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We discuss the origin of inter-hadronic forces in the M.I.T. bag medel and are led to-
consider a method of quantisation in which the boundary of the bag is a quantum variable.

1. Introduction

In recent years the quark model has had an impressive record of successes in ex-
plaining the interactions of hadrons, so the hypothesis that hadrons are in some way
“made out of quarks” has gained much support. Unfortunately some of the required
quark properties are contradictory; for example, deep inelastic scaling suggests that quarks
are light and essentially non-interacting, whereas the non-appearance of free quarks can.
most readily be explained if they are very massive and have very strong interactions.

The M.L.T. bag model [1] provides a convenient relativistic way of confining approx-
imately free and massless quarks inside hadrons in such a way that only the observed.
hadronic states can exist. The confining mechanism is defined by a “‘pressure” parameter B
which is fitted to the mass of the baryonic state (the nucleon) and which then yields approx-
imately the correct size. In this first approximation the quarks do not interact so it is
pertinent to enquire about the origin of nuclear forces, i.e. the forces between hadrons,
in the model. Of course these forces could arise from the explicit quark-quark interactions.
which are ignored in first approximation (but which certainly have to be present) and
indeed it is under this condition that we obtain the “additive quark model” rules for high
energy hadronic interactions [2]. We shall show however that, even without the inter-
-quark forces, there is a large hadronic interaction arising from the binding effect in the
original Lagrangian. Indeed this term in the classical model appears to be too large and
we are therefore led to revise the quantisation procedure of Ref. [1], so that the “length™
becomes a quantum variable and has a kinetic energy associated with it.

In so far as this model gives a significant contribution to the hadronic interaction it
appears at first sight that the additive quark model rules are purely accidental. However
it should be noted that these rules in practice usually involve f-channel Pomeron exchange
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which, being a diffractive effect, has no place in classical scattering. It is unlikely, therefore,
that our calculations have anything to do with the Pomeron, which could well arise primarily
from direct quark-quark collisions.

In this paper we are interested mainly in general ideas rather than in making specific
predictions so we shall, except for a few remarks, work in one space dimension and consider
bags containing charged scalar fields. In the next section we describe the classical one-
-dimensional M.L.T. bag ground state (the “‘nucleon”) and show that the model gives an
unrealistic ““deuteron”. We suggest that this is because we have done a classical rather
than a quantum calculation.

In Section 3 we analyse the scattering of two one-dimensional bags [3] and show
how we can use this to extract information about the interaction potential between two
bags [4]. We use this information in a “‘Schrédinger equation for the deuteron” which
we discuss in Section 4. Some corrections to this, which might yield a reasonable value
for the deuteron bound state are discussed in Section 5.

The Schrédinger equation used in Section 4 was obtained by a plausibility argument
(classical scattering = potential => Schrédinger equation) rather than by direct quantisation
of the original Lagrangian. In Section 6 we show how it is possible to quantise the theory
in such a way that the length appears as a quantum variable. We obtain a Schrddinger
equation in which the “field” and “length” are coupled. We discuss approximate solutions
to this, in simplified situations, in Section 7.

Finally we draw attention to a problem which arises through the infinite zero-point-
-energy which inevitably arises when all modes of the field are included in the calculation.
We suggest that it is not adequate to simply subtract an overall (infinite) constant from
the final answer, but that it is necessary to formulate the problem in such a way that it
does not appear — the crucial point being that one normally solves problems in nuclear
physics for example with finite mass nucleons.

2. The classical one-dimensional bag

The one-dimensional bag, with complex scalar fields ¢,, is described by the Lagran-

gian [1]
f dx[Zlaj 2 z
ot

Bag (s) @

0,
0x

—B] . 2.1)

Here « labels, for example, the type of quark. We use units in which # = ¢ = 1. This
leads to the free field equation

o, 0,
or? oxr
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inside the bag, and to the boundary conditions

¢, =0 2.3)
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and
2, |?
ox

= -B (2.4)
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at the ends. Note that we are using the Dirichlet boundary conditions rather than those
that follow directly from (2.1). This point is discussed in References [1] and [3].
The charge normalisation conditions for a single particle to be associated with the

field ¢, is
f {¢a «0¢a ag’t“ ¢a} dx = 1. (2.5)

Bag

We consider a static bag with ends at x = +44/2. The ground state solution of (2.2),
satisfying the boundary condition (2.3) and normalised to unity according to (2.5) is

¢, = (1//7) exp (—int/a) cos (nx/a). (2.6)
The non-linear boundary condition (2.4) then gives
a? = —N—n 2.7)
B

where N is the number of fields in the bag, i.e. « runs from 1 to N. Thus, when we have
chosen B, the length and the fields are determined.
The energy, which is the mass since the bag is at rest, is given by

- 2 2
M = J. dx [Z 0;“ + Z ‘:i +B] (2.8)
Bag 3 4
= 2BaN (2.9)
= 2(nBN)'/* (2.10)

on using (2.7).
To form a “proton” we would put three different quarks in a bag, i.e. N = 3. Then

M, = 2(3nB)%, 2.11)

and we can choose B to obtain the correct result. However a bag can also contain 6 quark
fields (still in a colour singlet as required — see Ref. [1]) and, by choosing these suitably
we would have the quantum numbers of the deuteron, with mass

= 2(6nB)*. (2.12)
The resulting “binding energy” is
& = (2-2")M, ~ 059 M,. (2.13)

This binding energy is much too large and the situation is not improved much if we
do the corresponding classical calculation in 3 dimensions using spinor quark fields [5].
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The resulting binding energy is then
& =(2-2YM, ~ 032 M,. (2.14)

It is clear that the state we have obtained is very unlike the deuteron. Its binding
energy is too large and its radius (*,/ 2 times the proton radius) is too small. This, however,
is not surprising since we would not expect to obtain the deuteron correctly in a classical
calculation. The classical deuteron would have the neutron and proton stationary at the
deepest part of the interaction potential. This would be at the centre, i.e. zero separation,
unless there is a hard core. Thus, in our opinion, the reason why this calculation gives
the wrong result is that we have ignored the kinetic energy of relative motion which is
essential in a proper quantum mechanical treatment. Note that in a standard nuclear
physics calculation of the deuteron the hard core plays very little role — it is quantum
mechanics not repulsive forces that give the deuteron a large radius.

Thus we wish to turn from a classical treatment to a quantum mechanical one. Clearly
to make this simple we would like to separate the problem of the internal dynamics of
the two bags (the neutron and the proton) from that of their relative motion. The standard
way of doing this is to find the interaction, say from scattering, and then insert this into
a Schrodinger equation. To this end we study scattering of two bags [3].

3. The scattering of two one-dimensional bags

The general problem of the scattering of bags is the solution of the wave equation (2.2)
subject to (2.3) and (2.4), with given initial conditions. The initial conditions can be obtained
by taking the static bag solutions, and performing Lorentz transformations on them so
that we have two bags which, at ¢ = 0, join. From then on we have one bag until some
later time when it again separates into two. It turns out that the solution to this classical
problem is trivial in one space dimension but is extremely difficult (or impossible?) in
more.

To see why the problem is easy in one space dimension we define, following Ref. [1],
light-cone variables

zt = -—1—(t+x) 3.1

NG

in terms of which the wave-equation becomes

¢
= 3.2
0z 0z~ G2
with general solution
be = e (22 (27) (3.3)

for any functions x*, y~. The linear boundary condition becomes

X @ @ N+ (z7) =0, 34



897

where z{z7), i = | and 2, are the end points. If we differentiate this w.r.t. z— we get

dys dzf  dy;

T e = 0. 35
dzt dz”  dz” @)
The non-linear b.c. is
2 : dy. dxz
2 R = —2B. 3.6
¢ dz*t dz~ (3.6)
Cdx] .
Eliminating —— from (3.5) and (3.6) we obtain
dys |?
2 E d"_
dz/ =~ (3.8)
dz= B ' )
. . . . dz{  dzy
Since the r.hus. of this equation is independent of J, it shows that e = e so that
2 Z
the ““length’ measured at fixed z— — and hence by the same argument also at fixed z+ —is

constant. Note that this argument is unaffected by the presence of several fields. We shall
see that these conditions determine the scattering.

| \ \/ —-/f:?()/(bvo}
7N
7 N

Fig. 1. Showing the collision of two one-dimensional bags

For this purpose we refer to Fig. 1 in which we see two (identical) bags moving with
velocities vy and ~v, respectively. At ¢ = 0 the two bags collide. The outer boundaries
cannot know about this collision till a light signal from the point of collision can reach

them, ie. at 1 =

. So, up till this time they continue to move with velocities v,
Vo
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and —v, as before. What happens after this time is then determined by the constant length
condition, for example, the right-hand boundary of the right-hand bag has to move with
the same velocity as that of the left-hand boundary of the left-hand bag prior to the collision,

i.e. vy. Thus the situation until ¢ = is as shown in Fig. 1. At this time the bags

Uo
are free to move apart again and we assume that this is what happens. (They do not have

to move apart [3] but could remain together and “‘breathe”. The Lagrangian does not

. . . 2a
uniquely determine the motion at points such as f = T )
ro

Although this is not clear from Fig. 1 it is easy to see, by considering bags with
different fields or bags of different length, that the two bags pass through each other (rather
than bounce back). The diagram then clearly shows that they travel on average faster
when they are overlapping than when they are separated — thus we have an attractive
force. At least the model will give the correct sign to the nuclear force!

4. Quantised model of interacting bags

We now take the “potential” obtained from our solution of the scattering and use
it in a Schrodinger equation [4]. Let x be the separation of the centres of the two bags,
then this equation is

h? d*yp
2M,[2) dx*

+V(x)p(x) = Eyp(x). “4.1)

We relate ¥(x) to the relative velocity 2v by using conservation of energy:

M M
} (-2—) @) = 3 (—2-) (209° = V(). (42)
Now the time taken by the two bags to pass through each other < ) is related to
Ug
2v by

+a
2a "~ dx 43
l+e, [ 20 (4-3)

+a
i dx 44
) [k +@viM)]? “4

-a

where, to obtain the last equation, we have substituted for v from (4.2). Thus our scattering
solution gives us an “average” of the potential. It is clear from (4.4) that the potential is
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velocity dependent so, since we are interested in low velocity we put vy = 0, when (4.4)
becomes

adx _ 2a
SV VM,

To proceed we must know the shape of the potential. In principle, if we could attach
an unambiguous meaning to the position of the individual bags during the time when they
are in contact, this could be determined from the scattering solution. However this is not
possible so we must guess the shape. If we take a square well, with range a, then we have
a depth of (0.25 M), which is about 6 times too large to give a zero binding energy
deuteron.

To make a more realistic guess we recall that the classical solution appeared to corre-
spond to putting the particles at the centre of the potential, in which case V(x = 0) would
be equal to the binding energy, i.c.

(4.5)

V() = 2-2HM,,. (4.6)
Then, parametrising the shape by
2p
V(x) = V(0) [1— ’f] , 0<x<a @7
a
we find from (4.5)
p~1/9. 4.8)

The resulting potential is now too large by an overall factor of about 5; it gives a binding
energy ~ 100 MeV.

It is important to note that the effect we are considering is not small. The classical
binding energy (2.13) was 0.59 M, whereas the binding energy is now ~0.1 M. Thus
we claim that it is essential to do “quantum mechanics” in order to understand nuclear
forces in bag models. '

5. Towards a more realistic deuteron

(i) The essential step to make the previous calculation realistic is to solve the classical
scattering problem in 3-space dimension. This is a problem in partial differential equations.
We know the ground state solutions for static spherical bags. By a Lorentz transformation
we can arrange for these to move with a given velocity and can therefore calculate the
fields inside two bags at the moment when they collide for any given impact parameter,
This gives us the initial condition and we then solve the wave-equation (actually the Dirac
equation if we use spinor fields) with fields that are zero on a given boundary. This boundary
moves with time and the problem is to find the boundary as a function of time such that
the non-linear boundary condition remains true.

Unfortunately we have not managed to do this calculation. If we had we would know
the differential cross-section for the scattering of the two bags and could therefore compute
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the effective interaction potential as a function of separation. (There would, incidentally
be other aspects of calculation which would be interesting. Do the bags always come out
in their ground state or do we have “inelastic” scattering? Do we even perhaps have
a 2 — 3 process?).

Without such a calculation we make one crude (and perhaps meaningless) estimate

of the effect of going from 1 to 3 dimensions. By comparing (2.13) and (2.14) we see that
__13/4

the effect is to reduce the value of ¥(0) by a factor =~ 0.54. We assume that a similar

2__21/2
factor corrects the potential at all separations. Solution of the Schrodinger equation
(in 3 dimensions) then leads to a binding energy of about 70 MeV or to a potential which is
too deep by about a factor 2.

(i) It is clearly foolish to expect a realistic evaluation of the mass of a deu-
teron in a model in which the N and the 4 for example are degenerate. There is no
way in a bag model to break this degeneracy without involving quark-quark interactions.
Such interactions will also contribute to the deuteron binding energy. To see the possible
effects of this we consider an interaction between two quarks (1 and 2) given by

V=A‘tl'12+B0'1'0'2+C11'120'1'0'2, (5.1)

where A4, B, C are functions of the separation of the quarks. The contribution of this
to the 4, N mass difference is

A—-N = 6{4>+6{B)~12(C>,

where (A4, etc., are averages over the appropriate quark separations in nucleons (we
assume the 4 and N have the same size). Correspondingly the contribution to the deuteron
binding energy is

88 = 3(AY;—(BYs+ % (CDg,

where (4,4, etc., are suitable averages over quark separation in the deuteron. There is
nothing more we can say without further assumptions about the relative magnitudes
of A, B and C and about the force range. For example, if we assume that the three terms
contribute equally to the 4—N difference and if we ignore the difference in size of the
Nucleon and the Deuteron then we obtain a contribution of about —35 MeV to the
deuteron binding energy. Other assumptions give very different values but unless the A
term dominates we are likely to get a contribution which decreases the deuteron binding
energy. Although the effect of the deuteron size will probably make {(A4)4 < {(4), etc.
it is, as we noted above, unrealistic to expect to calculate the deuteron energy until we
have a gocd model for the g—¢ interaction.

6. Quantisation of one-dimensional bags

Quite apart from the “technical” problems of taking into account the 3 dimensions
of space and the inter-quark interactions in order to obtain a realistic description of nuclear
forces, our procedure so far is inadequate at a more fundamental level. We have solved
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a classical scattering problem and used the result in a Schrédinger equation to find the
bound states. This is wrong because the scattering problem and the original free states
should also be treated quantum mechanically, and there will be coupling between the
separation and the fields during the time of overlap. What we should do is to obtain
the Schradinger equation for the energy eigenstates directly from the Lagrangian. Hope-
fully, in some approximation, we can reproduce results like those of Section 4 for the
one-dimensional “deuteron”. We shall see that our method leads to a very complicated
equation and at this stage we are some way off an understanding of the deuteron problem.

In the quantisation procedure given in Ref. [1] the deuteron binding energy would
not differ greatly from the classical value found in Section 2. Certainly there is no way
whereby a term corresponding to a kinetic energy associated with the relative position
could arise. This is basically because the length of a bag is not, in this treatment, a quantum
variable.

We propose to modify the Lagrangian to remedy this “defect”. To do this we impose
the condition that the field ¢(x, t) is zero at the end points x = +a/2. We do this before
we quantise the theory. Thus, we put (for a bag containing a single scalar field ¢):

¢=1 % (X, (O+iY, (D] [exp (innx/a) —(—1)" exp (—innx/a)] 6.1)

which is certainly zero at x = 4a/2. We allow the length (a) to be a function of 7. On
inserting this into the Lagrangian (2.1) and doing the x-integration we find

= a._ . . a? n’n?
= “[XZ+YH ]+ — 1+ X247}
L=y fuene o (1 e

2
77.’n2

2a

i . -
+ E[Xan'*' YnYn]_ (Xn+Yn)} —Ba. (6.2)

Note that an a? term now appears in the L so that the length is associated with a “kinetic
energy”’. Thus we can regard a, together with X, and Y, as quantum variables.
Using (6.1) we can express the normalisation condition (2.5) as

1=ayX,Y,~Y.X,) (6.3)

The operator on the right is a “first class™ constraint (it commutes with the Hamiltonian),
so we impose (6.3) not as a relation between operators but as an expectation value, i.e.
we require acceptable eigenstates to satisfy:

1) = (¥la Y (X,Y,— X, 1) ¥ (64

To do this we introduce the Lagrange mutiplier A by adding the term A[l —a) (X, ¥,— X, )]

to the Lagrangian, and then determining 4 by (6.4). Later, we shall see that in our solutions
we can put 1 = 0; we do not understand why.
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To find the stationary states we use the Feynman Path Integral method {6]. The
details are rather messy and lead to a Schridinger equation which we can write in the form

3 (1425
1+ X2+ Y
1 oy 4“ ( 6

EY = — - 7.2

2.2 Fi 2
) TEa ks ) (e

S )
Z {a’w > 3\ e, oy,
x gy — —
ax2 ay2} 2.2
- O ZZ(H nr )(X3+Y:>y2

n

3
o2y o’y n’n?
X Y, 54 — J(X2+ Y2
Z( " oyox, | "ayaYn> z( 3 >( )
+ - 2_2 + = 2.2 2 W

y2

=
+
=
w| 3
S
~~
D
L N
+
o
N
<
P
[y
+
=
Al )
—
~—
>
[ 8
+
=~
>

5+ nzﬂ:z
3 2
+ -y Y+ —s E n(X:+ Y)Y
3 z :( n‘n 2y

1+ T) X2+ Yy n

122

+ 22 E (X2 Y2}¥ +By*¥ -2V, (6.5)

2

where we have put
y = @ (6.6)

This equation shows the expected coupling between the length of the bag and the
amplitudes of the various nodes. Clearly it will not be a trivial problem to find solutions!
We therefore turn in the next section to some particular “approximations” which illustrate
what will be involved in finding a complete solution.

7. Approximate solutions to the quantum problem

(i) We first consider a solution in which a is kept fixed. Although this is contrary
to our aim it helps to understand the nature of the solutions to (6.5) (and some of the
problems we will encounter in finding them). We can fix a by ignoring the d terms in the
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Lagrangian. Since we are interested in the ground state we also restrict ourselves to solutions
with no “nodes”, i.e. keep only # = 1. The Schrodinger equation becomes

2 2
(E+1—Ba)¥(r, 0) = — %(%Tf + % Z—Y:) + g(% +/12) 2y
o 1 oY
+M_&5_§5;2W’ (7.1)
where we have used polar coordinates (r, #) defined by
X, = rcos @, Y, =rsin0. (1.2)

To evaluate 4 from (6.4) we need operators representing X, and ¥;. Defining, for
example, the momentum conjugate to X,

d
= —f— 7.3
Tx laX (7.3)
we have
JL .
Ny = 5—X1 =aX,—al¥ (7.4)
so that
. ) i 0
X, =AY, — —
a 60X,
and
. i 0
Y, = —-AX,— — —. 7.5
i o, (1.5)
Then (6.4) becomes
a
(P = K Plar? 1P +i <qf ] ”—HI av> (7.6)
0

It is immediately obvious that we can satisfy (7.6) with 2 = 0 by taking

Y(r, 0) = e 0¥(r). 1.7
Putting this into (7.1) gives
1 (0P 10¥ n? 1
E-B == — |2 + -+ — PP 7.8
(E-Bayy() = = o <6r2 Ty 61’) T2 2ar 78

This is a harmonic oscillator in two dimensions and the lowest solution is

Y(r) = rexp (—nr?/2) (7.9)
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with energy

2n —
Ey = Ba+ — = 3/nB (7.10)

£
{(where we have put a = \/ R its classical value).

The lowest solution of (7.1) with A = 0 is not given by (7.7) and (7.9) but is the
“empty bag”, i.e.
¥(r, 0) = exp ("nr?/2) (7.11)
with energy
Eo = Ba+nja = 2,/zB. (7.12)

This is the zero-point energy of our system. If we subtract this energy from the single
particle state and call this the mass then it is one-half the classical single particle energy
2,/7B.

It is possible to find other solutions of (7.1) and (7.6) with A # 0. In particular one
can find a solution containing a single particle with a ¥ independent of 8. Its energy is
(1—;—2\/5)(7:8)’*' and is higher than that with 4 = 0. We have no understanding of the
meaning of this ambiguity so from here on we put A = 0.

The presence of the zero point energy will prove an embarrassment particularly when
we remember that we have so far included only the lowest excitation of the field ¢, i.e.
with no nodes. In fact there should be a zero point energy for each excitation state of ¢,
so the total zero-point energy will be infinite, i.e. the empty bag has an infinite mass. Just
how we “‘subtract” this may well be important in the following discussion.

(i) Here we consider the fully quantised problem for a single field without nodes.
The Schrodinger equation (6.5) simplifies to

1 1 o*v 1 0¥ 1 °¥
1+7%/3

27 3% T ary or " ry aroy
1+7%6[1 &*% 1 aep+ 1 oy
1+723[y? ér*  ry? or  r*y* o6*
n*r? (5+7%3) (5+27%3)

+ J—
2y* 6(1+72/3)*r?y?

¥+ By*V. (7.13)

We have not been able to find exact solutions to this but have found approximate eigen-
states by a variational method. For example, if we use

¥(r, 0, y) = ry* exp (—ar?—yy?) exp (—ipb), (7.14)

where p = 0 for the empty bag, and p = 1 for the bag containing a single particle, and o
and y are variation parameters, we obtain

E, = 4.14 /nB (7.15)
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with « = 1.21; y = 0.34,/B for the empty bag and
E, = 4.48,/7B (7.16)

with o = 1.04; 7y = 0.32\/3 for the single particle bag. Note that these energies are
higher than the corresponding energies when we do not include the kinetic energy of the
boundary. Naturally they could be lowered by improving the trial wavefunction, but some
efforts in this direction suggest that the effect of this is unlikely to be large. The difference
(E; —E,) is actually smaller in this case than in the case of the classical length — although
this result, being a small difference between two numbers, could be altered by improved
trial wavefunctions.

8. Discussion

It is clear that we cannot make any further progress until certain problems are under-
stood. Chief among these is the question of the zero-point energy of the various field modes.
In (6.5) we see that the “mass” associated with the motion of the boundary is Y (rj)?
which will be infinite if all the modes are allowed. One interpretation of this is to accept
the result, in which case the quantisation of the boundary would be irrelevant. However
we would then be back to the classical “deuteron”, which is not satisfactory. One can
indeeed see what has happened here. In the model with all modes included the particles
have infinite mass (the sum of all the zero-point energies). If we solved the quantum mechani-
cal deuteron with nucleons of infinite mass then the classical solution would clearly be
the correct one. (If a variable x is associated with infinite mass then the large conjugate
momenta which arise through the uncertainty principle when its value is fixed at some
classical number do not give any contribution to the energy.) Thus it would be wrong
to calculate the deuteron with infinite mass nucleons and then to subtract the (infinite)
sum of the zero-point energies. What is needed is some way of rewriting the Lagrangian
so that the zero-point energies are automatically removed. We have not yet found a satis-
factory way of doing this.

Another source of ambiguity appears to come from the method of quantisation. If
instead of using the Path Integral method we use canonical quantisatién rules, starting
from the Lagrangian (6.2), we seem to obtain results different from those expressed in
(6.5) and (7.13). We do not understand the origin of this difference.
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