Vol. B6 (1975) ACTA PHYSICA POLONICA No 6

THE MELOSH TRANSFORMATION FOR INTERACTING
QUARKS*

By H. RUEGG

Department of Theoretical Physics, University of Genéve**
{ Presented at the XV Cracow School of Theoretical Physics, Zakopane, June 6-19, 1975)
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1. Melosh transformation for free quarks

a) Introduction

Two schemes based on algebraic or group theoretic properties have been very suc-
cessful in particle physics. Both are known under the heading of SU(6),, [1-3]. One, called
current or charge algebra, starts from the anticommutation relations of free quark fields,
and then abstracts properties which are supposed to be more general. The other one, the
classification group, considers quarks as carrying spin and unitary spin quantum numbers.
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It has been pointed cut that the two algebras SU(6),, cannot be identified [2]. Melosh
[4] has given an explicit unitary transformation which connects the two groups. However,
his arguments are based only on the properties of free quarks. Therefore, we shall consider
in Section 2 quarks interacting with an external field [5].

This first section gives a short review of current algebra, light-like charges, the classi-
fication group and the need for the Melosh transformation.

b) Current or charge algebra

We start from a SU(3) triplet of spin § free quark fields. Suppressing spinor and SU(3)
indices, their canonical anticommutation relations are

{q(X), q+(y)}x°=y° = 5(;—.—);) (1)
With these quark fields, one defines a set of 144 currents:
Jx) = 1 q(x)y"04q(x):, ¥3)

O is one of the 16 Dirac matrices, A one of the 9 Gell-Mann matrices.
These currents are observables and one gets for example for:

1
J3
O =1, v5; A= A;+il;: AS = 0 weak current
O =1ys; A= Jygxils: |AS| = 1 weak current.

O=1I;) =72+ Ag: electromagnetic current,

Finally, one defines the 144 space-like charges

Q= | @xjox). 3
xt=t
Because of the anticommutation relation (1), these charges obey the commutation relation
of a U(6,6) algebra

[Q4 O] = iCupcQc, A =1,...,144. 4

Gell-Mann postulated that these relations, or a subset of them, are true even for interacting
fields. This hypothesis can be tested through the corresponding sum rules
Y (1 particle {Q,|n) <(njQp/1 particle) — A<« B

n

= iC4pc{1 particle {Q.|1 particle). 5)

The most celebrated is the Adler-Weisberger [6] sum rule, which uses the chiral SU(2) x
x SU(2) subalgebra. The space-like charges Q have defects which were pointed out by
Coleman [7], who proved that if Q leaves the vacuum invariant, Q must commute with
the Hamiltonian. Now, most of the charges (3), do not commute with H. Therefore, they
will not leave the vacuum invariant. This means that in the interacting case they will not
be well defined operators.
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It has been peinted out by Fubini and Furlan [8] that the sum rules (§) converge
better and enhance one particle contributions in the sum over intermediate states if they
are evaluated in the infinite momentum frame (p, — o).

c) Light-like charges [9]

The observations at the end of the last paragraph can be taken care of if, instead of
space-like charges Q, one introduces light-like charges (. The latter can be considered as
being obtained from the former by a Lorentz boost in the z direction in the limit where
the velocity approaches the velocity of light ¢. Hence the matrix elements of O are some-
how equivalent to the matrix elements of space-like charges in the infinite momentum
limit,

The virtue of the light-like charges is that they annihilate the vacuum even if they
do not commute with the Hamiltonian.

They are defined by:

Q= ." d®xpj+(x),

x0+x3=¢
2%, =J%+7% X=X x0-x0). (6)
For free fields, this can be written as
0= %§d3x,r, 1 qy+0dg:

14a,

:%J‘d3xL:q+ Olq:. Q)

Furthermore, one considers only the subset SU(6),, of good charges defined by
[0, a3] = 0. 8)

Recall that a5 generates a boost in the z-direction and therefore the charges restricted by (8)
commute with Lorentz transformations in the z direction. Only for these charges does
the integration on the light-plane x°+x* = 7 make sense [9]. SU(6),, is the collinear group
intrcduced by Lipkin and Meshkov [1]. For a simple proof that the charges { annihilate
the vacuum, see for example Leutwyler [9].

Therefore, we are now left with the SU(6)§, algebra

[04 0] = iCypcOc (4,B,C=1,..,35). &)

d) Classification group SU(6), ® SO(3)*

As mentioned in the introduction, quarks are considered here only as carriers of
spin 4 and SU(3) triplet quantum numbers. One has the correspondance:
SU(2);, : spin of quarks,
SO@3)L : orbital angular momentum.
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The first one comes from the subset

One gets the quantum numbers of mesons by considering quark-antiquark systems, those

0= ﬂala 5023 O3

of baryons from three quark states. For the least massive particles:

Particles Representation of SU(6)%, Representation of SO(3)L
Mesons 0, 1— 3541 L=0
0+, 1+, 2+ 35+1 L=1
Baryons /%, 3/;* 56 L=90
1/2”a 3/2_, 5,,2_ 70 L =1
etc.

¢) Need for the Melosh transformation

One may be tempted to identify the charge group (9) with the classification group,
1. e. assign physical particle states to irreducible representations of the charge group. But
this is untenable from the empirical point of view. For example, the axial vector coupling
constant is predicted to be 3/5 instead of 1.24. Various mixing schemes have been proposed
to circumvent this kind of difficulty [10]. Gell-Mann has pointed out [2] that the anomalous
magnetic moment of the proton becomes zero. Theoretical arguments have also been
given by Bell and Hey [11].

The most aesthetic mixing scheme has been proposed by Melosh [4]. He argued that
already in the free field case hadrons made of wave-packets of current quarks (and anti-
quarks) do not have the right total spin. This is because light-like charges transform in
a complicated way under rotations and contain “orbital excitations”. Melosh gave an
explicit unitary operator which transforms one group into the other. It has been shown
that the matrix elements of this operator are just Clebsch Gordan coefficients for the
Poincaré group [12].

In the next section we shall reanalyze some of the above arguments in the case of
quarks interacting with an external field. We shall find the same *‘diseases” if one tries to
identify the charge group with the classification group and discover that they are cured
by the same Melosh transformation, at least within a certain approximation. In order to
avoid duplication, we shall therefore not develop the arguments of this paragraph any
more [13]. It suffices to say that the phenomenological analysis based on the Melosh
transformation has been very successful [14].

2. Melosh transformation for interacting quarks [5]

a) Introduction

The aim of this section is to study the relations between the charge group and the
the classification group when quarks move in an external field.

We first observe that for studying algebraic properties and symmetry properties
of the Hamiltonian, it will be enough to study the first quantized Dirac equation with



855

a given potential. Firstly, it can be shown [9] that for the good components g, of the
quark fields

1+a3
q. = 5 (10)
one has again canonical anticommutation relations for equal x° values,
{a+(x)s a3} =50 = 6GL~ V1), (11)
where
X =x"+x% Xy = (xh, x% x0—x%).
Secondly, for light-like charges
Q= [ d’x4704q, (12)
x0=1
one gets for the commutator of two charges
[Qu Qz] = [AI d3quiO1‘1+, ,\j d3qu102Q+]
x0=t yo=z
= I dst‘I:rL[Ola 019+, (13)

~
x0=1

where O, and O, are now Dirac matrices (from now on we leave out SU(3) matrices and
indices which are inessential in this context).
So the problem is reduced to the consideration of the Dirac equation

Ey = Hy = (apc+pmc>+¢+BV)y (14)

with two arbitrary potentials ¢ and V (for the sake of generality we consider both potentials
¢ and V; we shall see that for our purposes there is no essential difference between the two).

To get the analogue of (12), we shall translate (14) into light-like language. Now,
the general features of the solutions of (14) are of course well known. In particular, there
is a spin-orbit coupling which, compared to the rest energy E, = mc?, is of order ¢*.
Hence, only terms of H which are of order ¢ or less have a two-fold degeneracy due
to spin.

We shall calculate in the next paragraph the Hamiltonian H. for good components
y,. on the light-plane. It will be seen that terms of H. up to order ¢2 are invariant under
a group SU(2), which is a realization, because of (13), of the light-like charge group
SU(Z)?AV of equation (9). So it seems that H, has less symmetry than H. Furthermore, if
one assigns particles to irreducible representations of the charge group, we shall see ex-
plicitly that their magnetic moment will be zero.

These two facts: apparent lower symmetry of H.. and vanishing of the magnetic
moment, will motivate the introduction of a unitary transformation U acting on the
states y,.



856

To a SU(2),, transformation of v, will correspond a SU(2)y transformation for Uyp,.
U will be chosen in such a way that H, will be invariant under SU(2)y, up to order c3.
Furthermore the matrix elements of the magnetic moment between the new states will

be shown to be equal to the Dirac magnetic moment.

It will turn out, and this is the main result of this section, that U is equal to the Melosh

[4] transformation, to the order ¢*.

We shall also show that while the good components of y on the light-plane transform
in a complicated way under rotations, and therefore should not be identified with the
wave function of a particle with spin 4, the Melosh transformed states behave correctly

under rotations.

This point will be confirmed by exhibiting a close relationship between the Melosh

and the Foldy-Wouthuysen transformation.

b) Dirac equation on the light-plane for good components
We start with

Ey = Hy = (cap+p(mc*+V)+¢)y,
where

i

1
P =—
i

o
ox*

and change to light-plane variables

%0 3 0o (4] 0
X' =x"4+x", p =p =

Notice that we do not change p°.
We also define the new wave function

P(x) = p(x).
Furthermore we need the projection

140,

2

Yy = Y.

Using the Dirac equation (14) we can eliminate the “bad” components .
p- = (ep* =) [ p ) +Bmc*+ V)] s,
Py = @ p»
and get
Hypy = {leayp) +Bmc*+ V)] (cp*—¢)~
x[ea,p | +B(mc+ V)]+cp*+¢} p..

(14)

(15)

(16)

an

(18)

(19)
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This, according to whether it is the first or second-quantized theories under considera-
tion, is the light-plane Schrédinger equation for the wave-function , or the light-plane
equation of motion for the Heisenberg operator ..

To exhibit the symmetry properties of (19), as outlined in the preceding paragraph,
we expand H. in powers of c¢*

Let us define the operator n of order ¢°

Then

28, i
=1 40+ {

_ 1
AV T T VT }——2
mc mc

1 l
+D1_1¢’7 9ﬁa_LPJ__] 2 3 +[V ﬁ“_}_l’_]_'l } 3 +O(C_4)

¢) Symmetry of the light-plane Hamiltonian and magnetic moment

It is clearly seen that terms of H. including the order ¢~2 are invariant under the group
SU(2) generated by

IO'S a

5y = Y Yse (22)

Because (22) acts on the good components (17) and using equation (13), we identify this

group with a realization of thc charge group SU(2),,Q: of equation (9).
In order to compute the magnetic moment, we make in (14) the minimal replacement

v - € e
p>p=-A, po—Po— 4o (23)
and choose the potential
At =42 =0, A= -4 24)

which does not change equation (18).
Furthermore, if we put

A% = H\x?

corresponding to a uniform magnetic field in the x! direction, the component of the
magnetic moment 4, is

My = ex? (25)

Thus static dipole magnetic moments are given by the appropriate matrix elements of
ex? evaluated between good components of light-plane wave functions.
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The fact that (24) also implies an applied electric field does not matter when parity
conservation is assumed, so that static electric moments vanish.

Now, since rotations about the 3-axis leave the light plane x° = x°+ x3 = t invariant,
and furthermore commute with o3, one still has for such a rotation

Sy = —io(x'p?~x’p' +303)p, (26)
(it will be shown later on that rotations about the two other axis are much more compli-
cated).
Hence, for the ground state, the 3-component of W-spin can be identified with the
3-component of total angular momentum.

The ground state magnetic moment is then given by the W;-spin-flip matrix element
of .#, = ex®, which is clearly zero.

Ly =01|x*{L; =0])=0. (27)

This is a concrete example for the argument given in paragraph le).
Thus one should rot identify 9. with the wave-function of a particle of total spin }.

d) Melosh transformation, symmetry of the Hamiltonian and magnetic
moment [19]

The Hamiltonian H, of (19) or (21) is invariant under the group SU(Z)?, of (22)
only up to order ¢-?. However, we know that H. must be invariant under a SU(2),, group
up to order ¢-3, since spin-orbit coupling is of order ¢~*. We indeed find such a group
and discover that it is related to the old one by a unitary transformation Uy, which,
as it turns out, is equal to the Melosh transformation up to order ¢—*.

Thus we call this the classification group and assign physical particles to irreducible
representations of this group. Particles will therefore belong to reducible representations
of the charge group (22). This is what is meant by representation mixing [10].

We also show that the matrix element of the magnetic moment operator (25) between
the new states is now equal to the conventional Dirac moment. Later on we shall see that
classification states have total angular momentum j = 1.

Instead of transforming the group and the states, it is equivalent to transform the
Hamiltonian and the magnetic moment and work with the old group and old states.
So we define a new Hamiltonian

Hy = UyH .Uy, (28)

where Uy, is defined by the requirement that Hy be invariant under the old group (22).
Recall, (21), that
2 2

2 1 -1 =1
m_¢::l}1+=7rL?H°+;2?[’1 on aﬁ“_LPL]

1
+ ——=[V, Bo -1
mzcs[ ﬁ_LP_UT ]

+0(c™H),
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where

2 N 1 [p -
— Hy =1 l+n+—[ LT Ve T TV b+ e 1]
mc mc

In order to eliminate spin dependent terms, we find

B, p -
Uy =1+1% —r:;c—l— +0(c™?). (29)
The Melosh transformation [4] is:
L 4 Pl
m
Uy = — (30)
VAV + pE fm2e?
which agrees with (29) to the given order
With (28) and (29) one gets
1 1 —a
;c— HM = mc2 H0+0(C ) (31)

So, indeed, Hy, is invariant under (22) up to order ¢—3. Alternatively H. is invariant under
the classification group SU(2)y acting on the new states yy

laa
Oy = UM - UMwM,

wu = Uyly,. 32)

To calculate the matrix elements of the magnetic moment, we transform the operator
My = ex* with Uy:

Uyt Uit = ex +%e(—t)£i +0(c”

It is convenient to use a representation of the Dirac matrices such that

1 1
3 = :/_2(053"'/3)“3 ﬁ(“a*‘ﬁ) =B = <(I) _(I)>’

1 1 ic; 0
Bloy = ﬁ (a3 +P)Ba, \’/_2(“3 +h) = w05 = <10'1 ),

0 ioy

such that

Uyt U = ex2+§% +0(c™?) (33)
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In this representation, the ground state magnetic moment is now given by the W; spin
flip matrix element of (33)

Ly = 0T|UM=///1U§11|L3 = Ol>

(L, = 0T|ex2+%—é:—; +olly = 01> = 4 mic +0(c™?) (34)

which is the conventional Dirac moment.

e) Behaviour of p,(x) under rotations

As shown in (26), the good components z’};+ on the light-plane behave in the usual
way under rotations about the 3-axis. This is not the case for the rotation about the 1
and 2-axis. For example, consider J/, defined on usual wave functions

Jip(x) = (x°p*—xp* +40,) p(x). (35
Changing to light-plane variables
X=X X0 = x04x3, pt o= P20, p° = B°

and projecting

_ 1+a,
Y = 5 Y
one gets now
J19:(%) = [¥*(p* = po) — x*p?] p:+(X)+}019-(%). (36)
We use (18) and (21) in the form
p - pint
= =3 N+ E— .,
mc me
p' P’
P_ =n_1(ﬁ+al—— +rx2a3—+...)¢++.... 3N
me me
The non-hermitian terms
2,2 2
-3 x? ) n! and o0, L n!
me me
compensate.
Furthermore, to order ¢!, we write
- - 1 a9, 1
—n"P+(X) = — — —,
i 0z mc
_ ~ 109, 1
175 =P — — — — (38)

i 0z me’
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so that
1193 = (*p,—x’p* +4 08— 0,8, +4 010,p)) D,

1 a9
Pbo(x', 3% 2) = — 7521 - (39)

The presence of the two last terms shows that . does not transform irreducibly under
rotations.
So let us try again a Melosh transformation such that

JM = UMJlljl\jll,
']Ir =jl—% [jl’ ﬁ“_LP_L]+.,. . (40)
The new terms are
{=3 p.Ba,[x% p*1—1[04B, B 1p' +..}04 = (3 018D, —} oy 0 +... )P
and compensate exactly the extra terms in (39) so that
JP+(X) = (*p.~x*p* +3 6. )P () 41
and the states
Y™ = Ur:tlfl’+
transform correctly under rotations.
f) Foldy-Wouthuysen transformation [15]
The Foldy-Wouthuysen transformation takes
into
HFw - eiSHOe—iS’
such that

[Hew, B1 = 0. (42)
In the free case:

S — oS0 m+\/m2+ﬁ2 +Bap

Vm+m )+ B
= m+3 fap—} 7*+0(c7), 43)
e(pm+ap)e™™ = p/m’ 477 4

In the interacting case, one has to add a piece

iSy = $p[3Pap, ¢



862

such that

eSieSoHpe e = B/mP+ 5 +¢—4 (P, 6} —4 Bipdap+0(cTY).  (45)
The spin dependent term is of order ¢c—* which of course contains the well known spin-
-orbit coupling. Up to order ¢~3, Hpy commutes with all matrices which commute with S.
So we have a U(2) x U(2) approximate symmetry with generators

1, B, o, oB. (46)
The Melosh group SU(2), just corresponds to the subset
Bo1, Bos, 03 47

which also commutes with o5.
To see this one goes through the steps

d’ - eis'lp,
¢, =3 A+a)p = 3 (1+a3)e’y = Ay, +By_,

where 4 and B are definite, but complicated expressions. Going over to light-plane var-
iables

$4(%) = Ap,(X)+Bp_(%)

and using the Dirac equation, the calculation shows that

é5+ = C’?’—h
where C is up to a normalization factor equal to the Melosh transformation, so that
Pi~ Yy “8)

3. Dirac equations with exact higher symmetry [16]

Working out higher order terms in (45), one finds that a Coulomb-like potential ¢
appears with opposite sign compared to a Lorentz scalar potential ¥. This make, one
suspicious that a higher symmetry is at work. Since potentials like that are used in quark
models {17}, it may be worth while investigating the matter further.

So let us consider the special case

V=¢g=5%W. 4%
The Dirac equation now reads
— 1+8
Ey=Hy = ap+/3m+TW P. (50)
One gets for the projections
118
Yy = Py, Pi='_i—’
(E—m—W)y, = dpy- (1)

(E+m) p_ = apy,.
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The potential has disappeared from the last equation. Eliminating y_ yields

(E—m—W)p, = (E+m)yp*y,. (52)
The Dirac matrices no longer appear, so that we have the infinitesimal symmetry [18]
oy, =% "351/4, (53)
2ic = axa. (54)
From (51} then
Sy- = (E+m)™'5bow, = db — ap(") 'y-. (55)
Combining (53) and (55)
£S
oy = 57 ¥,
*=£:-EH—13 &Iv“izféfnl-;—ﬁ- (56)
One checks that
[$, Hl = 0,[S,, S,] = 2iS,, etc.
So we indeed have an exact SU(2) symmetry group of the Hamiltonian.
This can be generalized to Dirac hamiltonians of the form
H = ap+pm+3iW(1l + e+ Pe), (57)
where ¢ and e, are constants such that
243 = |, (58)
Let us introduce 4-vectors
«=(B,a), p=(mp) e=/(e,Pp) (59)
in an Euclidean vector space with inner products
op = pm+ap
etc. Then
H =ap+iW(l+ae) (60)
= &'p +pm +iW (A +B), (61)

where the primed quantities are obtained by a rotation which brings the vector e = (e,
= 1, ¢ = 0) into general position. Hence, we have symmetry operators

PN Y - B
—— 4+ ap ~l_..,2ap . (62)
p

28 =
i 2 2

The author thanks J. S. Bell and C. Savoy for reading the manuscript [19].
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