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EFFECTS OF ELECTRON AND PROTON DISTORTIONS
IN THE (e, ¢'p) REACTIONS
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The quasielastic (e, e’p) cross section has been derived taking into account the Coulomb
distortion of electrons in the framework of the high energy approximation. In comparison
with the plane wave approach, in the usual kinematics, the d*o cross section of the 4°Ca
(e, e’p) reaction increases in magnitude by 10-20%; due to the electron distortion and de-
creases 3—4 times due to the inclusion of the proton optical potential. Then if one takes into
account the diffuseness of nuclei in the hole-state dynamic-potential model, the d*s cross
section relatively increases 23 times in the energy range of Ip- and is-peaks.

1. Introduction

The mechanism of the quasielastic (e, ¢’ p) process consists of scattering of an electron
from a nuclear proton and transferring an amount of energy and momentum, so that
the recoiled proton is thus emitted. The role of the other nucleons is reduced to the forma-
tion of the Coulomb and nuclear potentials, which distort the electron and proton wave
functions. Such a reaction is a good tool in studying the momentum distributions, widths,
and energies of the hole nuclear states [1]. Thus, the Amaldi group experiments [2] showed
that the protons were knocked out from the 1d, 2s, 1p, and the lowest 1s nuclear shells.
The energy of the latter happened to be of the order or lower than the depth of the usual
potential well used in one-particle calculations.

In principle, the d*o cross sections measured in the double coincidence experiments,
detecting both the outgoing proton and the electron angles and energies [2], are of great
interest. However, usually only the simple d?¢ and d3¢ cross sections are analyzed theoreti-
cally for all the light nuclei not heavier than *°Ca. First, this is due to the existence of many
experimental data on only these cross sections. Then, for the light nuclei it is possible to
use the simple one-particle wave functions, choosing them by fitting the form and spin-
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-orbital part of the nuclear potential [3]. The more significant consideration [4] is based
on the shell model calculations, including those for the residual particle-hole interactions.
In this case the widths of the hole states are non-vanishing, therefore the d*g cross section
can be calculated [5].

In deriving the (e, & p) cross section one usually uses the first Born approximation
with plane waves for the electrons and distorted waves for the knocked-out protons.
However, it is obvious that in the case of medium and heavy nuclei the Coulomb distor-
tion of the electron wave functions should have an effect.

The purpose of this work is to investigate the distortion effects in both the proton
and. the electron channels. To take into account the electron distortions, the so-called
high energy approximation has been applied, and the d*o cross sections have been calcu-
lated for the (e, ' p) reaction on *°Ca [2], the heaviest nucleus investigated experimentally.
In the framework of the method suggested, the structure part of the whole matrix element
may be considered independently in terms of any appropriate nuclear model. At the mo-
ment we use the resonance energies E, and widths I',, which were given in Refs [6, 8]
and were found to be rather close to those observed experimentally [2]. The calculations of
these values were carried out with the help of the so-called dynamic potential model [7],
and the (e, €' p) reaction itself was considered in the plane wave approximation for all
particles e, ¢’ and p [8]. In the framework of this model an account of nucleon-nucleon
correlations leads to the non-local potential well, which in the first order of (E— Eg)de-
pends linearly on the state energy E = E, which is of interest (Ey is the Fermi energy).
The resonance widths have been expressed through an imaginary part of the correspond-
ing optical potential, and have also been calculated in Ref. [8].

2. Derivation of the cross sections

If we consider the nucleus A as an external field, the cross section of the reaction
(e, ' p) with the final state, consisting of an electron of momentum k.. and a proton of
momentum p, is written in the form:

E, X dpdk,,
dbo = =¢ Z L2 TP i
g ke ‘Txfi (27{)6 ’ ( )
Gn

where f is the average over the initial states and sum over the final states; and k,/E,
@in

is the incident flux of electrons (h = ¢ = 1) which in usual experiments (E, > m,c?) is

equal to 1. The reaction matrix element 7;, is expressed through the amplitude T, on the

energy shell:

Tif = —zn(s(Ee——Ee:—Ep—S)nf. (2)

Here we take into account the fact that the transferred electron energy w = E,—E,. is
distributed between the proton kinetic energy £, and the residual nucleus (4 —1) energy:

¢ =E+E*+E = E,—E,—E, 3
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This latter is measured in the experiments by detecting the incident and outgoing particle
energies E,, E,, and E,. Then, E® is the proton bound energy; E is the nucleus (4—1)
excitation energy; and E'=gq*2m,_, (@ =k, k,,) is its recoil energy, which can be
neglected.

The observed d*o cross sections [2] have wide resonances around the energies ¢ = ¢,,
corresponding to the hole nuclear states with E ~ E,. The latter are displayed at high
nuclear energies (dozen MeV) and their amplitudes have a typical pole dependence in the
region around E = E, +iI',/2. Then, using the usual average of Eq. (2) over an experi-

mental resolution AE < |E,—E,.|; E,; E,., then reaction matrix element becomes of the
following resonance form:
r\"* 1
Typ = —2 e T, 4
s = “(2;;) E—E,—ir,2 @
so that the cross section (1) is transformed into:
2nl, Al d dk
d'c = T, IT,yi2 77 %
(E—E)+rI;/4 (2n)®
)

Keeping only the Coulomb term of the electromagnetic interaction potentials, the reaction
amplitude is given by

o|7= 5]
T, = ¢ J‘d7d;€<¢4~1; Plo(X)i@HP] Y, T )
where ¥; ; are the electron wave functions and g is the nuclear charge density. The nuclear
matrix element depends on the nuclear wave function of the initial ¢, and of the final &, _,
states, and also depends on the outgoing proton wave function in the optical potential of
the nucleus (4—1).
As was shown in Refs [9, 10], the Coulomb distortion of the electron wave functions
can be taken into account in the framework of the high-energy approximation (£ > U,
kR > 1), which is justified in the usual experiments with electrons [9-12]. It follows
from Refs [9, 10] that

Py, = g(Retr o0, 7

The correction amplitude g, which depends also on the initial and final state spinors,
and phase ® are given in the Appendix. Replacing # = ¥—Xx in Eq. (7) and using an expan-
sion on |ul/lx| <1 of the functions [11]

g(?c, u) = g(})+...,

(%, 1) = PX)+VOR) - i+ ..., ®)
it is possible to integrate over u. Thus
X

Ty = 4ne’ de f(g%_) 5 {Pa-1; Plo(X)|@ e =10, ®
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where
G = §+VOG), G =K~k (10)
Furthermore, we represent the nuclear matrix element as follows
(Ba-13 P1e)IPa> = T einlx, P)Yin(), an
where g}, is expressed through the hole state wave function

Pux) = (Py—1|D> = Ry (x)Ypu(%). (12)

Here v = NLM indicates the resonance index. The wave function of the knocked-out
proton has the form:

B> =47 3 Prp0) Ve (DY (D) (13)

where y, is the solution of the radial equation with the optical potential. (In the plane
wave approximation y, = j,(px).) Then, using the nuclear charge density with the point
proton charges g(;c) = Zd(;c—;ci), we obtain:

Om(%, P) = VAn(2I+1) 2L+ 1) Ry (x) X

XZ‘\/A

It was shown in Ref. [12] that the main contribution to a typical integral such as (9)
comes from the expansion terms with projection m = 0 in Eq. (11) (neglecting the terms
O(1/kR)). Then, we define:

. 20+1
o'(x, p) = Z 010(%, p) \/ o Py),

2(PX) Y3y (p) (ILOOJA0) (ILmM|AM"). (14

i = cos (x, 0z) (15)
and the amplitude (9) becomes:
® 2 1
T, = 4ne? fxzdx J de j du {qef(g(;) S 0'(x, 1, p)e"b(;)} e (16)
) 0 z

In order to carry out the following calculations we choose a coordinate system with an
axis 0z along g,, where

4y = kyi=Kyy  ky = ky = k = (k,+k)2,
k, =k,—k,qg, k,=ko+koq q=k,—k)2= w2 (17
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Then
N e —_
cos (k,x) = ap++v1—a? - V1—p? - cos ¢,

PaN [— S—
cos (k,x) = —ap+v1—a?/1—p? cos ¢ 18)

where « = sin /2 and where 3 is the electron scattering angle. Now the integral over u
in Eq. (16) can be written as follows:

1
F(x, p) = | duF(x, p, g)e™I ", (19)
-1
where

Sy, <p)=2a;4+2%\/1—-/42\/1—a2 cos @. (20)

Note that in the region of main contribution kx ~ kR > 1 of Eq. (19), the function
F(xpg) depends smoothly on u in comparison with the quickly oscillated exponential
function. Therefore one can integrate in Eq. (19) with the help of the stationary phase
method. The stationary point is calculated from equation f'(iu,) = 0, which gives

-2 2 -1/2
g°(1—a%)
Ho = (1+ T cos? qo) . 21

It is a significant result that at this point, as can be seen in the Appendix, the functions g,
¢ and ¢, do not depend on g at all. This permits the next integration over ¢ to be perfor-
med. Thus the final result for the reaction amplitude is

o

2n*e* d(i /2n) — glxue) N -
J dx \/x & 0°(%, Hos D)X

T, = — —
d Vk-gq- \/a(l—cxz)o qi(xpo) —w

-2 2
1—
xexp i [kaa + q(k——“) X+ @(xyo)] , 22
o
where &(i,/ 27) is the Frenel integral. The functions g, @ and g, are well-known (see Ap-
pendix), and g’ is formed with the help of the hole state and the outgoing proton wave
functions. Future calculations of Eq. (22) can therefore be easily performed numerically.

3. Results and discussion

The cross section d*c of the quasielastic electron scattering on #°Ca were calculated
with the help of Eqs (5) and (22) at kinematic conditions corresponding to the first experi-
ment where angles and energies of outgomng particles were fixed as [2]:

E, =410MeV, E,=116MeV, 9, =51°, 9, =62° (23)
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(the spectra of electron-proton coincidences). In this experiment the incoming electron
energy was varied and the cross sections were measured as a function of energy ¢ transferred
to the nucleus and defined by Eq. (3).

The resonance positions corresponding to the excitation energies of the hole states
were determined in this reaction with a rather large error and the peaks are actually dif-
ficult to identify. Nevertheless, by summing up the results of a number of papers [13-15]
and the conclusions given by their authors, it is possible to assign the following energy
bars to these peaks:

E,, = 45+60 MeV, E,, = 28+43MeV, E, = 13+18 MeéV. (24)

One can see that at least the 1s-proton separation energy E,, turns out to be larger than
the potential well depth commonly used in the shell-model calculations. This fact is usu-
ally interpreted as the hollow effect of a hole potential.

In the present paper the energies and the widths of those states have been calculated
in the framework of the model of Ref. [6, 7], which makes use of the field theoretical
methods in the many-body nuclear problem. In the model the hole potential parameters
prove to be energy dependent. As was shown in Ref. [8], this energy dependence can be
given with a good accuracy as follows

U(x) = —V - 0(x~R) {1+u(E,~Ep)},

where
V =50MeV, Ep=8MeV, a=035V, R=1024"fm. (25)

The calculations of the state energies of this potential yields:
E,,=53MeV, E,, =34MeV, E;=17MeV, (26)

which are close to the experimental ones.

Within the framework of this model an imaginary part of the hole energy is equiv-
alent to the half-width I',/2 of the hole state, and may be expressed through the imaginary
part of the corresponding optical potential. In our calculation we have used the energy
dependence of the imaginary part obtained in Ref. [16] from elastic proton scattering data
on nuclei at the energy range of interest

W(e) = 16.6{1 —exp (—0.027¢)}. 7
Then the widths I') = 2W(E,) turn out to be as follows:
Iy,=20MeV, TI;,=14MeV, I, =38MeV. (28)

In addition, we have here investigated the influence of the nuclear surface diffuseness
on the behaviour of the hole state wave function and thus on the d%o cross sections, having
used to this end the Woods-Saxon potential well of the same radius and with the diffuseness
parameter a = 0.65 fm. The depth of the potential was fitted under the already known set
of energies (26).
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The knocked-out proton wave function has been calculated in the field of optical
potential with parameters, obtained from the corresponding elastic scattering data [17].

Ux) = Udx)=V - [1(x) = iWf(x),

x=R, ™ 1/3
Jox) = | T+exp— . Rp=r,- 4", (29)
P

V=13MeV, W=112MeV, r, =092fm,
r,=145fm, a, =042fm, a, = 0.46fm.

Fig. 1 shows that the optical distortion of the proton wave function influences the
nuclear matrix elements rather violently, and this is an essential influence on the absolute
cross sections, reducing them three-four times in the given kinematics (Fig. 2).
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Fig. 1. Behaviour of the real part of the rtuclear matrix element. Dotted curves are the plane wave approxi-
mation for the knocked-out proton, selid curves — the ‘accounting of the proton optical potential. The
hole state functions are in the dynamic square well potential

Furthermore, taking into consideration the electron wave function distortion, we
obtain at the same conditions an increase of the quasielastic cross sections, approximately
109; for the 1d peak and 209, for the 1s peak.

Another conclusion has to do with the influence of the form of the hole state potential
on calculated cross sections. Moving from the square well wave functions to the realistic
Woods-Saxon potential ones, the relative cross sections are changed in the region of Ip
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Fig. 2. The cross section of quasi-elastic electron scattering on the Is, 1p and 1d shells of 4°Ca. Dotted
curves are the Born approximation, dashed-dotted curves are calculations including the proton and
electron distortions. The hole state wave functions are calculated in the dynamic square well potential
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Fig. 3. Influence of the hole state wave function behaviour on the d*o cross sections. Dotted curve is the

calculation for the dynamic square well potential, solid — for the Woods-Saxon potential. In both cases

the electron and proton distortions are taken into account. The curves are matched in the pick of the 1d
resonarnce
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and 1s peaks approximately two-three times (Fig. 3), which is comparable with the effects
of the proton wave distortion. The same results have been obtained in similar calculations
of the '2C (e, e'p) reaction [18].

The purpose of the present work was to investigate the usual mechanism of the quasi-
elastic (e, ¢'p) reaction. Now, a comparison of our calculations (Fig. 4) with the existing
experimental data leads to the conclusion that despite the nowadays poor experimental

“a (e,e’p)
Ep=116 MeV
Ee1 2470MeV

d46/d2e dS2, dE, dE e
T

{ .
W

¥

l.ll) l .';01 5‘0‘€MeV

Fig. 4. Comparison of the d*o cross section with experimental data for 4°Ca. Notations are the same as in
Fig. 2. The hole state wave functions are calculated in the Woods-Saxon potential. Al curves are matched
in the pick of the 1d resonance

resolution, the examined mechanism is well justified and can be very useful for the analysis
of future experiments that could yield valuable information on the properties of nuclear
hole states.

The authors would like to thank V. M. Semenov for consultation and for help in the
solution of equations for the bound and continuous state wave functions.

APPENDIX

In the notation of Ref. [11] we express the distortion amplitude and phase functions
(8) for the electron part of the reaction amplitude (9) in the framework of the high-energy
approximation [9, 10] noting that k, # k,:

2G) = > {u-200] 8.0~ 52 - L i

n=e,e’

X (3kr’12x2 - 2(];,‘;6)2] - dr||:]-€'11'52:12 + cn[';c’ién]“} ’ (Al)
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- kok. — 1 - o
gx) = L ul i1+ a, | 2k, x)—kix*— = k(k,x)ox | +
K.k, S , 2

n=e,e’

+(1=20,,) [3dy (k%) — 10¢,(K, %) [k,%]* —(d,k, + 2c,,kn[k’n?c]2)5?c])} u. (A2

Here u,, are the Dirac spinors, so that i\u}uil" = cos? /2, then k, = k,(1—V(0)/E),
Gf)

V(0) is determined in [11], and the numerical coefficients q,, ¢,, d, coincide with q, ¢, d

given in [11}, and corresponds to each of the channels e and €. Then, replacing

a, = alk, d,=dlk, ¢, = ck?, (A3)

where a, ¢, d are already independent of energy, we write these functions in the spherical
coordinate system (x, u = cos (¥, 0z), ¢) with 0z | g, (see Eq. (17):

Bxpg) = —2V(Opax—ax[pa— 3y —2pa(l — %) (1—o?) cos? ¢ -

—2dx*[1 = pPod? —(1 —p?) (1 —a?) cos® @] +2ex*{(1 —pa?)* +

+ (L= (1 =) [(1 = p?) (1 —a?) cos® ¢ +6u’a® —2] cos® ¢}, (Ad)
2V(0)k\ 2ax’k .
={1- - ol 1=2u20? -
g(xue) ( Kk, >u { Kk, oo

—2(1—p?) (1 —a?) cos? (p+4%,ucx VI—pE J1—o? cos (p]+

6dxk a9 —3 1— 20ex’k
+ keze’ (a,u~ Zx/l — 1 J1—a? cos (p) + k:z; I:—ocu+

g e — 3q —
+%\/1~u2\/1—o¢2cosgo+,u3a3—fuzale—uZ\/l—azcos¢+

+3ap(1 — p?) (1 —a«?) cos® p— %(1 —a?)* 31— p*)?? cos® qu‘ +

4¢x%k
X
kk,

axk q —_—
+ [27€:Cke' (2;10(% —2V1—p2V1=o? cos <p) +

% (_ % + %#2“2_2“a \/'1—,12 V1—a?cos @+

2dq ]+
+ %(1— u2) (1—0?) cos (p) - kq} ax} u,. (A5)

eve'

Particularly in the case of elastic scattering, when k, = k.., the functions (A1)-(A5)
coincide with those given in Ref. [11].
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