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ON THE BEHAVIOUR OF THE N-PARTICLE SYSTEM IN THE
DYNAMICS WITH RETARDATIONS AND IN THE POST-
NEWTONIAN APPROXIMATION OF GENERAL RELATIVITY

By V. 1. ZupanNov, K. A. PYRAGAS
Institute for Theoretical Physics, Kiev*
( Received September 22, 1973)

The conditions are given which guarantee a complete dispersion of the n-particle
system in the dynamics with retardations. The theorems concerning the behaviour of the
n-particle system in the Post-Newtenian approximation are proved.

1. Introduction

The equations of motion of N particles, taking into consideration the relativistic
effects, have a rather complicated structure, to say nothing of the difficulties of the n-body
problem, even in the Newtonian dynamics. These are, for example, the equations of mo-
tion of the linear GR approximation, which take into account the retardation effects and
the equations of the Post-Newtonian approximation. One can mention also the classical
electrodynamics as well as any other theory taking into account the finite speed of propaga-
tion of interactions. Because of the difficulties in the solution of the equations, it would
be reasonable to present general theorems dealing with the properties and the qualitative
behaviour of particle trajectories. In this connection, the work of Driver [1] should
be noted, where analogous theorems are given for the one-dimensional two-body problem
of electrodynamics. We shall prove the theorems which concern the necessary conditions
of the complete dispersion and the behaviour of the N-particle system (in the P-N approxi-
mation), depending on the sign of energy integral. These theorems generalize the correspond-
ing results of the Newtonian theory [2, 3]. Considerable interest has been generated in
these problems in the Newtonian theory of gravitation, connected with the problems of
cosmogony, in particular with the famous Schmidt hypothesis [2, 3] .
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2. The conditions of the complete dispersion in the dynamics with retardations

Having in mind the applications to relativistic dynamics, consider the equations
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where (we put e = 1)
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and cx(r,, ;5 t) is defined from the equation
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,(t) bemg the three d1mens10nal trajectory of the i-th particle. The functions Fk[ o Xy ees

Voo oo 1, Ck vy Zis oeey Xg» -oes Vis ... ] are supposed to be sufficiently smooth in the domain
{[xi| <1, yo# y; for k# i}.

Let D(v, d) (v < 1, d > 0) be a domain of the values (..., X;, ..., i, ...) € Egy2 (the Eucli-
dean space of 6N? dimensions) in which [X,| < v, [y;— ;| > dfori # j,i,j=1, ..., N. Sup-
pose that in the case of initial data ¢(¢) for which the following conditions are satisfied: (a)
@ (t) € CZ, o #:(t) are Lipschitz continuous on [t,, fol, (b) (..., @i(2), ..., #:(t), ...) € D(v, d),
where v < 1,d > 0, (¢) «(g;, ¢}, to) = 1y, (d) the conditions are fulfilled which provide the
continuous junction in C? of the initial data with the solution at ¢ = ¢, (see e. g. [4]),
there exists a unique solution 7,(z) to Egs (1) on the segment [to, to+1(v, d)], which
corresponds to the initial data g(t), and r,(t) € C2, r{(¢) are Lipschitz on [z, to+1(v, d)],
[F()| < 1, 7(t) # 7(t) for i+ j. Here t(v,d) is independent of f,.

The validity of this statement depends on the properties of the functions Fand G
in (1). The restrictions on the F and G can be found using the extended existence and
uniqueness theorem [5]. Our suppositions concerning ¢(¢) could be weakened (e. g.
the condition (d)), but they are quite relevant for physical applications.

Suppose also
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for (..., Xpy ..y ¥i» ..) € D(v, d).

Our suppositions are satisfied in many practical cases in spite of their seeming complex-
ity. For example, they are fulfilled for the equations of motion of classical electrodynamics



(without radiation damping) and in the linear GR approximation. Moreover, the following
can be generalized for the equations more general than (1), because in our case only the
behaviour of the interparticle interactions at large distances is essential.

Denote 7;; = F;—7;, r;; = |Fy;|. Suppose that the initial data satisfy the above condi-
tions with parameters v < 1, d >0 and at 7z = ¢,

Fii(to) > 0. 3

Evidently, D(v, d)e D(u,,d’), where d' < d, uy = 2v(143v?Y2, so the solution to
Eqgs (1) exists on [t,, to+1(ue, d’)], moreover, due to the continuity of the solution there
exists T > f, such that

rif(0) > & [ri(te)+ri{to) (t—10)] 6)

and (..., r(t), cos Fi(1),...) € D(uo, d’) for t € [t,, T]. Let us find the conditions which
guarantee the fulfillment of (6) for all r € [z,, 00.)

Taking advantage of (1), (3), (4) and the properties of the function a(7;, 7j, 1) (see
e. g. [6]), we have on the segment [7,, T]
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Denote ¢’ = max t;;, where t;; is such that a(r;, r;, ¢;;) = t,. Using the properties of the
function inverse to «(r;, r;, t) (see [6]), we have
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Note that in most practical cases g < 1. For g < 1 we have from (7) (¢ € [to, t'])
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Using the properties of a(r;, r;, 1) we have for ¢ < ¢’
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From (9) we find for g’ < 1
N
Z F(0) (D) < max {(1-g)~", 1+¢’ Z O}, 1=, (10)
N .
where Y ||f(s)u; (s)||1, is defined from (8). Thus we have Vre [to, T]
i=1

N -
=Z1 If(suds)| < K, (11)

where the constant K is defined from the inequalities (8), (10). It should be noted that
in the case of small velocities K ~ 1.
It is easy to see that

Fi) = —r (D) = —2fue)| — 2l (1))
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Using (11) we find from Egs (1)
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By analogy with [2], theorem (3.3), it is easy to see' that if
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then the inequality (6) is fulfilledin [to,¢0 +7(uo, d')]and (..., 7(2), ..., Fi(t), ...) € D(uo,d’).
Thus the solution can be extended to [y, #,+27(1g, d')]: Continuing this process one
can prove (6) for any 1 > 1,.

We are now in a position to formulate the following theorem.

Theorem 1. Let the initial data @(¢) given in [t,, t,] satisfy the conditions (a)-(d).
Let (6), (12) and g’ < 1 be fulfilled. Then

ri{ty—oo for t >0, i,j=1,..,N,i#].

The theorem has a simple physical meaning. The conditions 7; i(t,) > 0 imply thatat 1 = #,
the distances between the particles are increasing. If the distances are sufficiently large
(therefore (12) and g’ < 1 should be satisfied), the interaction between the particles is
small and slightly affects their motion, i.e. the system continues to disperse.

Let us find the conditions of the complete dispersion in another case.

Denote Ei,- = 7U(t0), vy = {E,-ji. It is easy to see that

rifto) vt —1o) = 0i;+ v (t—1;)),

! Suppose (for contradiction) that these statements are not true beginning with some 7 = 7. Then
the estimates preved will lead to contradiction because of (12).
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where
rif(to) (ri(to)v;;)
Lij = —e; ’ =0,
v;j v;7:(to)
- - - df .~ T
0ij = rifto) +v(ti;—1to), 0y = [0yl = \/l_eizj rito).
Evidently,
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We shall take g;;> 0.
Consider a segment [#z,, 7] such that
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By analogy to the above considerations we obtain
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the constant K is defined by means of the function A(?) just as K is defined by means of f(¢).
Making use of this estimate, one can prove the following theorem.,
Theorem 2. Let the initial data given in [#,, #,] satisfy the conditions (a)-(d),
k' < 1, where k' is defined by means of the function A(#) just as g’ is constructed by means
of f(t), and

N
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Then r;(t) » oo for t - 00,4, j=1,...,N,i#].

3. The Post-Newtonian approximation®

The theorems proved above give us some information on the behaviour of dispersing
system of particles moving asymptotically with uniform velocity. In the case of finite

2 When we were writing this paper we were not familiar with the paper by B. R. Hoffman and P. Havas
(Phys. Rev. B140, 1162 (1965)) where theorems are proved which deal with the same subject as our The-
orems 3 and 4. We are grateful to Professor Havas for sendirg us this paper. However, there is a technical
difference in our proof: starting from the Lagrangian (14) we treat the problem from a rigorous viewpoint
without neglecting higher order terms. This involves some complications in the proof of Theorem 4.
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motions the behaviour of the system depends strongly on the type of equations, so the
derivation of the common criteria which are not connected with the concretization proves
to be difficult. Moreover, the equations with retardations do not admit the energy integral,
while it would be interesting to obtain the estimates concerning the sign of energy®. Be-
cause of this we shall consider the behaviour of the N-particle system described by the
Post-Newtonian Lagrangian (see e. g. [7])

F = To(N+ TP+ UF, r)+Vo(r)+ Vi(r), (14)
where
N N
> 1 = - 1 Y
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ij=1
i
N
¥’ -1 -1, -1 -1, —1 -1
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Here m; are the masses of the particles, y is the gravitational constant, ¢ is the speed of
light.
Note that this case one can also prove the theorems analogous to Theorems 1 and 2,
because the interaction falls off sufficiently quickly at large distances between the particles.
From (14) we have the energy integral

H = Ty(r)+3T(n)+ U(r, N —Vo(r)=Vi(r). (15)

3 The term integral is meant in the sense of ordinary differential equations, i. e. as a function of
positions and velocities.
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So far as the Post-Newtonian approximation is valid in the case of a weak gravitational
field we put
M

m %d (16)

where a is sufficiently small, o(f) = min {r;(s)}, M = Z m;.
itz )
The condition (16) can be treated as the condition of the absence of collisions, because

it shows that the particles do not approach each other too closely. This requirement is
quite natural in the case of extended particles of finite sizes. It should be noted that when
the Post-Newtonian approximation is valid one can choose a < 1.

Let us consider the behaviour of the system of particles for H < 0. From (15) it
follows, after elementary estimates are made, that

5 N N
M=y mr; b m;
- > |H|+ 1— 5 — 1.
200 M Z 2 ( & Z ri,-) an
i=1 J=1,j#i

This proves the following theorem.

Theorem 3. Suppose that in the system of particles described by the Lagrangian
(14) collisions are absent for a < 1.

Then for H< 0

2

<
<5 (18)
Indeed, for a < 1
Z c e(t)
J=1,j%k
and (18) follows from (17).
Consider now the case H > 0.
Introduce the quantity
N
K= 73 ¢,
where p; are the generalized momenta corresponding to (14)
oL
P

Taking into account the Lagrange equations and the Euler theorem we easily obtain

dK
— = HHTO+ T =v,0). (19)



Denote
N
-
L=} Z mm(r;;v;5),
ij=1
where
-
- - - - pi
Uy; = U=y, v =

N -
Y h=0. (20)

In order that (20) be satisfied, it is sufficient to choose the initial conditions in an appro-
priate manner. In this coordinate system we have

N
L=M Z (E’i;i) = MK. (21
i=1

Theorem 4. Suppose that in the coordinate system in which (20) is fulfilled, the energy
constant H > 0 and the condition of absence of collisions is satisfied for a < 1.
Then
N

Y rjt) > for t— co.

i,j=1
Proof.
Using (19), (21), we have

t
L() = L(to)+ | [H+To(r)+ Ty(r)— Vi(r)]dt = L(to)+ MH(t—t,).
fo
Thus L(t) —» o for ¢t — 0.
By analogy with (17), we obtain for a < 1 that

whence it follows that f?i[ are bounded for all ¢. Then using (16) and the expression for
p; we have

Ip < B,

where B is a constant.
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Thus |p;;| are bounded for all 7. From the inequality

N N
ILO) < % Y, mmjlo (D] Y D,
i,j=1 k=1
we obtain the statement of the theorem.
From this theorem it follows that for H > 0 at least one body goes to infinity with

respect to other bodies.
It should be noted that the results obtained in this paper are quite similar in form

to those of the Newtonian dynamics [2, 3].
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