Vol. B6 (1975) ACTA PHYSICA POLONICA No 6

THE MELOSH TRANSFORMATION: THEORY
AND EXPERIMENT

By A. J. G. Hey
Southampton University*
( Presented at the XV Cracow School of Theoretical Physics, Zakopane, June 6-19, 1975)

This article surveys the theoretical and experimental developments in the search for
a transformation between current and constituent quarks.

1. Introduction

In the past year or so there has been a revival of interest in SU(6) schemes for resonance
classification and decays. Melosh initiated this movement by providing a useful theoretical
framework in which to discuss relativistic SU(6),, symmetries. The purpose of this review
is to survey the theoretical and experimental developments in the search for a transformation
between current and constituent quarks. We therefore begin [1] with some general remarks
on the “constituent quark™ SU(6) algebra, followed by a brief outline of the approach
to SU(6),, via current algebra and “‘current quarks”. In the fourth section we then discuss
the theoretical necessity for distinguishing between current and constituent quarks; in
other words, the necessity for a non-trivial Melosh transformation. After commenting
on attempts to derive a theoretical Melosh transformation, we turn in Section 5 to phenc-
menology. We discuss the present state of SU(6),, models for 7, y and p decays of baryon
resonances, and contrast the difficulties of more explicit quark models with the success
of an algebraic approach based on the Melosh transformation. The concluding section
contains a list of the urgent experimental questions and some of the many difficult problems
remaining for theory to answer.

2. Constituent quarks

The symmetry SU(3) assigns hadron resonances of the same spin and parity into
multiplets which are “approximately degenerate” in mass. Baryons are found to occur
only in 10’s 8’s and 1’s and Mesons only in 8’s and 1’s. The concept of “constituent quark”
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triplets of SU(3) provides a mnemonic for explaining the non-observation of other SU(3)
representations. Baryons are made up of three quarks and this leads immediately to the
desired result

B~ qqq
3Ip3iQ3I=10ose8al

Thus, 27 representations, for example, cannot be constructed from three quarks.
Similarly, mesons are thought of as a quark-antiquark pair

M~ qq
I3=8@1,

and 8's and 1's are the only “‘allowed” representations. The natural next step is to look
for further regularmes In both the baryon and meson spectra one observes rough ‘““mass
bands of resonances” alternating in parity with increasing mass. (See Fig. 1). This is strongly

Resonance ] Parity P
Mass
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Fig. 1. Idealized view of the Baryon spectrum

reminiscent of a rotational excitation spectrum. Furthermore, in the lowest positive parity
band for the baryons there is the nucleon octet with J¥ = 1+ and the delta decuplet
with JP = 3+, Why do these states lie lowest?

To obtain predictions for spins and parities of resonances clearly requires more than
SU(3) symmetry. The obvious first guess is to endow the constituent quark with spin %,
and use this as a building block. We are therefore led to consider SU(6) as a possible sym-
metry

qn~ (Ll,d,S)X(T, l)N g

The allowed representations are now:
For the Baryons B ~ qqq,

6@ 6@ 6~ 5607070 2,
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and under SU(3) x SU(2), the representations decompose as follows
56 = *10+78,
70 = *8+210+78+2L,
20 =147,

where the superscript is 25+ 1, with § the total quark spin.
For the Mesons M ~ qq

o
®
=N
Il

3B @1

and
35=80°10%8,
1="1

How does this constituent quark SU(6) scheme correspond to the experimental spectrum?
We illustrate this for the lowest lying baryon multiplets.

Baryon spectrum

The angular momentum J of the resonance is decomposed into quark spin § and
orbital angular momentum L

J=L+S.
For the parity, we take, as a first guess, the prescription
P = (-1

(although for three body system this need not necessarily be the case [2]). The lowest state
we therefore expect to have L = 0 and positive parity. Counting the spin and unitary spin
states of the nucleon and delta multiplets leads to an astonishing result!

4410 = 40
N?8 =16

} 56 spin and unitary spin states.

Thus we assign these to a {56: L? = 0+} representation of SU(6)® O(3). Fresh from this
success, if we now look in detail at the negative parity states, we find the remarkable result
that a/l negative parity resonances below about 2 GeV can be assigned to a {70: 1=} re-
presentation of SU(6)® O(3). This is not a trivial prediction: the existence of a well
established “extra” state would have caused the model grave difficulties. Fig. 2 shows the
present state of the ¥ = 0 and Y = 1 states of the {70, 1-}. Proceeding through the Data
Tables one can identify a positive parity { 56, 2*} multiplet higher in mass than the {70, 1-},
and indications of a {56, 4*}. Another {56, 0*} multiplet is needed to accommodate the
Roper resonance, the P11(1430). (In a harmonic oscillator model this is visualized as a ra-
dial excitation, (n = 2 L = 0), of the ground state, (n = 0 L = 0).) Thus from the baryon
spectrum we see that it does indeed make sense to classify resonances into SU(6) super-
multiplets. What of the mesons?
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32~ N* (1710) X (1940) 4 ()
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28
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12 A (1405)

Fig. 2 Y =0 and Y = | states of the {70, 1~}

Meson spectrum

The quark-antiquark system has the same quantum number rules as the NN system

J=L+S,
P = (—1)L+1,
C = (=D

The ground state 35+ 1 has therefore L = 0 and negative parity: the pion and rho meson
nonets fall into the {35+1:L" = 0~} multiplet of SU(6).

JPC =0t 18411 =9

JPC = 1“9 38431 = 27

} 35+1 Spin and unitary spin states.

At the L = 1 level the picture is much less clear. States with the predicted spin and parity,
LP = 1+: JFC = 1+- 2++, 1++, O++

have been observed but there are many missing states. Two views of this L =1 multiplet
are shown in Fig. 3. For higher L, some of the leading trajectory states (such as the g 3—)
have been observed, but the situation is much less satisfactory than for the baryons. This
probably reflects the fact that meson spectroscopy is much more difficult than the standard
“formation” baryon resonance phase shift analysis, and requires greater statistics than
we have at present [3].

An optimistic summary of the Hadron spectrum is shown in Fig. 4, adapted from
Rosner’s [11 Michelin Guide to the Hadrons.

From the experimental spectrum, we nevertheless conclude that single particle (re-
sonance) states do appear to fall into approximate SU(6) multiplets.What does this mean?
It means there must exist a set of generators W, such that when acting on a resonant
state in a given SU(6) multiplet, they transform it, to a good approximation, to another
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Fig. 3. Status of L = 1 meson multiplet: (a) optimistic, (b) pessimistic
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Fig. 4. SU(6)x O3) multiplets in the Baryon and Meson spectra
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state within the same SU(6) multiplet. This is the meaning of an approximate SU(6) sym-
metry

W, |1 particle state > = |1 particle state in same SU(6) multiplet >

where the W, 's satisfy an SU(6) aigebra under commutation.

So far, all the discussion has been based on experimental data of resonant states of
rest. Yet if there is a larger symmetry than SU(3) for the states, is it possible to have a larger
symmetry than SU(3) for decay processes?

e.g. A-> B+C

«——O— collinear decay.
C A B

There are two snags.

(i) Decays necessarily involve moving particles, and in the decay of, say, a 4(1700)
into a nucleon and pion, the system is highly relativistic. Thus it is not surprising that
a naive application of a basically nonrelativistic spin symmetry leads to absurd results
(e. g. no A - Nmx, no ¢ — nr). In order to have a chance, one must use a relativistic ver-
sion of quark spin — W-spin [4]. This is analogous to using helicity A = J- P/P for a moving
particle instead of M, the component of spin in the rest frame. Apart from the W-S
flip subtlety in the classification of the mesons, this is rather a minor modification. It
means that if we want to discuss moving states we should refer to the SU(6),, classifica-
tion (rather than SU(6)) of the states. For the baryons the two are the same [5].

(i) More serious difficulties arise, however, in attempts to treat any spin type sym-
metry like an “ordinary” internal symmectry such as SU(3). Demanding both a sort of
“spin invariance” and Lorentz invariance can give trouble — the infamous “No go”
theorems of SU(6). In some attempts, for example, one is forced to the result that the S
matrix is unity

S =1,

i. e. the symmetry requirements are too strong to allow any interactions! Rather than
delve deeper into this mire [6], we shall draw the moral that SU(6),, should be treated
with care. Therefore, even though a one-nucleon state may be classified in a 56 of SU(6),,
we shall not assume that nro particle states — which involve interactions via the S-matrix —
are simply classified.

We now have an approximate SU(6), symmetry of one-particle states — forced on
us from experiment — and consequently corresponding generators W,, which close on
the algebra of SU(6),, constituents 1- €

[Weo Wy] = Cap, W,
where the C,4, are the struct’\ure constants of SU(6),,. We may ask two questions

1) Are the generators W, physically measurable operators?

2) How can we obtain a higher symmetry scheme for two-body decays?

To answer these questions we turn to current algebra.
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3. Current quarks

Current matrix elements are measurable quantities. For example, photo-excitation
of nucleon resonances measures the square of the amplitude

M ~ & (N*|J,IN)
representing the process
7+ N - N*

Similarly, neutrino excitation measures matrix elements of the weak current. The SU(3)
properties of the clectromagnetic current are summarized by the relation

e.m 8
"= \/?_, F,,
where Fi (i = 1 ... 8) are SU(3) currents, which integrates to give the Gell-Mann Nishi-
jima relation

0 =1,+7/2

The weak currents in the conventional Cabibbo theory measure the 1, 2,4 and 5 compo-
nents of the vector SU(3) currents and also the same components of an octet of axial
vector currents. Current algebra postulates that the equal time charges of the physical
current have the same algebraic properties under commutation as the analogous charges
in a quark field theory. Here, the general current is written in a very simple form
. i
Fr~4ql'—q
where g and g are spin § quark fields obeying the usual equal-time anticommutation rela-
tions, and I is the general Dirac matrix. From the vector (I' = y,) and axial vector
(I' = y,ys) currents and corresponding charges came the algebra of SU(2) x SU(2), chiral
symmetry and the Adler-Weisberger relation. After these successes, it seems sensible to
find the largest possible algebra that could be abstracted from this current quark model
and which could be used to classify single particle states. A proper discussion of this ques-
tion leads us to “infinite momentum symmetries” or equivalently to “light-like charges”.
Fortunately, these have been discussed by Ruegg in his lectures at this schoo! [7] and we
therefore shall only summarize the conclusions.
In order to define a sensible approximate symmetry, in which the generators take
single particle states to single particle states, and in which one avoids the problems of
“vacuum break-up” and Coleman’s theorems, one must use not the equal time charges

= [Jd*x5(x°)
but the “light-like charges”

= [J,d*x8(x°+x3).
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These are the so-called “good charges at infinite momentum”,
In the quark model they have the following properties
(1) They close on an SU(6), algebra

[Fa, Fﬂ] = Caﬂ'YF‘)"

This is usually referred to as SU(6),, currents:
(2) They annihilate the vacuum

Floy=0

thereby avoiding problems associated with the pair states produced by non-conserved
equal time charges.

1
(3) They have a larger stability group on the null plane, x+ = T/?(x°+x3) = 0, than

the equal time charges have on the spacelike surface # = 0; namely
[Ks, F1=0, [P, F] =0,
[P°+Ps’ﬁ] = 0, [E_LaF] = 0!

where K;, and P, are the familiar Poincaré boost and displacement generators, respec-
tively, and the E boosts

E, = K+ J,,
E, = K,—J,

generate transformations within the null plane.

Thus we see that the maximal extension of current algebra leads uniquely to an SU(6),,
algebra which may be used as an approximate symmetry algebra of one particle states.
Furthermore, the generators F, are related to integrals of measurable current operators.
Since we now have two SU(6),, algebras — one the experimentally observed symmetry
of the resonance spectrum, SU(6),, constituents — and the other the obvious generalization
of current algebra, SU(6)y, currens — it Is natural to suppose that the two are related!
This brings us to the Melosh transformation.

4. The Melosh transformation

From the experimentally observed approximate SU(6), multiplet structure we de-
duced the existence of a set of SU(6),, generators, W,, that transform a one-particle state
to another resonance state, within the same SU(6),, multiplet

W1y = [1').

However, we have no knowledge as to whether the W, operators are physically measur-
able. On the other hand, from current algebra we know of the existence of a set of opera-
tors, F,, that also generate an SU(6),, algebra, that are the integrals of measurable cur-
rents, and which can be used to classify states into approximate SU(6),, multiplets. Fur-
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thermore, by the current algebra postulate, physical charges and currents have simple
transformation properties under the F,’s. For example, the pion axial charge Q, transforms
as a 35 with W-spin one, and z-component zero,

Similarly, the good component of the electromagnetic current (/. = J°+J%) may be
shown to transform as a 35 with W-spin zero.

em)i ~ 35(W = 0).

Thus, the states transform simply under the W’s and the currents under the E’s.
Are the W, and the F, related? Gell-Mann suggested that they are related by a unitary
transformation V {8]

W= VFv-1.

Why can we not set ¥ = 1 and identify the two sets of generators ? — i. e. identify the
current and constituent quarks? There are two ‘“‘phenomenological” reasons why not:

(i) The identification ¥V = 1 leads ot the prediction that the nucleon anomalous
moments are zero [9]

un =0,

whereas experimentally they are at least as large as the Dirac moments.
(i) If ¥V = 1, we can calculate the value of the axial vector coupling constant

IGAIG,| = 5/3 ~ 1.7,

whereas experiment yields near to 1.2. Both these results suggest that ¥ = 1 is not a good
DPhenomenological approximation to the world we live in — but can we find a purely
theoretical reason for ¥ # 1? In fact we can, and the argument is sketched below [10].
It depends crucially on the properties of the lightlike charges F‘a.

Consider the matrix elements of the electromagnetic current between the members
of the (35; L¥ = 07) multiplet containing the m and the o. In particular, consider the
matrix elements of J* between g+ meson states

o3 P A nle™ s P, 2.

AM(A') is the eigenvalue of W, in the initial (final) state and the spin states have been con-
structed from K; and E boots (light-like helicity states) that commute with the F/’s. If
V =1 then current algebra demands J* to have W = 0 and thus we predict

(ot P, AT+ % P, Ay o€ 8y,

Applying these constraints leads to the following condition on the three form factors
describing the process

Fi(t) = Fy(t) = F3(t) = 0
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for t # 0. A quite minimal analyticity assumption would then require
Fi(0) =0,

in contradiction with the charge normalization
Fi(0) = 1.

Thus, the hypothesis ¥ = 1 is too strong to allow any sensible dynamics and must therefore
be rejected.

In his thesis, Melosh [11] attempted to motivate the form of ¥ by a study of the free
quark model. After correct criticism from de Alwis and Stern [12], Melosh [13] then
produced a new form of transformation motivated by spin arguments. (Since this form
has similar algebraic properties to his first transformation the distinction between the
two is not often stressed [14].) More recently Bell and Ruegg [15] have extended Melosh’s
discussion from the purely free quark framework to include a potential. These develop-
ments are discussed by Ruegg at this school.

In the remainder of these lectures we shall take a phenomenological point of view
in that we shall not attempt to deduce the form of the Melosh transformation theoreti-
cally. Rather, we shall take the simple algebraic predictions of the form suggested by
Melosh and compare this structure with experiment. This scheme has the most general
SU(6) structure of any of the many dynamical SU(6) models available yet contains the
minimal dynamical assumptions.

5. SU(6),, phenomenology

5.1. = decays

To apply these ideas of SU(6), symmetry to pionic decays A — B+n one must
resort to using PCAC in order to approximate the decay amplitude by a single particle
matrix element

(Br|4) ~ {B|Q,|4).
PCAC

The states 4 and B transform simply under SU(6),, constituents DUt @, transforms simply
under SU(6)y, currentss The Melosh transformation must now be used to find how Q,
transforms under the W’s —i. c. under SU(6),, constituenss Melosh’s suggestion was that
the @, remains in a 35— but transforms as the sum of two representations

@D ~ #{35; W = L W, = 0; L, = 0}+B{(35; W = 1 W, = +1; L, = F1},

e (Qow~ af35; (“n”)}+B{35; (“4,7)}.

In principle, there could be many other terms present (e. g. exotic 405 representa-
tions) but this form is clearly the simplest phenomenological expression of the fact that V
cannot be unity.
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Application of this model to Baryon resonance decays is now straightforward. For
decays into the ground state multiplet {56, 0}

A(J*A: LS*) > B({56, 0*}; Spd)+
we predict the following structure

g, = Y (LL,S*2—L.)J*2) (S’A1—L,|S*A~L,)

Lz
56 35 M4 NE8|NY |
X ~ ~ ~ ~ o~ :
(N, 258 +1) 8,3) | (N4, 28"+ 1)f,1B =|a f,°

M*, N* and §* denote the SU(6), SU(3) and SU(2) representations of state A: N and S*
the SU(3) and SU(2) representations of state B. The first two Clebcsh-Gordan coefficients
correspond to the LS coupling of the SU(6)® O(3) wavefunction and W-spin conserva-
tion, respectively. Then follows an SU(6) coupling coefficient [16] and an SU(3) isoscalar
factor: a denotes a sum over F and D type couplings in the case of octets. The amplitudes
at= are the unknown reduced matrix elements that are parameters in this medel.

Firstly, we wish to emphasize the fact that this model is much more predictive than
SUQ3). For decays of the ¥ =1 states of the {E; 1-} to the {§é; 0+}, the 21 independent
SU(3) coupling constants are related in terms of known SU(6) coupling coefficients and
only two unknown parameters! Secondly, before we can apply the model to data, some
choices must be made as to how best to incorporate obvious SU(3) symmetry breaking
effects — such as the mass differences of 7, K and # — when we extend the model to in-
clude Y* decays. Furthermore, since our SU(6) multiplets are by no means mass de-
generate, the question of barrier factors is important for numerical agreement. For example,
Gilman, Kugler and Meshkov [17] retain a factor (M5—M3) in the amplitude arising
from PCAC, and use the same barrier factor for decays with different partial waves.
Phenomenologically, some dependence on 3-momentum p which varies with the partial
wave angular momentum /, such as p', seems to give best agreement [I8, 19]. Finally,
since we have N* and Y* states of the same spin and parity in the {70, 1=} multiplet,
there is the possibility of mixing between the pure SU(6) states. All of these details are
discussed more fully in the literature, along with detailed discussion of the data and full
details of the fits [19, 20]. Here, we concentrate instead on highlighting some general
features of these SU(6),, fits which are largely independent of these problems.

There are two types of SU(6), predictions — amplitude signs and magnitudes.

(1) Amplitude signs [21]

For N} and N3} in the same SU(6) multiplet the model predicts the relative signs of
inelastic amplitudes i.e. 4,/4, where

A4, for N - N* - n4,

A, for N — Nj - n4.
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Thus, a quick check of the number of non-trivial sign predictions for the {7~0, 1=} and
{56, 2t} decays yields a total of 16 in agreement with the SU(6),, model and, at present,
no obvious sign discrepancies [20]. Suffice it to say that 2!® is a large number!

(2) Magnitudes

The detailed fits to experimental amplitudes \/xx’ are generally quite good (see
Refs [19] and [20]) and here we demonstrate this in two ways:

(?) In order to assess the significance of the SU(6),, fits we have attempted to fit data
using random numbers (normalized between +1) in place of the SU(6) Clebsch-Gordan
coefficients in our theory predictions. (We of course keep the SU(3) coefficients.) If good
fits could be obtained in this way, the success of SU(6) would obviously be much
less convincing. The results of such fits to {56, 2*} decay are shown in Fig. 5. The
SU(6) coefficients gave a x2 of 34 compared to the best “random fit” with a y* of 94.
We must therefore conclude that the SU(6) agreement is indeed significant.

No. of fits
70 —

SUI6 ), fit X% =34

: Mﬁwﬂm% @

X%/27 degrees cf freedom
Fig. 5. Random number fits to the {56, 2t} decays

(&)
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a) —e- } 9y 72" decuplet
| e 9\, 56
[ 9a } 5/2° octet
—— | 9¢
!—0—~ gd}5/2'ocrer
- 1 94 7 3/27 nonet
— 1 L L. 1 L ol L L L 9
-02 0 02 04 06 |08 10 12 14 16 18
b) |
1 94 +1/2 7 nonet
1 1 1 I 1 i L I L L g,

020 02 04 06 (08 7.’0 12, 14 16 18

Sufr3
g (3)

SU(3)
model

Fig. 6. Comparison of SU(3) couplings vs SU(6) predictions
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(#) Tt is interesting to compare the results of our SU(6),, analysis of the {70, 1-} and
{56, 2*} multiplets with more familiar SU(3) analyses. In Fig. 6a we attempt to give an
idea of the relative success of these two types of fits by plotting the ratio

_ oSU(3);,SU(3)
R = gExpt /gMode]

for members of both these multiplets. The coupling constants g%‘,{{,?’ are taken from inde-

pendent analyses [22] of N*, X* and A* resonances in the various J” multiplets. The
gaQ) are calculated using the best values of the two SU(6) parameters a* (L, = 0 and 1)
together with the predicted SU(6) D/F ratios. From the agreement in Fig. 6a where the
results for the various ratios are seen to cluster around one, it is clear that our SU(6) fit (of 2
parameters to 55 data points for the {70, 1~} and 2 parameters to the 27 data points of the
{56, 2+}) fares quite well compared to the much less ambitious SU(3) fits. The errors
shown are those quoted by the SU(3) analyses and are very probably underestimated.
But, for the }~ states in Fig. 6b all is not well. Our SU(3) predictions, however, were cal-
culated as if the three 3~ resonances used in the SU(3) analysis were actually the SU(6)
28 and 2] states. A look at the SU(6) fit [19] gives an explanation for this failure. The
states used in the SU(3) analysis, the N*(1520), A*(1670) and 2*(1740) are best classified
in our analysis as predominantly *8, *8 and 210 respectively! Thus an SU(3) analysis of
these states is inappropriate.

In summary then, we must conclude that there is strong evidence for SU(6),, structure
in these pion decays. The amplitude signs may be categorized as follows [21]:

For the {70, 1-}: “Anti SU(6),,” (signs as when a9, = 0).

For the {56, 27}: “SU(6),-like” (signs as when a3 =0).

Some final comments on the n-decays are in order here.

(1) Radial excitations: {56, 0%}y

These multiplets contain ?8 and “10 states and there are two candidates for 28 P11
nucleon resonance states.

{a) NP11(1430): The “Roper” resonance. The sign of the amplitude 7N — nd for
the N(1430) unambiguously assigns it to a {56, 07} : other possible assignments in a {70, 0*}
or a {70, 2+} yield the opposite sign to experiment. This conclusion is supportedber an
independent SU(6) analysis of photoproduction data [20].

(b) NP11(1750). Again the nd analysis and photoproduction indicate that if an SU(6)
classification is at all appropriate, then this must belong to another {56, 0*} multiplet.
Heusch and Ravndal [23], for example, with an explicit harmonic oscillator quark model
spectrum in mind, assigned this to a {70, 0*} which is now ruled out by experiment.

Since both these states must be in 56 multiplets, and there is little, if any, evidence
for any of the {70, 0*} and {70, 2*} states [24], the explicit energy level calculations of
conventional harmonic oscillator quark models would appear to be in some trouble.

(2) Other SU(6) models for n-decays

(a) The 3P, model {25]. This model visualizes the decay as taking place via the cre-
ation of a quark-antiquark pair in a 2P, state, with vacuum quantum numbers (see
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Fig. 7). In fact, if the magnitudes of the L, = 0 and 1 terms are left free the SU(6) alge-
braic structure of this model may be shown to be identical to that of the Melosh SU(6),,
model [26]. A slightly more explicit version of this model used by Le Yaouanc and co-
-workers [27] incorporates quark orbital wavefunctions for the states. Although yielding
good agreement for the {70, 17}, the model predicts the “‘anti-SU(6),” signs for the
{56, 2t} in contradiction with experiment.

. ==

3Fb 97 pair
Fig. 7. 3P, model for = decay

(b) Explicit quark harmonic oscillator models. These models construct a detailed
dynamics at the quark level: pion decays are characterized by a one-quark pion-emission
operator H, (see Fig. 8). For L = 1 — L = 0 transitions, for example, H, has the form

H, = a0, L, +posL_,

where the L, , operators are orbital excitation operators. The model clearly yields the
same algebraic structure as the Melosh SU(6),, model [28] but makes very specific predic-
tions concerning the magnitudes of « and p for the various SU(6) transitions. In the ver-
sion of Feynman, Kislinger and Ravndal [29], the anti-SU(6),, solution is again predicted
[30] for the {56, 2*}, in contradiction with experiment.

Fig. 8. Quark model of & decay

5.2. Photon transitions

Resonance photoproduction may be subjected to a similar algebraic SU(6),, analysis.
For real photons there are at most two independent helicity amplitudes for resonance
excitation: the amplitudes for a helicity § proton to absorb A = +1 photons.

Fy ~ (N*[J4IND,

where J, represents the electromagnetic current operator corresponding to 4 = *1 pho-
tons. (For N*’s with J = , there is only one amplitude). To formulate an SU(6),, model
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we must know the transformation properties of J, under SU(6)y, constituentss The Melosh
transformation suggests the following structure [31, 32]

wW=0 w=1
(J:t)W~A[’3‘5",sz=O, Lz_ :tl:l +B|j§\5/a m= il, Lz=0]

The SU(6),, predictions are now a matter of straightforward Clebsch-Gordanery. Symboli-

cally
LS W —Spin || SU(6) || SU(3)
(N*J:IN) =
C-Gi{IC-G factor || factor
A5,
C.D
I—Spin
X [C— G {N*IJ 4 IN> 4,5,¢,0-
TABLE 1
Photoproduction fits to {70, 1"} and {56, 2+}
a) {70,1°}
x? Ao B, Cro

1. Melosh SU(6)w Fit

Az0, B7o, Cqo free 254 8.3 2.2 4.2
2. Quark Model Fit

Cio=0 73.4 8.9 3.9 0
3. 3P, Model Fit

Az0 = Cqo 47.3 6.6 0.6 6.6
by (56,2

% Ass B¢ Css Dsg

1. Melosh SU(6),, Fit

Asg, Bsg, Cse, Dsg free 10.7 —6.7 -1.1 —6.8 4.6
2. Quark Model Fit

Csa = D56 =0 652 —48 ‘-‘].8 0 0
3. 3P, Model Fit

A56 = C56; Dsc =0 32.8 —5.9 —1.1 —~59 0
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The results of a detailed fit to yN — 7N analyses of the {70, 17} and {56, 2+} resonances
are shown in Table 1 {19, 20]. The conclusions may be summarized as.

For the {70, 17}: A0 # Cq0; C70 # 0.
For the {%, 2+}: A56 ~ C56; C56 #* 0;,D56 5 0.

These results are sufficient to rule out other SU(6) models of photoproduction — the 3P,
model [33], which predicts 4 = C and D = 0, and the simplest versions of harmonic
oscillator quark models {29, 34] which have C = D = 0. Furthermore, these harmonic
oscillator quark models are unable to predict correctly the sign of the P11(1430) photo-
production amplitude. A critical appraisal of photoproduction analyses in terms of multi-
poles has recently been performed by Babcock and Rosner [35] who also make specific
suggestions for reduction of uncertainties in the data.

Carlitz and Weyers [36] exploit the idea of an expansion of a non-local Melosh-type
transformation in powers of a fundamental length, a = 1/m. This leads to predictions
of the relative importance of the various SU(6),, .onstituent t€rmSs in the transformed current
operator. In particular, it leads to the prediction that the pionic transitions of the {70, 1-}
should be “anti-SU(6),,” whereas those of the {56, 2*} should be “SU(6)W—1iker—— in
agreement with experiment. In the application to photon transitions, the approach predicts
that for the {’m, 1-} transitions 4,, and C;, should dominate, but for the {56, 2+} transi-
tions Bsg and Dse should give the dominant contributions. The {70, 17} p}Enomenology
is consistent with this picture, but although there does seem to be a need for a significant
contribution from Dsg, both Asg and Csg are also important. Perhaps this means that
additional ““exotic” pieces, such as those required by Osborn [37], are becoming important.
Better data suggested by Babcock and Rosner {35] may help illuminate this situation.

5.3. Rho decays

Amplitudes for tho decays may only be treated within the framework of an SU(6),,
scheme motivated by the Melosh transformation by relating them to matrix elements of
the electromagnetic current. We therefore extrapolate the algebraic structure of 4 =+1
photon transitions from g2 = 0 to g*> = M7 and assume that the isovector portion approx-
imates the SU(6), structure of transversc rho meson decays. In this approach, since
the m and p decays of baryons involve assumptions about different current operators,
their decay parameters need not be related in any obvious manner, unlike some other
SU(6) models. For the longitudinal rho’s, we have for the helicity amplitude Fy

Fo ~ {AlJ*B),

where J* is the “good” (J°+J®%) ccmponent of the electromagnetic cuirent. Under
SU(6)y, constituents J* 18 assumed to transform as [38, 20]

(J)y~ a®35; W =0 L, =0}+a'(35; W =1W,=+1;L, = Fl}.

Thus in this Melosh approach there are many free parameters to fit the modest number
of amplitudes measured in the Berkeley-SLAC isobar analysis [39]. Restricting the free-
dom by making a vector dominance calculation from the photoproduction parameter
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values leads to an acceptable fit, with no helicity zero rhos, although a significantly better
fit is obtained if the longitudinal rho amplitude a3 is included. The results of this latter
fit are shown in Table I1. This is in contradiction to Faiman’s suggestion [40] that the best
fit is obtained with no longitudinal rho amplitudes.

TABLE 1I
Ng decays of the {70, 1~} and {56, 2+}

Resonance Wave Exp. value Prediction
S11(~1500) SSilgy —.12+.0.8 —.15
D13(~1520) DS13¢3 —.32+.10 —.28
P13(~1730) PP13p, +.35+.10 +.17
F15(~1680) FP15¢, -.27+.10 -.39
F35(~1860) FP35¢; +.28+.08 +.04

The resonances below were not used in the fit since there are experimental problems in determining
the sign of the resonant amplitudes. The signs in parentheses are those determined by a T matrix fit.

$31(~1610) SS31¢, +.18(4) +.36
D33(~1700) DS33¢0; +.20(-) +.17
S11(~1660) SSite, +.23(-) —.19
D13(~1700) DS13p3 ~ 0 (+) —.02
F37(~1920) FF3703 +.18(4) —.05

In conclusion, we must warn against taking numerical values for the ¢ decay analysis
too seriously. There are not enough well determined amplitudes to allow more than prelim-
inary comparisons to be made. The more explicit quark models do, however, appear to
predict some wrong signs [41], and this when coupled with the indications from the pion
and photon transitions, would appear to foreshadow serious difficulties for these models
in their present form.

6. What next?

For baryons, SU(6),, shemes have proved very successful both in the spectrum classi-
fication and for analysing 7, y and p transitions. Experimentally, what is most urgently
needed is more systematic data on the mesons. Firstly we must resolve the “A; crisis”” and
disentangle the resonance spectrum. This will also be of interest for the mixing patterns
of the I = 0 mesons for different values of J¥. When we have the spectrum, the helicity
structure of the M* — Mz, M* - My and M* — Mp transitions will be vital in distin-
guishing between the different SU(6) models. Further knowledge of these “ordinary”
mesons will undoubtedly aid our understanding of the new mesons discovered at Brook-
haven and SLAC.
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The theoretical challenge is to incorporate these SU(6), successes into a realistic
dynamical model, presumably based on quarks. The MIT Bag Model described by Johnson
in his lectures at this school is one way to proceed. After trying for over ten years, we may
be making progress on some of the theoretical questions!

The moral of these lectures should be clear. Although charm and colour schemes for
the new particles have glamour, understanding — experimentally and theoretically —
the spectrum of ““normal” hadrons is cf paramount importance for any real progress.

REFERENCES AND FOOTNOTES

[1] For more detailed discussion of quarks and SU(6), together with a more complete set of references,
the reader is referred to the reviews by H. J. Lipkin, Pltys. Reports C8, (1973); J. L. Rosner, Phys.
Reports C11 (1974); and J. Weyers, Lectures at Louvain Summer School, 1973; see also the review
taiks of Litchfield and Rosner, X¥VII Int. Conf. on High Energy Physics, London 1974, ed. J. R. Smith.

[2] See for example the quark model of R. H. Dalitz and R. Horgan, Nucl. Phys. B66, 135 (1973).

[3] The problem of the missing mesons is discussed in more detail by H. Burkhardt and A. J. G. Hey,
Southampton Preprint THEP 75/6-1 (1975).

[4] H. J. Lipkin, 8. Meshkov, Phys. Rev. Lett 14, 670 (1965); K. J. Barnes, P. Carruthers, F. von
Hippel, Phys. Rev. Lett. 14, 82 (1965).

[5] More discussion may be found in Ref. [1] and also the lecture notes Quarks and SU(6)w and how to
annihilate the vacuum, by the author (in preparation).

[6] The lectures of J. S. Bell in Recent Developments in Particle Symmetries, Erice Lectures 1965, ed.
A. Zichichi, Academic Press, N.Y. 1966, contzin an account of some of these difficulties.

{7] See also the lecture notes of Ref. [5].

[8] V is usually called the Melosh transformation, although a similar mixing operator appears in the
works of many authors, in particular F. Bucella, H. Kleinert, C. A. Savoy, E. Celeghini, E.
Sorace, Nuovo Cimento 69A, 133 (1970), and later works.

[9] R. Dashen, M. Gell-Mann, Symmetry Principles at High Energy, Coral Gables Conference 1966,
(W. H. Freeman and Co.)

[10] J. S. Bell, A. 1. G. Hey, Phys. Lert. 51B, 365 (1974).

{i1} H. J. Melosh, CalTech Ph. D. Thesis (1973), unpublished.

[12] S.P.de Alwis,J. Stern, Nucl. Phys. B77, 509;(1974); See also E. Eichten, J. Willemsen, F. Fein-
berg Phys. Rev. D8, 1219 (1973).

{13] H. 1. Melosh, Phys. Rev. D9, 1095 (1974).

[14] A clear account is given in the lectures of J. S. Bell, Schiadming 1974, CERN Preprint TH-1851.

[151 J. S. Bell, H. Ruegg, CERN Preprint, and H. Ruegg, this issue page 851.

{16] C. L. Cook, G. Murtaza, Nrovo Cimento 39, 352 (1965); J. Carter, J. Coyne, S. Meshkov,
Phys. Rev. Lett. 14, 525 (1965).

[17] F. ). Gilman, M. Kugler, §. Meshkov, Phys. Rec. D9, 715 (1974).

[18) D. Faiman, D. E. Plane, Nucl. Phys. B50, 379 (1972).

[19] A. J. G. Hey, P. J. Litchfield, R. J. Cashmore, Nucl. Phys., B95, 516 (1975).

{20] R. J. Cashmore, A. J. G. Hey, P. J. Litchfield, Nucl. Phys., B98, 237 (1975).

[21] D. Faiman, J. Rosner, Phys. Letr. 45B, 357 (1973); F. J. Gilman, M. Kugler, S. Meshkov,
Phys. Lett. 45B, 481 (1973).

[22] D. E. Plane et al., Nucl. Phys.. B22, 93 (1970); P. J. Litchfield et al., Nucl. Phys. B30, 125 (1971);
A. Barbaro-Galtieri, LBL-1366 (1972): Published in Proceedings of 1975 International Conference
at Batavia, ed. J. D. Jackson and A. Roberts.

[23] C. Heusch, F. Ravndal, Phys. Rev. Lett. 25, 253 (1970).

[24] See P. J. Litchfield, Ref. [11.

[25] L. Micu, Nucl. Phys. B10, 521 (1969); J. C. Carter, M. E. M. Head, Phys. Rev. 176, 1808 (1968);



849

R. Carlitz, M. Kislinger, Phys. Rev. D2, 336 (1970); E. W. Colglazier, J. L. Rosner, Nucl.
Phys. B27, 349 (1971). For a more complete list of references, see J. L. Rosner, Ref. [1].

[26] A. J. G. Hey, J. L. Rosner, J. Weyers, Nucl. Phys. B61, 205 (1973).

[271 A. Le Yaouanc et al., Phys. Rev. D8, 2223 (1973); Phys. Rev. D11, 1272 (1975).

[28] H. J. Lipkin, Phys. Rev. D9, 1579 (1974); H. Burkhardt, A.J. G. Hey, Southampton Preprint
THEP 75/6-1 (1975).

[29] R. P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D3, 2706 (1971).

[30] This is pointed out by J. L. Rosner, Ref. [1].

[311 A. J. G. Hey, J. Weyers, Phys. Lerr. 48B, 69 (1974).

[32] F. J. Gilman, 1. Karliner, Phys. Lett. 46B, 426 (1973); Phys. Rev. D10, 2194 (1974).

[33] J. L. Rosner, W. P. Petersen, Phys. Rev. D7, 747 (1973).

[34] Recent applications of this model include: D. Faiman, A. W. Hendry, Phys. Rev. 173, 1720 (1968);
Phys. Rev. 180, 1572, 1609 (1969); L. A. Copley, G. Karl, E. Obryk, Phys. Rev. D4, 2844 (1971).

[35] J. Babcock, J. L. Rosner, CalTech preprint CALT-68-485 (1975).

[36] R. Carlitz, J. Weyers, Phys. Lett. 56B, 154 (1975).

{371 H. Osborn, Nucl. Phys. B80, 90, 113 (1974).

[38] F. E. Close, H. Osborn, A. Thomson, Nucl. Phys. B77, 281 (1974).

{39] R. Longacre et al.,, SLAC-PUB-1390 (Rev.); LBL-2637 (Rev) to be published in Phys. Lett.

[40] D. Faiman, Weizmann Institute preprint WIS-74/7-Ph.

[41] See for example R. G. Moorhouse, N. Parsons, Phys. Lett. 47B 24, (1973); D. Faiman, Phys. Lett.
49B, 365 (1974).



