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ON THE QUARK SELF ENERGY AND A NEW WAVE
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A model of coloured quarks interacting through non Abelian vector gauge potentials
is analyzed. Conditions are described under which the self consistently determined quark
mass equals infinity. A covariant bound state equation for color singlet mesons is derived
which is three dimensional. The Regge trajectories predicted by such a model cannot rise
indefinitely.

1. Introduction

The recent discovery of the narrow 1~ resonances at Brookhaven and at SLAC has
provoked a vast amount of speculation and model building designed to explain this new
phenomenon. There is as yet no general consensus as to what the correct group for the
strong interactions must be, but there are several strong candidates. This article focuses
on dynamical problems facing some of the theories which attempt to underwrite these
simple phenomenological models [1].

Hadronic model building conveniently begins with a set of fundamental Fermion
variables y(x) interacting via vector gauge potentials A% x) (with corresponding field
strengths F4%(x)). The perennial problem facing such theories, however, has always been
the “mass zero character” of the Yang Mills field. No one has ever seen massless strongly
interacting particles, and gauge invariance prohibits the introduction of explicit mass
terms for the vector degrees of freedom. It will prove useful to divide gauge models into
two classes according to how they deal with this “infrared problem”. Class one theories
we call superconductor models.

2. Superconductor models

The name is borrowed from solid state physics and connotes in this context only
that some scalar operators of the theory develop non vanishing vacuum expectation
values. The local (but not the global) gauge symmetry is spontaneously broken, the
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vector degrees of freedom become effectively massive and the infra-red difficulty disappears.
Typical models are the original Han-Nambu model having SU(3)' x SU(3)"" as the basic
group and the MIT bag model (SUN)xSU(3) (color)). In the latter case one widens
the superconductor notion to include the simultaneous coexistence of regions of normal
and superconducting phase.

Class two theories we call Kondo type models.

3. Kondo models

Here one explicitly assumes that the local gauge symmetry is #or spontaneously
broken, the IR divergences are welcomed as a virtue rather than being regarded as a vice,
it being hoped that they are responsible for the non-observability of the quark and ultimately
for gluon self-confinement as well. As the complementary aspect to the asymptotic freedom
enjoyed by such theories Glashow termed this possibility “infrared slavery”. The rest
of this article is concerned with studying under what conditions (if at all) such IR quark
self trapping can obtain. It is, furthermore, not our intenstion to discuss phenomenological
implications of any specific model; however the strong group G, we will have in mind will
be G, = SUN) x SUQ3) (color) [2]. The “experimental package™ of bare facts our theory
will be required to explain is taken to be:

(i) The physical, renormalized free quark mass m = co. There is no spectrum of single
quark states. If finite mass quarks are discovered, the model is to be abandoned.

(ii) The lesson learned from deep inelastic electron proton scattering is that quarks.
“inside” hadrons (what precisely is meant by ““inside” will be defined later) behave as.
if their effective mass is small, of the order of a typical hadron mass.

(iii) The physical low lying hadrons are color singlets.

(iv) There can be no strong, long range correlation effects between the observed
hadrons. Strongly interacting mass zero particles have never been detected. Any such
long range colored gluon effects must be dynamically suppressed.

4. The Kondo effect

As a field theory is defined by the totality of its set of coupled Green’s functions,
“solution” of the theory (in the absence of a small expansion parameter) must proceed
via Ansatz and the demand for selfconsistency. In practice one guesses likely behaviour
for one (or several) Green’s function(s), assesses the influence of that guess (by using the
equations of motion) on other functions and then tries to prove that the whole procedure
is self-consistent. Of course one can not make random guesses. There must be a unifying
physical picture that suggests Ansatze and guides in making approximations. We now
discuss the solid state phenomenon which gave this section its name — the Kondo
mechanism [3].

Imagine at time ¢ = 0 a high energy X ray digging a hole, a localized spin } impurity,
deep in the conduction band of a metal (Fig. 1) and ask the question: “is this state likely
to persist in time as localized spin £ ?” Kondo materials are defined to be those whose
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Hamiltonian contains a piece 6H = gs-S(x,?) where s represents the impurity spin,
and S(x, t) denotes the long wavelength, collective spin waves in the solid. The spin waves
carry spin and as such are capable of transporting spin out of the initial region of locali-
zation. Seen in another light, states with impurity spin up (down) and an arbitrary number
of spin wave quanta, due to the long wavelength nature of S(x, t) are degenerate in energy.
Thus the passage of time induces an uncontrollable averaging over the up(down) configu-
rations available to the impurity resulting in a (locally) observed value of zero. Such an
averaging is not expected unless the bosonic degrees of freedom are infrared. Conclusion:

&) | ®
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Fig. 1 Fig. 2

a state, to be long lived must be an eigenstate of all elementary processes available to the
system. A localized (particle like) spin { impurity does not satisfy this criterion.

Imagine now the more difficult experiment in which not a single hole is created,
but an “exciton” having a spin up and a spin down tightly bound in a state of total spin
zero. (Fig. 2). Just as above we can ask whether this “particle” is likely to persist in time
as a localizable state. Because the exciton has s = 0 it decouples from the long wave
length spin waves (which couple to spin) and is therefore insulated from the IR mechanism
which doomed a single isolated spin impurity to “‘disappear”. Thus we expect that s = 0
excitons will persist as long lived particle like states.

The relevance of the Kondo phenomenon for our quark colored gluon model is drawn
by making the identifications

Spin } impurity <—— colored quark

Solid <—-» physical vacuum
Spin waves S(x, t) <—-> colored Y.M. gluons
§ 4 0 excitons <—= color singlet hadrons.

5. The gquark self-energy

Questions concerning the quark spectrum must be addressed to the equation for
the quark self-energy.

k
(Z£y%ﬁ@—kﬂﬁp—k?W$W) )

It will be convenient to define G~*(p) = A(p*){yp+m(p?)}. The first Slavnov identity [4]
guarantees that the gluon propagator can be written
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with & the covariant gauge parameter and d(k?) an invariant dimensionless function.
Using the physics of the Kondo mechanism as a guide we write down Ansitze for d(k?)
and I'y(p—k, p):

(i) The physical vector gluon spectrum extends down to zero mass so we set

0 \He)
d(k?) = < - ) +1, 3

k*—ie

where A(g?) parametrizes the strength of the cut at k% = 0 and will be assumed positive.
The ““1”” in Eq.(3) is intended as a rough estimate of the expected ultraviolet behaviour
of the gluon propagator [S].

(ii) The coupling in the limit of long wave lengths persists (infrared spin waves can
still cause spin flipping) which we take to mean

Iy (p—k, p) = 7't @

The final technicality to be resolved is the question of gauge. We refer the reader
to Ref. [6] for details. Suffice it to say that the dependence on the invariant function A(p?)
can be eliminated (near the quark mass shell) with the eigenvalue equation for the quark
mass becoming

m(p*)| - pramz = m. )

As a function of m,  and an infrared cut off u [7], we obtain

QZ A

(7) B(l+2,1-21) 0<A<}
_38%C Iy )\ ©)
" (n)? T(1+4)

L(%) —";‘1 ) <A

8
C, is the Casimir operator defined by ) 1,0, = Co 1 and C(4) a real constant. From
a=1
Eq. (6) it is clear that for 4 > 4 (in the limit u — 0) the IR divergence is sufficiently
strong to force the renormalized mass m to infinity. This is the regime for which total
confinement occurs. If, on the other hand, 1 < § there is no dependence of m on the IR
cut off! The quark mass in such a theory remains finite, mass zero gluon effects are expected
to be non-negligible and therefore on physical grounds such a model is to be rejected [8].
From now on we assume that A(g?) > 4, where the degree of divergence of the quark

mass is given by
1 2i-1
m(p) = (—) . )
u

Physically what has happened here is that the real part of the quark self-mass has received
an infinite contribution from soft Y.M. radiation.
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Conclusion If /g2 <}

(i) x(x) produces states of infinite energy when acting on the vacuum.

(ii) An arbitrary operator carrying color quantum numbers we expect to suffer the
same fate as the Y.M. fields must couple universally to color wherever it be found localized
and in whatever form.

(iii) Color singlets (the candidates for our physical hadrons) decouple from the
massifying soft radiation and can have finite energy.

There remains a serious problem however. While it is true that m — oo removes
“free quarks” from further consideration what about the confinement of the (assumed)
massless gluons? As already mentioned in the introduction zero mass effects between
strongly interacting particles would make this model unusable for hadron physics. But
this question can only be resolved by first spelling out the details of the hadron structure
implied by the model, and then looking to see if unwanted effects can appear. Let us
begin by studying the mesons.

The mesons

The first feature we notice is that since G(p) is effectively zero all Bethe Salpeter
equations are homogeneous, as is to be expected if no free constituent states can be produced.

2

the equation depicted in Fig. 3. To understand physically what must happen in the limit
XO
m — oo recall the meaning of the relative time variable appearing in @p(x). At t = — 5

x\_/x
Defining the bound state wave function @p(x) = (Pl( X (-2-)1 (———))+|0> one normally solves

the operator x acts on the vacuum and produces a “particle”. After the elapse of x° seconds

- X E‘—-mp

Fig. 3

the operator y acts to produce the companion “anti particle”; the objects proceed to
interact and evolve into a bound state. Thus x® meusures the length of time one constituent
can exist by itself before it’s bound state partner is even created. There is no logical objection
to this possibility when the constituent mass is finite. However, as m — o0 it becomes
impossible to create one of the partners alone, thus leading us to expect that in some
sense @p(x) &~ 0 unless x° ~ 0, or said another way that the internal configuration space
becomes essentially three dimensional. It can be shown [9] that we define the proper
time © = —(xP)/M(= x° in the rest frame of P*) then in the limit m — o0 &p(x) assumes
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the form
Po(x) = e " pp(x), (&)

_ PEPY — LpY - —
with x* = [g‘”~— Pz ]xv; = [g‘”—— P ]Pv and xP = pP = 0. The four dimen-

sional internal Minkowski space {x*} has shrunk to 2 hypersurface in that space given
by {x*; xP = 0}. Furthermore if one expands @y(x) in Dirac bilinears

= 1¢°+y59" +¥" g+ ivspu +3 0", ©®
only ¢ and ¢" remain non zero in the m — oo limit. The amplitude ¢ = y5¢™+7"¢),

satisfies
2

— _ — Cog _
3 M+yD)pu(®) 3 M+yp) = — D y(X)y o2, (10)

where we have written the r.h.s. in the ladder approximation for definiteness, but the
whole derivation goes through for the general kernel X. We now summarize our resuits:
(/) Equation (10} is covariant, but essentially three dimensional.
(ii) For 2 >4, m~ (c0)**71,

(iif) The vanishing of ¢°, ¢*, ¢” in the m — oo limit has provided us with the states
expected from the naive non-relativistic quark mnemonic, namely p and m.

(iv) SU(6) is intrinsically broken as ¢ and @, satisfy different (though similar)
equations. This is due to the vector nature of the colored gluons.

(v) Not only quarks (i.e. the 3 representation) have infinite mass, but rather all
localizable color carrying states as well [10].

(vi) The appearance of the mass 4M in the effective inverse quark propagator M +yp
“‘inside” the mesons is at least an heuristic suggestion that the effective quark mass m,; = 1
the meson mass. This will be important for studies of the deep inelastic structure functions.

(vii) Tt can be shown from Eq. (10) that the (pion) amplitude ¢™(x), in the rest
frame of the vector P* obeys

2
{_VZJ“ [' Sof- gaﬁD“”(ﬂ]} P"(x) = —1 M?e™(). an

Despite it’s Schroedinger like appearance it is to be emphasized that we have not
made a non-relativistic approximation. It is well known that in the weak binding limit
(set P° = 2m+¢, g/m < 1), that is to say for calculating bound states which lie just beneath
the constituent threshold (Fig. 4) the non-relativistic assumption is justified and one

99
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obtains (as in the case of positronium) the equation

m 47 (x|

I’2 .11
{_ _g L -—} ) = e, (12)

Note, however, the explicit appearance of the constituent mass m. It is m that provides
the dimensional scale for the weakly bound spectrum. By contrast, in equation (11) the
scale is fixed by the mass © contained in D™ and is applicable for strong binding, i.e.
when the mass deficit is of the order of the constituent mass itself.

Note that one can formally write Eq. (11) in the form Eq. (12). Dividing by 1M we
find

\ 4C,g*
{" YV [“ i g«ﬁD”(x)]} P = —Mg™(), (13)

suggesting by analogy m. = 1M. In any event we can anticipate m S M.
Before discussing qualitatively the solutions to Eq. (11), let us say what we can about
mass zero gluon effects.

Long range forces

Graphs involving “‘single gluon emission” (i.e. the appearance of a single gluon propa-
gator) can be dealt with immediately. The process 1 — 1+8 (Fig. 5.) is forbidden by group
theory. The process 1 — 848 (Fig. 6.) is likewise irrelevant as hadronic octet states are
infinitely massive. The first potentially dangerous process is depicted in Fig. 7., i.e.

I\ -
o~ N\ \\
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va\;\ é
; ¥
// //
R 1/
Fig. 5 Fig. 6 Fig. 7

correlated two gluon emission into an overall color singlet state, when the total energy
and momentum siphoned off by the gluons tends to zero. But the emission of an infinitesimal
amount of momentum can not change what was a highly localized hadronic (1) state

=== -

Fig. 8
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into a delocalized one. But after the emission of the soft gluon (8) one then has a localized
octet state which we have argued to have infinite energy, and hence the amplitude for the
emission of soft radiation is suppressed. But this then means that potentially long range
effects originating in graphs as in Figure 8 will be absent. Thus at least on the level of this
heuristic argument the same mechanism that is responsible for the elimination of physical
quarks and other color carrying hadronic states succeeds in suppressing mass zero gluon
effects. One still feels a bit uneasy that gq annihilation into multi gluons could render
the amplitude in Fig. 7 non zero and ultimately cause the instability of what are supposed
to be stable mesons. We do not as yet have an answer to this question. In any event the
above arguments are certainly not the last word on gluon confinement, but encourages
us to take the next step and investigate the meson spectrum.

The meson spectrum

As we are interested in general features we will concentrate on ¢"(x) because it
is simpler, but entirely analogous arguments apply for gv:,'(x). Write Eq. (11) in the form

{=V2+IM}p(r)=egp(r), (14)
where
Q*ra-xn 1 3g°C, 1
I — __3 ZC I S 24-2 0 =
) 8Co 27 Fazs &1 1 a2 7 (13
and we have identified ¢ = —1M?. The term containing the I' functions is the IR contri-

1
bution, the —- comes from the “1” in Eq. (3) and may be termed the UV contri-
r

bution to the “potential”. It is to be emphasized that any property of the spectrum that

1
depends on the UV term having precisely —- behaviour should be treated with caution.
r

The UV behaviour of D,4(k?) should be calculable in this model and is more likely than
not to turn out different from pure 1/r2

Although Eq. (14) has been written in Schroedinger form we are now presented
with our first surprise. The derivation leading to Eq. (14) has also required that
&= —1M? > 0. This is so because M? = —P“P,, but the Equation (10) could only
be derived from the original Bethe Salpeter equation (Fig. 3.) under the assumption that P
is time like, i.e. M2 > 0. Thus Eq. (14) may have more solutions (those belonging to positive
eigenvalues ¢) than are physically meaningful.

l<ix<l

The potential appears as in Fig. 9. Because it is very long range there will be a progres-
sion of discrete states having g, < 0 crowding closer and closer together as ¢, — 0
and eventually merging into the continuum for & > 0. But since ¢ = —1M? this would
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imply an infinity of low lying meson states — in flat contradiction with experiment.
So for phenomenological reasons the domain 4 < 1 < 1 is to be rejected. Note that
this result is quite independent of precisely what the small r (UV) behaviour of I(r) is.

I{r)
Cariiini - |
= i
1
R
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P
Fig. 9
1< 4
Now the potential grows with distance (Fig. 10). Since I(r) is spherically symmetric,
e
if we set g(r) = Y,(9Q) —(—r)~ then
r
& i+
{'— ;‘1—'3 *-‘;2——* +I(r)—£,,} u,',(r) = 0. (16)
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Fig. 10

. . 1
Eq. (16) points out an important distinction between I’s which behave as — at rx0
¥

and I’s which are less singular. If I(r) is less singular the Schroedinger problem in Eq. (16)
possesses a ground state with spectrum as in Fig. 11 — a finite number of discrete states
having &, < 0. These are our mesons.

1
If I(r) is at least as singular as —-then (Fig. 12) the Schroedinger problem of Eq. (16)
r

does not possess a ground state in the usual sense. There is an infinite sequence of discrete
states lying deeper and deeper in the potential [11]. One usually argues such behaviour
to be unphysical and discards such potentials. Here that would be being a bit hasty as
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e, = —+M?. There is no reason to expect states of low mass to decay spontaneously
into states of higher and higher mass.

The final point we wish to make is illustrated in Fig. 13. Let I(r) generate the spectrum
of Fig. 11 then for / = 0 we will have a finite number of states having ¢, < 0. The pion
is that state lying highest but still below ¢ = 0. As we turn on the angular momentum
barrier the effective potential in Eq. (16) shifts upward causing the pion to move to the

i I(r)
I(r)

~~~the “pion”

the “pion™ r

. 7
" 7 .
__——less singuler than 7 : /at least as singular as r%

Fig. 11 Fig. 12
74
effective Regge
Za—Tamily
AN
\
A

Fig. 13

left. It is easy to arrange the parameters such that by the time we have reached / = 1
what was the pion has passed into the unphysical region M? < 0. However, the ““1st radial
recurrence’ of the = has moved down and looks now like an orbital excitation of #. Fig. 13
contains the author’s conception of how in a model where the mathematical trajectories
of the underlying Eq. (11) move (with increasing /) to the left one can still simulate a Regge
like family structure in the J— M?2 plot. One conclusion is however unavoidable. Since
in Fig. 11 there are only a finite number of “radial recurrences” of the z, effective Regge
trajectories can not rise indefinitely. Three or four states may lic on a more or less straight
line but the family then breaks off abruptly — the trajectory simply ends. For this model
of the meson spectrum the effective linear trajectories are more a dynamical accident
than anything else. One shuld perhaps ask the question: ““do we necessarily expect the
Regge concept employed in phencmenological data fitting to play a significant role at
a more dynamical level 7”7 The model described here suggests that the answer is “no”.
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Outlook

The model is clearly in its infancy. Before one can do explicit fitting to the Rosenfeld
table, symmetry breaking of ordinary SU(3) (SU(4)?) must be included. This may be
inserted via the bare mass term in Eq.(1). The explicit appearance of M2 in Eq. (11) (and
not M) means that symmetry breaking sum rules will involve M? for the mesons and
not just M. An explicit model for meson meson scattering must be constructed and most
important the proton inelastic structure functions must be calculated to see which if any
results of the conventional parton model can be recovered. The phenomenology of the
baryons, being more highly developed than for mesons, requires an extension of Eq. (10)
{and/or Fig. 3.) to 3 bodies. That in itself will prove a formidable task.
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