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The M.LT. bag model for hadron structure is reviewed.

1. Introduction

The model invented to account for the properties of elementary particles, which T will
discuss, was developed at M.I.T. [1-4]. It describes the particles as composite systems
with their internal structure being associated with quark and gluon field variables. In this
respect it is quite conventional. We cannot relate the internal quark structure of hadrons
to particles, since that would restrict the description to a non-relativistic framework.
We must account for the internal structure with fields. The same fields as the ones used
in conventional relativistic field theories are used in our model. However, since the fields
with which we describe the substructure of the hadron will belong only to the substructure
of a particle, we do not hang the field variables on all points of space as in ordinary field
theory. We hang the field variables only on the subset of points which are inside of an
extended particle. We call this set of points a **bag’. Hence the terminology: M. 1. T. Bag
Model.

Since when one quantizes the amplitudes of a field, one associates the quantized
amplitude with the creation and destruction operators for particles — the *“quarks”
are such objects in our theory. However, these constituent particles will be present only
“inside” the hadron, since the creation and destruction operators are built from fields
which exist only in the interior of the hadron.

Such fields as we are describing are familiar in the physics of material objects. For
example, phonon fields and spin wave fields exist only on the interior points of pieces
of matter and it would make no sense to think of these fields existing in all of space.
We accept this easily because we recognize that fields of this type are collective variables
related to the microscopic variables which characterize the material, and are “useful”
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since they describe the important dynamical parameters when the material is excited in
some collective motion. However, we might find that this sort of phenomenon might also
be true for what we have been accustomed to think of as “empty” space. When we locally
disturb this medium, we may excite a ‘“‘collective” motion of some underlying “stuff”
which is present everywhere in its ground state. This collective motion will then be de-
scribed by fields: which we will take to be the quark-giuon fields. The localized excitation
will be a “particle”, a hadron. The physics of such an extended object will then be the
physics of a finite object containing the * collective fields” in our case, the quark and
gluon degrees of freedom. If this picture is valid, it would make no sense to associate these
variables with all of space.

2. The bag equations

The problem [2] is to construct a set of equations which mathematically describes
such a situation and then to extract quantitative results from them. We have the picture
of the hadron as given in Fig. 1. The surface of the hadron must be flexible if we are not

QUTSIDE
NO QUARK-GLUONM FIELDS
ARE HERE

INSIDE
QUARK-GLUON FIELDS
ARE HERE

Fig. 1

to violate causality. We indicate the normal to the surface at a given point by »* as in Fig. 1.
n* is a unit space-like vector. In the instantaneous rest frame of the surface point, #™ is the
ordinary space normal, and »° is zero.

Let us suppose that the quark field is g,(x), where g,(x) is a Dirac field. The index a
stands for color, (SU(3) color) and flavor (SU(3) flavor) where flavor stands for the usual
SU(3) quantum numbers, u, d, s. We may later wish to supplement these with more flavors
such as charm, etc. The field g(x) is associated only with the points inside the hadron.
1t is zero outside, by definition. The local flux of these quantum numbers in the interior is

Jo(x) = qu(x)7*qu(x). 2.1
If the quantum numbers are not to be lost through the surface, then it is necessary that
M ja(X) = 4, (x)7 - ngy(x) = 0
on the surface. Now, (iy - n)? = 1, so that iy - n has eigenvalues +1. Let us assume that

iy * ng(x) = q,(x) 2.2)
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on the surface (as we approach from interior points). Then it follows from (2.2) that

aa(x) i? ‘H = _aa(x)

and thus
inuj:;b(x) = q(X)iy - nqy(x) = aa(x)qb(x) = —Ea(x)qb(X)-
Therefore,
n,ujgb(x) = 0
and

2.x)gs(x) = 0

are consequences of (2.2). The boundary condition iy - ng, = q, on a space like surface
is consistent with the Dirac equation, g, = 0 is not. Hence, in general, ¢,(x) will be discon-
tinuous across the surface, since g, = 0 outside. Now let us calculate what energy and mo-
mentum will flow through the surface if (2.2) is imposed upon it. For simplicity, let us
assume that the Dirac field obeys the free equation

1 ©
(y‘“ T 7 +m> g (x)=0 2.3)
inside. Then the stress tensor which describes momentum and energy flow inside is
. i 0 i 0g,(x%)
THiae(x) = = 5 4 5 4+ - ——— v q(x) |, (2.4
2 ax, 2 ox,

a

and
0,T5"(x) = 0.

However, if we want conservation of the total energy and momentum of the hadron, none
should flow through the surface. This flow would be given by n,T'yy evaluated on the

surface. Now
z : i oq, i 0q,
T — - .y da " Pda
ny [ ) q.Y "axv + 3 ax‘,y hq,
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We have already found that q,g,=0 on the surface, and hence its derivative must lie along

the normal,
0 _
a—x_v 4a94 ) = nv‘?‘PDimC'

a

We therefore find that
n, 5 = n’Py, (2.5

We recognize Pp as a “pressure” on the surface, since in the instantaneous rest frame
of the surface, the momentum flow is normal to the surface and is given by P,,. We can
call P the Dirac pressure.

Because we want to conserve energy and momentum within the hadron we must
provide a pressure to balance P,,. We postulate that the total energy momentum tensor
for hadrons is

Thrieon = T —g"'B, inside

dron
=0, outside. (2.6)

In (2.6), B is a universal constant with the dimensions of pressure (E/V), or in units where
h = ¢ =1, BY* has the dimension of mass.
We can formalize this by writing

T = 0p(x) (T5"— 2"'B) (26"

where 04(x) is 1 on the space time points occupied by the hadron and zero otherwise.
In this case

005(x)
ox*

= n,04(x)

where d4(x) is a surface ¢ function. We find
0, Ty = os(x)n (Tf" ~ g B)
or using (2.5)

3, T = 5y(x) (Pp—B)n".

We now set
P,=B 2.7)
on the surface. Since, according to (2.5),

b1 8 _
D_%ﬁ E(Eqaqa)

a
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d -
B=%"'a“<§ q,,qa). 2.8)
X

a

(2.7) is the same as

If (2.8) holds on the surface, then the stress tensor (2.6') defined throughout all space
time is conserved so the total energy momentum vector P* is a constant where

Pt = _" dSXT}?“,
and the integral extends over all space in any Lorentz system. We see that in view of (2.61)

P* = [ &*x(T3"—¢"B).
Bag

We find that —Bg** contributes to P°, the energy, a term of the form BV where V is the
volume occupied by the fields at any time. It makes no contribution to the momentum.
The boundary condition (2.2) may be imposed on any space-like surface. (2.8) is the
contour map of a space-like surface. Hence if we take as our equations (2.2), (2.3) and
(2.8), we have a complete set of equations to determine the field g(x) inside of the hadron,
and also the equation of the space-like surface of the hadron. Because (2.8) is a local
equation, causality will not be violated. Since the surface variables do not enter into the
energy with any time derivatives, the surface variables are not new dynamical degrees
of freedom. They are simply given as functions of the interior field g,(x).

For simplicity we have considered the example of a free Dirac field, but a realistic
model must involve interacting fields. This is not because bags filled with free fields are
non-interacting particles. That is, bags can fission, so the bag theory is an interacting
theory from the start. It is because a realistic theory must not involve particles which
carry the quantum numbers of a quark. A bag with one quark in it would be a physical
quatk. It is easy to introduce an interaction between the quarks which will prevent the
existence of hadrons with the quantum numbers of a quark. We accomplish this by cou-
pling the “color” variables of the quark to a “‘colored” vector field in the Yang-Mills fas-
hion. We shall introduce the colored vector field in exact analogy to the quark field —
that is it will be a variable asscciated with the inside of a hadron. We can call a hadron
containing colored quarks and gluons a “‘mixed bag”. If we define

sz = 6“Az‘; - avAz + gfabcAgAz’

where f,,. are the structure constants of SU(3) color, and we also couple the color vectors
to the quarks, then

0,F8 = jo = 8(aA 0+ farcF5 Acy)- 29

The condition analogous to iy * ng, = g, for the color vector fields is

n,F5 = 0, on the surface. (2.10)
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The total stress tensor is conserved [2] when

a - v
B=%n.a_x(z Qaqa) _%Z‘Fauvl:a' (2'11)

a

The color current (2.9) can be defined over all space with the aid of the quantity
0g(x) defined following (2.6'), thus let

Ja(x) = 0(x)je(x).
It is clear that
0, J5(x) = n, joy(x)os(x) = 0,

so J¥(x) is conserved on all space time points. Hence the color operator C, is a global
constant where

C, = J d*xJ(x) = | d*x05(x)j3(x)- 2.12)
If we use (2.9), (2.12) becomes
C, = | d’x05(x)0,,F3°(x)
and integrating by parts, with F*' = 0 outside,
C, = — | d®x0,0p(x)F3%(x) = — { d*x84(x)n, Fr°(x).
Since F*’ is antisymmetric,
C, = — [ d&®x8s(x)n,FL%x) = 0 (2.13)

in virtue of (2.10). Hence all solutions to our theory are automatically color singlets by
a simple application of Gauss’ law.

Thus, the coupling of the quarks to the color gluon field automatically succeeds
in producing absolute color confinement. It is easy to understand why this is so by looking

—— . GAUSSIAN
y; ~, SURFACE

Fig. 2

at Fig. 2. Since the color fields are zero outside of the bag no color flux can penetrate
a Gaussian surface which encloses the bag. Hence, C, must vanish. It is also easy to see
why a colorless bag cannot fission into oppositely colored bags by considering Fig. 3.
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The mean gluon field strength in the neck is given by Gauss as gC,/4. Hence the total
gluon field energy in the neck is

This diverges when 4 — 0, so fission (when C, # 0) is forbidden. Color singlets must
remain color singlets.

3. Simple estimates of the parameters and consequences of the Bag Model

a) Ground states

One would expect that in the ground state, the hadrons would be composed of quarks
moving in the lowest mode in a bag [3]. We look for solutions where the shape does not
change as a function of time. We assume that the gluon coupling constant is small enough
that we can use perturbation theory to explore its consequences. Hence the quark field
will obey the free Dirac equation. We believe that Bjorken scaling is only possible
if the quark mass is low. We shall take it to be zero.

If we assume that in its rest frame the hadron is spherical, we shall find that it is possible
to find such solutions to (2.2), (2.3), and (2.8). For if the bag is spherical, and the surface
is static (2.2), (2.3) and (2.8) become (with m = 0)

. 1. 10
Yy =V+y — = ]q/x) =0, @G.1
i i ot

—iy - ;q,, =gq, at r =R, 3.2)

B= -1 %(2 ?}aqa) =P, at r=R (3.3)

a

We shall proceed by finding the general solutions to (3.1), (3.2). This is the problem of
the normal modes of a Dirac field confined in a spherical cavity with radius R. The quantiza-
tion will proceed by quantizing the amplitudes of these normal modes, since this is the
proper way to provide that the constants of motion @, will obey the appropriate commuta-
tion rules.
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The ground states of hadrons will be the states in which the quarks (and antiquarks)
. 2.04
all occiipy the mode with the lowest frequency. This mode has the frequency w = R 31

It further has the property that gq is independent of angles. Therefore if all the quarks
(and/or antiquarks) occupy this mode the Dirac pressure Py, defined by (3.3) is independent
of angles and time and therefore can be put equal to B as in (3.3) to determine the radius
of the state. That is, we have found solutions to (3.1) through (3.3).

The mass of the hadron is given by evaluating

P° = M = [ &*x(T3°+B). (3.4
If we compute (3.4), we find
M 2.04 N 4n BR? 35
mw P — -_— ) .
R 3 (-5

where in the first term #» is the total number of quarks and antiquarks which occupy the
lowest mode. The condition P, = B is equivalent to minimizing (3.5) with respect to R
to obtain an equation for R. Thus,

2.04 )

0= -—n 5 +4nBR". (3.6)

7 T

integrated Dirac pressure integrated B pressure
If we solve (3.6), we find
1 1/4

R=|-— 2.04)1/4, 3.7
( m) (n2.04) 3.7

As promised, we find that the equation for the bags surface defines the surface as a function
of the quark field operators (n). On substituting (3.7) into (3.5) we obtain

M, = % (4nB)"/*(n2.04)>/* (3.8)

for the mass of a n quark-antiquark hadron. We see that the *‘size” of hadron is given
in terms of M, by

R = £(2.04)n L.
M

n
Thus, the bag theory already explains why a proton (n = 3) is large,
_ 816
PTM

p

8.16
It is because R is a large ( n) multiple of the Compton wavelength (1/M) that

it is justified to treat the particle as an extended object and neglect in first approximation
the quantum fluctuations associated with its center of mass motion.
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We see that the mass of these hadrons is independent of the spin of the quarks. Hence

a proton (J = %) and 4 (J = 3) are degenerate, and a ¢ (J = 1) and = (J = 0) also have

the same mass. We also see that the ratio of mesons (n = 2) to the masses of baryons
(n = 3) is given by

M,

= ¥* = 074.
=@

This is alright for p/p, but the fact that ¢ and = have the same mass is rather bad.

If we determine B by fitting M; in (3.8) to the mass of the proton (0.940 GeV) we
find B4 = 96 MeV. If we fit to the mass of the 4 (1.232 GeV) we get B!+ = 126 MeV.
Therefore, at this stage we can say that B'/4 ~ 110 MeV +15%. We shall find later that
when the effects of SU(6) breaking are taken into account that B/* ~ 145 MeV+5%,.

Of course since we have wave functions for the quarks we can also compute other
quantities. These all turn out to be rather encouraging. Since we shall discuss these quanti-
ties in much greater detail below, we shall defer this, with one exception. If one computes
the B decay G,, one finds G,/Gy = 1.1 instead of 5/3 as in the non-relativistic quark
model. The experimental number is 1.24. If we give the quark a finite rest mass m, and
allow it to increase, G,/Gy increases until when m — oo, the non-relativistic result is
obtained. This is why we have assumed that the quarks are massless in our zeroth approxi-
mation.

b) Regge trajectories

We next wish to consider what happens when the bag contains a lot of angular
momentum, and we assume that it acquires the shape indicated in Fig. 4. In both the
cases of the baryon and the meson the flux in the tubular bag is the same. This will lead

Meson Baryon

Fig. 4

to a mass spectrum for mesons and baryons which is asymptotically the same. We shall
assume that the tube rotates uniformly with frequency w and that the ends move with the
velocity of light, i.e. @L/2 = 1. This is so that we get the maximum angular momentum
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associated with a given mass (the leading trajectory). At a distance x from the axis the
tube moves with velocity v = x2/L. The color electric flux in the bag is

AE, = g/, (3.9)

where A is the cross section at the relevant point. The linear boundary condition, n,F4* = 0,
on the side surfaces, or the simple application of relativity implies that

B, =xE, (3.10)
at a point along the surface. We shall assume that the dominant field pressure on the
sides is produced by the flux lines and not the quark fields. We shall subsequently show
that this is consistent. In this case the surface equation is

B =1Y (E.—B,)

which by (3.9) and (3.10) gives
2

g
B=1} (-0

where Y42 = %f. Therefore, the cross section at a point where the surface moves with

velocity v is

g
?\/_ Ji—o2. (3.11)
We can now compute the total energy contained in the color flux lines and the volume
energy. Thus

Lj2
2
Epyx = —[d3r% Z (EZ+B)) = f dx % P (1407
a ]
. 2
1+
= JiLg \/B do 2 (3.12)
V1-
where we have used (3.10) and (3.11). Further,
Li2 1
BV =2B | dxA = \ELg /B [dvv1-0*. (3.13)
0 0
Therefore,
1
Eqe+BV = /8 Lg \/B dv ——— (3.19)

J 1—2?
We finally must compute the energy of the quarks at the ends. We assume that the

quarks are moving with momentum and energy p, so

Equarks = 2p
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The angular momentum of the quarks will be
Jquarks = PL,
and the angular momentum of the color flux lines will be
Jows = | d*Fx Y E,x B,
If we use (3.10), we find Eax B, = ¥(E,)?, and then if we employ (3.9) and (3.11) we find

1

Jflux \/8 ng \/B dl)

2

\/l—v

The total angular momentum is then
1

I = Jquarks + 1z = PL+\/§ I’g \/E dv—2
bt

o

Therefore, the energy of the quarks is
Equarks 2p = 2_‘ —\/— Lg \/BJ‘dU T (3.15)

Consequently, the total energy of the fields and volume is gotten from (3.14) and (3.15), so
1

J - . s J - —
E=2I+J§LgJBzfduJ1—u2=2f+\/.g.Lg\/B§. (3.16)
0

The boundary condition at the ends which corresponds to L being time independent is
obtained by minimizing E with respect to L for a fixed total angular momentum J. Hence,
we find

20 = JSg /B % 2 (.17)

When we substitute (3.17) into (3.16) we find that E = M can be written in the form
J =o' M2
Thus, we have an asymptotically linear trajectory with the slope

11 1

where a, = g2/4n is the color gluon coupling constant. If we substitute in the best values
for B and «, which are gotten by fit ing the low lying hadron states (see below), (B)'/4
= 146 MeV, and o, = 0.55, we get

o = 0.88 (GeV)2

in remarkable agreement with the experimental value of 0.9 (GeV)~2.



876

It is also interesting to remark that for the value of L given by minimizing (3.17),
we find that E .4, = 0, that is, the quark energy is small in comparison to J/L. All
of the angular momentum of the long hadron is carried by the colored flux lines. As can
be seen from (3.12) and (3.13), 3/4 of the energy is carried by the flux lines and 1/4 by the
term BV. It is generally true in the bag model that 1/4 of the mass is carried by BV when
the constituents are all massless. Since the quarks do not carry any appreciable energy,
the bag model realizes a picture which is qualitatively the same as the dual string model
for long hadrons with sufficiently high values of J. (That is, the string is not ‘“weighted”
on the ends.)

In the above calculation we assumed that the dominant field pressure on the sides
of the long hadrons was contributed by the flux lines. This is true if the pressure of the
quark field is negligible in comparison. The quark fields are localized near the ends with
a wavefunction confined to a transverse dimension of the order /4. Hence the quark
energy will be of the order 1/,/A. If this is small in comparison with the flux energy then
the surface pressure will come dominantly from the flux. Thus our calculation is consist-
ent if

Eq o > !
D>,
flux \/A
If we express this relation in terms of J and o, using the formulas given above we find
that
o J> 1

is the condition of J and «.. Thus, for any «, # 0, eventually the trajectory will become
linear. In our case, the trajectory will certainly be linear when J is large enough so that our
classical calculation makes sense.

¢) Collisions of hadrons at high energies

I would now like to briefly discuss a picture for the scattering of hadrons which
has been recently developed by Low [5]. He calls it a model of the bare pomeron.

At high energies in the impact picture we imagine the scattering of two bags as in
Fig. 5. After the collision the bags assume the deformed configuration because the quarks

BEFORE AFTER OCTET

Ut ==

OCTET
Fig. 5

have exchanged a single colored gluon. Therefore the fast moving quarks in both hadrons
now form color octets and cannot separate since they are not color singlets. We see imme-
diately that elastic scattering is impossible in lowest order. Therefore in general the scattering
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will be inelastic, and the elastic scattering will therefore be mainly diffractive, the shadow
of the inelastic processes. All of this is in qualitative agreement with the empirically known
properties of the elastic hadron scattering amplitude. Furthermore, we may calculate
the elastic scattering by considering the second order process of two color gluon exchange
between the quarks. Since the gluons are vector particles this gives rise to an elasticamplitude
which is constant at high energies, and is purely imaginary, also in approximate agreement
with what is found experimentally. It further confirms the purely diffractive character
of the elastic scattering. We may therefore call this model a simple picture of the *“‘bare”
pomeron. There is no space for a discussion of the details of this work, for that one is
referred to the paper of Low [5]. We would however Like to mention some qualitative
aspects of the inelastic processes associated with the picture of the scattering given in
Fig. 5.

Just as in the picture for the high spin state of two quarks, the neck which is produced
by the scattering will contain colored flux and an energy which is given by

& = ALB+ALLE?Z,

where the flux is given by

AE, = g/,
S0
, 1
& = ALB+AL% g ek (3.18)
We determine 4 by minimizing (3.18) with respect to 4 to find
a=(EY" (3.19)
2B

and
2

g 1/2
& =2L./B (7) .

The flux line will break by creating a pair of diquarks or gluons near the collision center,
this will happen when

& = 2w, (3.20)
where o is the minimum transverse energy of the quark-antiquark pair or gluon in one

1
bag which is of the order of —=-, thus

JA

2\ 1/2
= LB (E{) (3.21)
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or inserting (3.19) we find

12\
Lz El/_‘*(_g?) : (3.22)

The time in the center of mass for the break to occur will be of the order of L and since
this is independent of the energy of the particles, it will correspond to a long time in the
laboratory system. This may possibly provide the basis for an understanding for the
results of recent experiments on the scattering of baryons on nuclei [6].

Finally, we may estimate the inclasticity associated with the scattering. Let p’ and E’
be the momentum and energy of the rapidly moving' quarks in one bag, and g and
the momentum and energy of the slowly moving quark-antiquark or gluon in the bag
after the neck has broken. Then the mass will be

M?=(E'+0)P?—(p'+9)?* 2 2E(0-2-q) = 2E(w-71" q), (3.23)
where E is the energy of the incident hadron and 2E = \/2—s. Then the initial stretched
bag with mass My = \/ﬂ has split into two bags each of mass

M? = My(w—7v"q) = MC3,

where C, is of order unity. Since each of those bags will contain slow moving quarks
in a color octet, the neck will continue to stretch until another break occurs. This break
will again be similar to the first so

M3 = MC3 =~ /M,C,C3.

This process will continue until M2 is of the order of a typical hadron mass, that is,

S N
m? 2 (My)2a-DCy~Deg=2 L C2

Since M, = /25, and 2(n—1) = N is the multiplicity we find that

klogs = N,

where k is a factor of order unity.

Therefore, the bag model together with the color exchange interaction between
quarks leads to logarithmic multiplicity for particle production in inelastic hadron scat-
tering.

4. Masses and other parameters of the light hadrons

It will be our purpose in this part to refine the picture developed in the previous
section [7]. However, we shall only be concerned with the masses and other static parameters
of what we call the “light”” hadrons. These are the pseudoscalar and vector meson nonets,
the baryon octet and decuplet. In these hadrons the quarks all occupy the lowest mode
in the spherical cavity.



879

To refine our calculation we shall include three major ingredients. The first concerns
the quark mass. We shall break the SU(3) symmetry by assuming that the strange quark
has a mass m, different from the mass of the non-strange quarks, m. We shall find that
no appreciable improvement on the description we finally obtain will be gotten by making
the mass of the non-strange quarks different from zero. In any case we shall assume that m

1
is small in units of =’ where R is the radius of a typical hadron.

The second ingredient we shall include will concern the effects of the zero point
motion of the fields occupying the hadron. In the previous section, when we calculated
the energy of the constituent field of the hadron, we included only the energy of the occupied
modes, the so-called valence quarks. Since the fields which occupy the hadron are quantized,
they will also have a zero point energy associated with them which takes the form 1) how
for the boson constituents and —%) Aw for the fermion constituents. In conventional
field theory these zero point energies are infinite, and “extensive”, that is, they correspond
to an infinite term proportional to g* in the stress tensor. In conventional field theory
the volume occupied by the fields does not change in any process, and hence this divergent
term is discarded. In our model, the fields occupy a finite volume, and we see that an
additional term proportional to g** in the stress tensor will simply correspond to a redef-
inition of B. Since this effect is divergent, we shall adopt tne standard procedure used
to handle such divergences which is used in field theory. We shall introduce a cut-off.
We shall then study the dependence of the zero point energy on the cut-off when it is taken
to be large in comparison to any scale in our model. We incorporate cut-off dependent
quantities into so-called renormalization constants. The cut-off insensitive results will
be the reward. We shall find that in addition to the renormalization of B, the second
effect of the zero point motion will be to add to the energy a cut-off independent term

1
proportional to? which is the same for all hadrons. It is this latter term which will

produce another refinement of our previous mass formula.

The third ingredient which we shall include is the quark gluon coupling. We shall
treat its effects in the lowest order of perturbation theory. It will produce an SU(3) non-
-invariant quark spin-spin interaction which will break SU(6) invariance. The spin-spin
coupling will be non-SU(3) invariant because of the difference in the quark masses.

Let us first discuss the consequences of introducing a quark mass. We must solve
the Dirac equation

- 1.
(y-—,—V—yoco-{—m)q =0 : 4.1)
i
with the boundary condition

—iy-rq=g¢q, at r=R. 4.2

If we study the frequency of the lowest mode, and we write

/ x2 1/2
® = (m2+ -R—2> , (4.3)
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. . L,
then the momentum in units of 53 is x where

x = x(mR)
is the solution of the transcendental equation

X
1—mR—(m*R>+x?)'*"

tanx = 4.4

In the previously studied massless limit, x(0) = 2.04. As m — oo, x(mR) — =, which is the
limit in which we obtain the non-relativistic Schrédinger equation. A graph of the solution

424

x (mR)

{(mR)
Fig. 6

of (4.4) as a function of mR is given in Fig. 6. Thus, with quark masses, the field energy
of the occupied mode is now

2\1/2 2\1/2
2 x 2 xs
n{m- -+ F +ns mg + - s (45)

where n = number of u, d quarks (and, or antiquarks) and », refers to the strange quarks.
With only such mass-kinetic energy effects, the strange states will be split from the non-
-strange, but A and X will remain degenerate.

Let us next consider the zero point energy associated with the quark and gluon
fields [8]. We shall introduce a cut-off function f (/) where f(0) = 1. The finite results
we shall obtain can be shown to be independent of the form of £, and it is most convenient
to use an exponential, f, = e “/?. Hence, we shall carry out the discussion for the cut-off
Zero point energy,

Eq =1 we™ (4.6)
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We shall be interested in (4.6), when © — co, or when (1/€2) < any relevant time scale.
For convenience, we put (1/Q) = 1, and consider (4.6) in the limit = — 0. It will be amusing
to first study a mathematical example, a one (space) dimensional field theory. This is
provided, for example, by the dual string model. We shall present a rather simplified
(probably over simplified) version.

Imagine a one dimensional bag, i.e. a string, which consists of a set of d scalar fields ¢,
which correspond to the derivatives of the transverse coordinates of the string in d+4-2

2 2

dimensional space-time. They obey the one dimensional wave equation, <56x—2 - %)@ = (),
and in the rest system of the center of mass, we imagine that the ends are at x = 0 and
x = L and here ¢; = 0. The transverse modes are then associated with the wave functions
sin (n7x/2) and frequencies w, = nnfL. The cut-off zero point energy then has the form

ddf 1
T 2 dt\l-e ™))"

2 dt\nt 2y
b4
21 L 24

The mass of the system is given by minimizing,

nm , d Tt d
M= — (at(al)+ | Bo+ — @* |L— — —
E,E,L(a)(“) (" 2 L 24’
i n=1

with respect to L. alal corresponds to the occupation number of the #'® mode of the i*
2

transverse motion. We take Bo+d—2—~ to be B, the renormalized string constant.
7.4

h

When we minimize we get the mass formula

M? = 21B,, (Z Z n(a,)(a,) - 2%)

This is the mass formula for the string. We see that the zero point energy produces a nega-
tive contribution of magnitude — d/24. It turns out that this constant must be equal to 1
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in the string model in order to obtain a consistent theory of interacting strings. Hence,
the famous requirement of 24 transverse dimensions or a 26 dimensional space time [9].

We are interested in the zero point energy of the quark and gluon fields in a sphere
in three dimensions. This problem is presently being worked out. Since the solution is so
far not available, we must content ourselves with an estimate based upon the only three
dimensional geometry in which the calculation can be done analytically. This is the geom-
etry of a slab.

For a vector field [10], there are two types of modes, transverse electric and trans-
verse magnetic. For the color field boundary condition, n,F.” = 0, these are opposite
to what they are for conducting plates. The frequencies are the same for both modes,

ar\ 2\ 1/2
o = (k%-;— (f) ) : (4.7)
The difference is that the value n = 0 is excluded in one case. (The case where the longi-

.. . nux
tudinal wave function is sin —-Z—> In (4.7), kr stands for the transverse momentum.

For the massless Dirac field, the frequencies are
2 \1/2
® = (k%+(n+%>2 F) :

Therefore, for the zero point energy, we obtain in these cases

EO dsz , ) nz /2 _ (sz+ nZnZ)llz
— =12 —— | kt+n® —5 L
4 J"[ Zf(zn)z CRRTY B

-

d*ky
= kTl
+ j(zx)z Ilee T :la

n=1
(Vector)
E, d*ky n?\Y2- kT2+(n+g~)2"—; v
:I=.34[§ JCEF ﬁ+m+@ﬁﬁ-e ( ) . (4.8)
n=0
(Dirac)

The factor 4 in the case of Dirac field is associated with the spin and antiparticle multiplicity.

. . . J\ /1
The transverse momentum integration can be done by putting we™ “F = (5—) (——e"‘”’)
T/ \w

If we carry out the integration, we then can sum over » just as in the one dimensional
example. We find

nt

Eo (d\ 1 [l+e T 49
A \dt/) 2nt A ’
l1—e L

(Vector)
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By (aY L[ ™ 4.10)
A \dt) 2 NN @

(Dirac)
-
The factor 14+e L in the numerator results from the two types of modes present in the

T

vector case. The term with 1 coming because the n = 0 mode is included, ¢ L because
the 7 = 0 mode is excluded. The important thing to note is that the expression is even
in z. The same evenness is true in the Dirac case. In contrast if we had a scalar field present,
we should have obtained an expression which was not even in 1, since a scalar field would
be equivalent to having only one of the two types of modes present in the vector case.
The point of making this remark about evenness in 7 is seen if we study (4.9) or (4.10) in
the limit as 7 - 0 (Q — o). We obtain an expression of the form

d\* [ A , .
zi:c- ;—2“ +B+CT + ... = 6AQ +2C.

So there is only a divergence proportional to Q% no lower order cut-off dependent terms
arise. On the other hand if the expressions were not even in 7 a term proportional to Q3
would also be present., This occurs for scalar fields, but as we have seen, not for vector
or Dirac fields.

It can be shown that the absence of the 3 term is a general result, true for cavities
with an arbitrary shape. Furthermore, the divergent term is the same for cavities of arbitrary
shape, it corresponds to a divergence in the local stress tensor proportional to +g*’,
and as we have already remarked, will correspond to a renormalization of B.

i
If we work out the explicit expressions for (4.9) and (4.10) in the limit as 7 — ° -0,

we find
E 3 21
7/9 =0Q* 5 -~ 0 TF vector field,
n
E 6 n?
i_f’ = —Q* 5 _%:fi) 5 Dirac field. (4.11)
/ 7

We have put ¥ = AL, as the volume of a cross section of the slab.
To obtain a crude estimate of E, in the problem of interest, namely 8 colored vectors
and 3 colors x 3 flavors of Dirac ficlds confined in a spherical cavity with radius R, we

47 .
let L> R and V = —3—R3 above and thus obtain

" (8429
40 *RC

3
EO = 94?(8‘—6)(9)“/—‘ 5—
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or for the renormalized zero point energy

1.36
Eg" = BV — —. (4.12)
R

However, since we have not calculated E, for a spherical cavity, we shall merely
put in an extra term of the form — z/R in the expression for the energy of the confined
quark and gluon fields and treat z as a phenomenological parameter. We shall find that
we obtain the best fit to the mass spectrum with z & 2 which is in agreement with the
sign and order of magnitude of the result obtained above.

The third ingredient which we incorporate with the improved calculation is the color
vector fields interaction between the quarks [11], which we shall compute to lowest order
in g/4n = «.

Since the valence quarks all occupy the lowest mode in the cavity, their color currents
are static and therefore the colored fields that they generate are static. The color fields
will obey the boundary condition on the surface,

roE =0,
FxB* =0, (4.13)

where E® is the color electric fields, and B the color magnetic field. Clearly the first condi-

tion can be met only if the hadron is a color singlet. This was shown in general in Section 2.
The energy associated with the color gluon interaction can be separated into “‘color

electric”” and ““color magnetic” energies and written in the form AE;+A4E,,, where

AEg =3¢y, | d’xE(x)- E%(x), (4.14)
a Bag
and
AEy = —3 g2y | d*B(x) - B(x). (4.15)

These are calculated by solving Maxwell’s equations using the total static currents of the
valence quarks and the boundary conditions (4.13), on the surface. In doing this we should

(b)

Fig. 7

remark on what additional approximations are involved. There can be expressed most
clearly if we consider what diagrams correspond to the above forms for 4E; and AEy,.
The relevant diagrams in this order are illustrated in Fig. 7 where the lines correspond



885

to a typical valence quark. In the case of the self-energy diagram, the static current
corresponds to keeping in the internal quark propagator only the lowest cavity mode.

Now, in ordinary atomic calculations, it would not be sensible to make such an
approximation. However, in our problem we are forced to do this because if we do not
include this part of the self-energy diagram, it is impossible to satisfy the boundary
condition 7+ E* = 0 for the color electric field on the surface. We of course should then
also take the rest of the self energy diagram and compute it. We shall not do this however.
There is some justification for proceeding as we have. In contrast to the situation in atoms,
the quarks in our system are moving relativistically. Chodos and Thorn [12] have found,
when calculating the entire electromagnetic self-energy diagram in the case of massless
quarks, that about 80 % of the full result comes from just the static term where the quark
remains in the lowest cavity mode. The problem that we have just referred to does not
arise when we consider the color magnetic field. We therefore shall not include any of the
self-energy diagram in our calculation. The reason that we have treated the magnetic
term differently from the electric is that in the magnetic part of the self energy diagram
the quark spin is opposite to what it was in the valence state. Hence, in the magnetic
diagram, we have an intermediate state for the hadron where the total quark spins are
different from the initial state. We shall soon find that this intermediate state will have
a quite different energy as a consequence of the magnetic interaction with other valence
quarks. Therefore, if we go to the next order, the quark current wiil not remain static.
This situation does not arise in the case of the static color electric part of the self energy
diagram. Thus, although it is not totally consistent, we feel the best physics will correspond
to the approximation we have made. We have found that if treat the magnetic part of the
self energy diagram in the same way as the electric, no qualitative difference in the final
results are produced. The main effect is just to alter the values of the parameters which
we fit. Thus, we now write for the final form of (4.14) and (4.15)

AEg = 3 g% Y | d*xE%(x) - E“(x), (4.16)
and
AEy = —3¢* ¥ Y | d®xBi(x) - BYx). 4.17)
i¥j a

In (4.16), E"‘(x) is the total color electric field of the valence quarks, and E?(x) is the
color magnetic field of the i™ quark.

Since the valence quarks all occupy the same mode, when the difference between
quark masses are omitted, the color charge densities are all the same and hence Eis
proportional to the total color operator and hence vanishes. Therefore, in states where all
the quarks are non-strange, or all are strange- (4.16) is zero. In states where there are both
strange and non-strange quarks, (4.16) never amounts to more than about 5 MeV. Therefore,
the main effect of the color gluon interaction is associated with the color-magnetic
interaction (4.17). The color magnetic field is gotten by solving the equations

Gx‘é‘i’ = 7;‘, r< R,
v -B*=0,r<R, (4.18)
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with the boundary condition on the surface
rx Y B =0. 4.19)
7
Here the current j§(x) is
Jix) = qlai’q; (4.20)

and g,(x) is the Dirac wave function for the valence quark.
We now solve these equations, compute 4Ey;, and we find an expression of the form

: i - - 1
AEM = =, % )'io-i . X'jgj”ij ‘R“ s (4‘21)
i#j

where p;;takes on three values, g, i/, '’ depending on whether we have a pair of 4, d quarks,
a u or d and s quark or a pair of s quarks, respectively. A graph of two functions i(mR)
and of j(mR) is given in Fig. 8. It can be used in the case that u, d quarks are massless.
In this case, u = i(0) = j(0), p' = i(mR), "’ = j(m,R).

02

T

{ === ONE QUARK MASSLESS
j

BOTH QUARK MASS M

(i)

01

mR
Fig. 8

We now must evaluate (4.21) in the various states of the mesons and baryons.
For a meson, we have a quark and antiquark in a color singlet state. A7 is the color
matrix of the quark and 25 is the color matrix of the antiquark and they act on a colorless
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state,
‘; + }'; = 0,
SO

YIS =y Ay = —A = =Y 422y

Similarly, in the case of the baryon with 3 quarks,
A+, +4; =0. (4.23)
We find by multiplying (4.23) by 41,
A24Ay Ayt A Ay =0,

and the three similar equations obtained by multiplying (4.23) by A, and A, that

Thus the meson and baryon are simple because the color “dot products” are diagonal.
We find as a consequence

16 - .~ 1
AEy = +0. 5 610y — Iy
R
for mesons, where p, = u for the mesons with no strange quarks (or antiquarks), y, = ',
if there is one strange quark (or antiquark), and p, = u’’ for the meson with a strange
quark and a strange antiquark. We see that the color magnetic interaction separates states
with different total angular momenta.
In the case of baryons,

: - - 1
AEy = . 5 o-i'o-j#ij'}'{"

i#j

We see that AEy depends upon the spin configuration as well as on whether or not there
is a strange quark in the state. Hence, X will be split from the A, as well as different total
spin states being split from each other.

In order to study the problem of possible exotic states, we have also evaluated the
color magnetic interaction in non-strange baryons with more than three quarks. As many
as twelve u, d quarks can occupy the lowest mode in a spherical hadron, since there are
three colors, two spins, and two isospins. These can form color singlets in the cases of
six, nine, and twelve quarks. Hence, there could be as many as three different sorts of
exotic hadrons. We shall find that all of these are unstable against decay into nucleons.
The width of these states would presumably be large since no quarks need be created for the
decay. To evaluate (4.21) when more than three quarks form a color singlet is less straight-
forward than before since in this case the color dot products A; - 4; are not diagonal. We
instead consider any pair of quarks. The quark permutation operator P;; should take on
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the eigenvalue-1 for any pair. P;; can be written
C pS pl
P,’j = P P P’l’

where
PG =3+34- A
is the color permutation operator, and

Py =4%+30,°0, Pi=3+37t

are the spin and isospin permutation operators. Since for any permutation operator
P? =1, we may write for a state where P; = —1,

PSP = ~ P,
Using the explicit form for these, we find the identity
%-f‘/l‘ . 2«1+% g;° O'j+2fi . Tj = "'(/1‘ ‘ llj) (Gi . G'j).

We may finally evaluate the color magnetic interaction by summing on i # j and
putting (3 4)* = 0 in the color singlet state, we find
1

4E, = $a. - [n(n=6)+S(S+1)+31I+1)], (4.24)

where 7 is the number of non-strange quarks, and (S, I) are the total spin and total isospin
of the state. It is interesting that this is negative only for the nucleon (n = 3,5 = 1, I = }).
This is responsible for making all exotic n = 6 baryons unstable into decay into nucleons.
The term n(n—6) then makes the n = 9, and n = 12 states very unstable. We shall discuss
the consequences of (4.24) below.

We now have all of the ingredients for our refined calculation of masses. We shall
write for the mass of any hadron

2\1/2 2\1/2
2. X , X5 Z,
M= i:n (m + F) +ny (ms + F) ] I:BV— '1"{—] +AEy+4Eg, (4.25)

valence quark kinetic energy zero point  color interaction
energy energy

where 4E,, and AE; have been defined above. 4E,, and AE; are evaluated in each state
for the appropriate total quark spin and configuration of «, d and s quarks. We then mini-
mize (4.25) with respect to R to determine the radius of the state, and evaluate M at the
minimum to determine the mass.

The free parameters are B, m, m,, Z, and «,. We make no attempt to fit i, the mass
of the non-strange quark. We simply have looked at two cases, m = 0, and m = 100 MeV.
No appreciable difference results and for simplicity only the case m = 0 will be discussed
here. The parameters B, Z, and «, are chosen so as to fit the three heaviest states which
involve no strange quarks, namely the 4, N and w. The p and o are degenerate in our
approximation. The mass of the strange quark, m,, is determined so that the mass of the @~
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TABLE I
i Zero point energy Q'uar.k
Particle Mezp Mopag R, —Zo/R By kinetic AEm AEg
energy
P .938 938 5.00 —.367 234 1.226 —.155 0
A 1.116 1.105 4.95 —.371 227 1.400 —.156 .005
X+ 1.189 1.144 4.95 —-.371 227 1.400 —.116 .005
E(©) 1.321 1.289 4.91 —.374 222 1.572 —.136 005
A 1.236 1.233 5.48 —.336 308 1.119 141 0
Z* 1,385 1.382 543 —.338 301 1.292 122 005
E* 1.533 1.529 5.39 —.341 293 1.465 .106 .005
Q- 1.672 1.672 5.35 —.343 287 1.636 092 0
0 17+.01 .783 4.71 —.390 .196 .868 110 0
K* .892 928 4.65 — 395 .189 1.039 .091 004
w .783 783 4.71 —.390 196 .868 110 0
] 1.019 1.068 4.61 —.399 .183 1.207 .076 0
K 495 497 3.26 —.564 .065 1.407 —.415 003
7 139 .280 3.34 ~—.549 070 1.222 —.462 0
GeV GeV GeV-1 GeV GeV GeV GeV GeV
B4 = 145GeV, Z,=1.84, a.=.55 ms = .279 GeV.
----------- EXPERIMENT
BAG MODEL
PREDICTIONS
MASSES USED TO
DETERMINE MOOEL]
_ PARAMETER
Q BV = 0146 GeV
16} Z, =184
*
[ W = 055
141 52 mg =0.279 GeV
1.2+ 8 Seeeesrreene
A\ varasnaass
= 1o} O crerereen
& N K ererreoers -
= 081 W rersrersren
0.6+
K ARLAALALSANL
G4
02+
0 J=13/2 J=1/2 J=1 J=0
BARYONS MESONS

Fig. 9
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is fit. With the parameters so determined, we can then calculate the masses of all the other
light hadrons, a total of nine masses. As can be seen from Table I and Fig. 9, the results
are in generally quite good agreement with the experimental numbers. No attempt was
made to make a best fit.

We have omitted a calculation of the masses of the # and #” mesons which cause weil
known problems in the quark model. A detailed discussion of these particles and specu-
lations about how to handle the problems they cause are contained in reference [4].

We have also evaluated other static parameters, magnetic moments, weak decay
constants, etc. These change from our earlier results only because the mass of the strange
quark differs from zero, and because the value of B'/4 is more accurately fixed. The principal

TABLE II
Magnetic moment u/u,
Hadron
Experiment Bag model SU(®6)

N —.685 —2/3 —2/3
A —.240+.021 —.255 —1/3
2 93 +.16 97 1

pACY — .31 13
20 —.53 £ .13 —.36 —-1/3
=) — —.56 -2/3
=) —.69%.27 -.23 —1/3

well tested result is the ratio of the A magnetic moment to that of the proton. The SU(6)
prediction is — 4. We find u,/p, = —0.26 which is to be compared with the experimental
value, —0.244-0.02. The other ratios are given in Table II.

The mean square charge radius for the proton comes out to be 0.73 fm, in comparison
with the experimental value, 0.884-0.03 fm. Thus, our proton is somewhat too small.
This is also reflected in the reduction of the g value for the proton from our previous
result of 2.6 to 1.9. The reason can also be associated with the reduction in radius since
the magnetic moment of a massless quark is equal to 0.2 R. In the case of the magnetic
moment of the quark, the reason it is so small in units of R is because it is gotten by
integrating the product of the large and small components of the Dirac wave function,
and these are almost orthogonal. Any effect that would make the small component larger
would produce a first order change in the magnetic moment. Since the color magnetic
interaction is proportional to the square of the small component and increase in the
small component would make «, smaller since a, was fit to produce the observed SU(6)
splittings.

Finally, we should like to discuss the exotic resonances with more than three quarks.
We can compute the mass of such hadrons which contain no non-strange quarks from
the expression

204 4 Z o
M=n==+ ;BR:"— 2+ ;{” % [n(n—6)+S(S+ 1)+ 31T+ 1)],
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since the color electric energy is zero when all quarks are massless. We use (4.24) for the
color magnetic energy. When we minimize with respect to R we find for the mass of these
hadrons

= % (4nB)"*(2.04n—Zy+% au[n(n—6)+ S(S+ 1) + 311 + 1P~ (4.26)

Using values of o, Z, and B which were fit to the case when n = 3, and expressing (4.26)
in terms of the mass of the nucleon, we have

2.04n - 1.84 +0.125[n(n —6) + S(S+ 1)+ 3I(I + )] *
M =M, ~ .

4.27
3.53 @27
The possible values of § and [ for the six quark bag are (3,0), (0,3), (2,1), (1,2), (1,0), (0,1).
Therefore, it is interesting that the lowest value of M occurs for the case S = 1,1 =0,
which are the quantum numbers of the deuteron. In this case we have

M 0y = M, (2.29).
On the other hand when S = 0 and 7 = 1, we find
M1y = M (2.37)

which is 80 MeV higher.

In the light of these results a recent paper of Fairley and Squires is of interest [13].
They suggest that the nuclear force may be regarded as a kind of chemical force between
nucleon bags. Since, in contrast to the unstable lighter hadrons, the six quark bag can
““decay” into two three quark bags without the necessity of creating new valence quarks,
we might be also to view the interaction between two three quark as a “simple” fission
process. If we assume that the fissioning of the six quark bag is a slow process on the time
scale associated with the motion of the massless quarks, then we may adopt a Born-
Oppenheimer picture where the mass of a deformed six quark bag is viewed as a potential.
The six quark bag can lower its energy by deformation. We then take this energy as the
effective potential which acts on the *““deformation” parameter, which is in this case the
relative separation between the two three quark bags into which the six quark bags can
fission. In this way we get a “potential” which when the relative separation r is zero is
0.29 M higher than the energy of two free nucleons in the S = 1, I = 0 state, and has
the value + 0.37 M in the § = 0, I = | state. At a relative separation of 2R, where R,
is the radius of a nucleon, the potential is zero since the energy of the six quarks is now
just 2M . However, there is as well a region of attraction, when r is less than 2R,. For
as two three quark bags approach each other and begin to overlap they lose volume,
and hence the zero point energy goes down by amount B§V, where §V = loss of volume.
At the same time the quark kinctic energies decrease since the quarks move in the larger
volume of the combined particles. The crucial question is how deep the region of attraction
is. Using the zeroth order version of the bag model, Fairley and Squires estimated that
the depth of attraction was quite deep, a few hundred MeV. It is clear that one must now
try to do a quantitative calculation of the potential using the refined version of the bag
model including the color-gluon effects. If the region of atiraction is deep enough, we
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will obtain an effective short range potential which is attractive at distances ~ R, but
at short distances, repulsive, thus it will have the form that we associate with the nuclear
force. It is interesting that the repulsion is finite so that we have a “‘soft” core. It is also
interesting that the repulsion is lowest in the state where S = 1, I = 0 which is the only
two baryon state which is bound (deuteron). However, the repulsion is only 80 MeV higher
in the § = 0, I = 1 state, and this is qualitatively consistent with the existence of a virtual
state with these quantum numbers in the two nucleon system.

5. Conclusions

We have seen that the bag model qualitatively yields a satisfactory unifying picture
of many different aspects of hadron phenomenology.

A crucial role in this is played by the colored vector field, which we have argued
accomplishes the following. It explains the quark statistics. It accounts for the absence
of hadrons with quark quantum numbers. It is responsible for an asymptotically linear
Regge trajectory with the same slope for gq mesons and three quark baryons. It leads
to a qualitatively satisfactory picture of the bare pomeron. It gives rise to a spin-spin
force between quarks which gives a quantitative understanding of the lowest mass meson
and baryon multiplets. It explains why there are no stable higher quark baryons, and it
gives at least a suggestive reason of why the deuteron is the lowest two baryon state.
However, we were able to see that the color gluon interaction accomplishes all of the
above because it was formulated in the context of a confined field model, that is, the bag
model.

Editorial note. This article was proofread by the editors only, not by the author.
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