this logarithm is about 9) and when multiplied by «’ is does not become greater
than 2a. This means that when dealing with the data in the presently accessible energy
region (and even higher up to, say, 10*5 GeV) one is far from the limit (8) of the formula (7).
So, we should use the formula (7) rather than (8) for numerical estimations of CDP. More-
over, we have one more condition to impose on that function, namely, that at the thresh-
old (which corresponds to two pion masses) it behaves like V1 —4u?/M?. What we need
is the interpolating formula. It seems that there are two possible classes of such formulae.
One of them corresponds to the maximum of (M) at fixed M (not moving with s) and
the second one to the position of the maximum of o(M) moving like M,,, = k- /s to
larger M when s is growing.

Accordingly we have tried to find the prediction of the model for two functions

= \/1 al b 15
QI(M, S) - Q(Ma S) - Wexp(_ M) ( )

and

0.(M, s) = o(M, s) \/1— ‘J‘TZ_Z exp(— 7_1:4/_5)’ (16)
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where (M, s) is given by (7). Taking § = 2.5 GeV we fixed position of the maximum of
0:(M,s) at about M_, = 1.5 GeV almost s independently. For the second function
02(M, 5s) we take y = 0.18 to get M,,, = 0.12 \/E. This function has fixed position of the
maximum in the variable M?/s which corresponds to the scaling form p(x) for protons
(maximum o(x) at fixed x = 0.98).

According to our assumption (b) pions resulting from the decay of the central cluster
with fixed M are produced independently so that we can assume Poisson law for the multi-
plicity distribution. To calculate the topological mass sections we have then the following
formula:

ok = [ avtg, a1, T2 a7)

This formula contains unknown so far quantity {n_> (#_ denotes number of n~’s). We
assume consistently with (b) that this quantity depends only on the total energy acces-
sible, which in our case is equal to M. To guess the shape of this dependence we consider
the experimental data for the process [8]

np ~ (a7)p,

at 205 GeV/c concerning the pion multiplicity as a function of the total mass of the system
M. This distribution can be fitted by the following function

(ne(M)) = 1+1.1(M —p)*, (18)

for M from 1 to 14 GeV approximately. This function is chosen in such a way as to fulfill
the normalization condition at the threshold (at M = u we have one n~). Exponent 2/3
is in agreement with the predictions of the model considered in Ref. [9]. Taking over the
coefficients from above formula to our case we assume

(n(M)y = $+1.1(M —2p)*3, (19)

where a similar normalization condition has been accepted at the threshold (M = 2u;
we have either 27°, ntn—, or n-n™ with equal weights in the isospin O state). This gives us

{n_(M)) = 0.67+0.55(M —21)*. (20)

With this function we enter formula (17) to get 6,_(s) and other measurable quantities,
amongst them modal N, and median N, values of multiplicity distributions,

Ok+1 0'1%
Ny =2k+2+In In , 2D
Ok-1 Ox+10k-1

where 6,_,, 0, 0, are three largest values of o,_, and

Ny = 2j+2+( S o ‘J[, )0 (22)

i=j+1 i=0
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where j is the smallest value of n for which the condition

Za

i=n+1

llM:

is fulfilled.

Numerical calculations were performed for two types of functions g, and g, in the
range of energy from s = 200 to s = 2000 GeV2. Our results are presented in Figs 2,
3, 4 and 5. As we see, both functions g, and g, give growing {(n.,>, No and N4. However,
if the maximum of g is kept at a fixed M (o, case) the growth is very slow, whereas for
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Fig. 2. Average charged multiplicities <z.,> modal Ny and median Ny values as a function of s in the g, case
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Fig. 3. Average charged multiplicities <n.s> modal N, and median Ny values as a function of s [GeV?]
in the g, case

0, we get increase of the three quantities comparable to the experimental data [10] (which
include of course, predominantly, the pionization component). We conclude that it is very
probable that the dip between the pionization and diffractive component [11] in the data
may not appear or it will show at quite high energies only. As for the topological cross
section we notice that in the g, case we get a picture usually expected for the diffraction,
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that is, we get growing g, for all n (Fig. 4). 1t turns out, however, that it is rather easy to
get o, behaving as functions of the energy like in the pionization case, which can be observed
in the g, case (Fig. 5) and one can obtain the same result o, for single diffractive excita-
tion. It means that perhaps we cannot separate diffractive and pionization component
on the basis of energy dependence of the topological cross sections. It could be more
easily done by looking at rapidity distribution of produced pions. We expect that pions
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Fig. 4. Topological cross sections for various total charged multiplicities » (= 2n..--2) as a function of s
in the g, case
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Fig. 5. Topological cross sections for various total charged multiplicities n as a function of s in the g; case

emerging from the central cluster will be produced in the central rapidity region and will
be separated in rapidity from throughgoing protons.
Concluding we point out the following observations:
(1) The role of the central diffractive production may increase at higher energies,
(2) The two proton correlations and rapidity distributions of produced pions present
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the most sensitive test to discover the mechanism discussed in our paper even before it
eventually becomes dominant,

(3) The exact shape of (A4, s) for not asymptotic M is very important for the pion
multiplicities and related quantities.

In particular, making very natural assumptions concerning this functions, one can
get a picture quite similar to that given by pionization.

We are indebted to Dr Ajduk, Dr Pokorski and Dr Swigcki for useful discussions
and comments. We also wish to thank Professor Wroblewski for discussions and informa-
tion concerning new experimental data.
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