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1. Introduction

One of the first tasks for the theoretical physicist who confronts a model field theory,
which is offered with the hope that it will provide explanations for natural phenomena,
is the elucidation of physically interesting consequences of the model: particle spectrum,
scattering amplitudes and so forth. Since it has been impossible to find exact solutions
for realistic theories, approximation methods must be used, and the last quarter century
has seen the development of a perturbative series whose starting point is the non-interacting
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free-field theory with readily indetifiable particle spectrum. While marvelously successful
results can be achieved with some problems, in other contexts the technique yields no
information, for example when the coupling constant is large. However, even for weak
coupling we must expect that there exist phenomena which are not easily seen in straight-
forward coupling constant expansions, for example spontaneous symmetry viclation,
bound states, entrapment of various excitations. These cooperative, coherent effects can
only be exposed by approximation procedures which do not posit the physics of the non-
-interacting thecry as a useful first approximation. The situation is of course familiar in
quantum particle mechanics — one does not find the properties of a complex atom or
nucleus in the Born series; a useful first approximation is not the free many-body Schro-
dinger equation, rather it is the sclf-consistent Hartree-Fock equation.

1 shall report to you results of the last year and a half, during which time a group of
colleagues in Cambridge (UK and USA) developed approximation techniques which
are useful for exhibiting collective phenomena in quantum field theory. We have analyzed
several models by these methods and found new and unexpected results indicating a much
richer particle spectrum and other structures than what is seen in the Born series. Although
phenomenological applications have not yet been attempted, one may entertain the notion
that some of the particles observed in nature correspond to these newly discovered states
in quantum field theory.

It happens that in the first approximation we always solve the Euler-Lagrange
equations classically. Our theory explains the role played by classical solutions in quantum
mechanics and also gives a systematic prescription for computing the quantum corrections.
Thus an alternate title for these lectures could be Quantum Meaning of Classical Field
Theory [1].

2. The quantum action
A. Definitions

We first set the stage for encountering classical equations in a quantum theory.
Consider some model involving the spinless quantum field ¢, governed by a Lagrangian

density % and a Hamiltonian H = fd‘c[———d} J]. In conventional perturbation

theory one focuses on a definite quantity, for example a Green’s function or a scattering
amplitude, and develops a series expansion which starts with ‘the free-field value of that
object. We do not wish to begin by selecting any one amplitude — we do not known a priori
which amplitude will conveniently expose the phenomena we seek — rather we want
to survey the entire field theory, all the Green’s functions.

The usual way of doing this is to work with the generating functional Z(J) which
is defined by

Z(J) = {Q|T exp %J‘de(x)(D(x)!Q). 2.1

Here |Q) is the vacuum (ground) state of the theory and J(x) is a ¢ number function of
space and time. (The symbols x, dx refer to space-time; the bold face symbols X, dx
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tefer only to space. However, when theories in one spatial dimension are considered,
time will be denoted explicitly and x will refer to the single space dimension.) It is clear
that repeated functional differentiation with respect to iJ(x) produces at J = 0 all the
Green’s functions.

OZ(J)

5709 | = {QID(x)12),
. 6°Z(J) B .
2 ST L = QT D(x)D(y)I2. 22

Next the connected generating functional W{(J) is defined by
i
Z(J) = exp n W({J). 2.3)

and one can show that, upon differentiation with respect to J(x), W(J) generatesat J = 0
the connected Green’s functions. In particular

SW(J)
0J(x) |y=0

= (Q|P(x)1R). (24)

Finally the quantum action I' is obtained from W(J) by a Legendre transform. We define
the ¢ number function ¢(x) by

_SW(J)
p(x) = 50 (2.52)
eliminate J(x) in favor of ¢(x), and
I'(¢) = W(J)— [dxe(x)J(x). (2.5b)

Since I'(p) is the Legendre transform of W(J), it is also true that

or(y) _
op(x)
Upon comparing (2.4) with (2.5a), we see that the vacuum expectation of &(x) is given
by that value of ¢ for which I'(p) is stationary.
or(y) _
dp(x)
Moreover one can show that the »'® derivative of I'(¢), evaluated at the stationary value
of ¢(x), gives the one-particle-irreducible n-point functions. For example

Sry) .,
L = ihd (x, ), 2.8
SptaegG) ) 28)

—J(x). 2.6)

27
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where A(x, y) is the propagator. (The inverse is taken in the functional matrix sense.)
All the Green’s functions, and the complete field theory, can be reconstructed from I'(g).

There are several advantages to working with I'(gp). First we see that it determines the
vacuum value of @(x) by a variational principle. Second there are approximation schemes
that one can give for computing I'(p) which bypass the usual Born series [1]. Lastly let
us take note of another property of I'(¢) which we shall use later. If ¢(x) is chosen to be
time independent ¢(x) = @(x), then I'(¢) acquires an infinite factor of time

F((p)éstatic = _E(‘F)j dt. (2'9)

The coefficient E(¢) has a simple interpretation: it is the expectation of H in a normalized
state |¥) which minimizes {¥|H|¥) subject to the condition that (¥|®(x)|¥) is held
fixed at the value ¢(x). We may now understand the stability condition (2.7) as a variational
principle for the energy: first find the minimum expectation of H subject to the subsidiary
condition (¥|P(x)|¥> = ¢(¥), then vary ¢(x) to find the minimum of E(¢) = (¥|H|¥>[1].

(There is a useful generalization of the effective action: one may introduce sources
for composite fields; that is in addition to {dxJ(x)®(x), one considers [dxdyK(x, y)D(x)P(»).
A double Legendre transform then defines I'(p, G), where G(x, y) is conjugate to K(x, ).
The generalization sums all two-particle reducible graphs and can be used for studies
of symmetry restoration at finite temperatures and for dynamical symmetry breaking [2].
Also one can give an interpretation for I'(¢) even when ¢ is time dependent, analogous
to that for in the static case: I'(¢) is the time integral of the stationary matrix element
of %% — H between time dependent states for which the matrix element of &(x)is con-
strained to be ¢(x) [3]. I shall not use these results here.)

B. Approximate calculation

The approximation scheme that I shall use for calculating I'(g) is the loop expansion.
The first term is the sum of all graphs that do not contain any loops; the second involves
just those graphs that have exactly one loop; the third has two loops; and so forth. Time
is not available to derive this expansion [4], I merely quote the results for the first two
terms.

8*1(g)

— | 2.10
5p)090) @10)

ih
I'(p) = I{¢)— -2~In Det

I(p) is the classical action
I(p) = [dxZ.

In the second term, Det is the Fredholm determinant of the (functional) matrix obtained
by functionally differentiating I(¢). For example if the Lagrange density has the form

& = 330,¢p0"¢—Ulg), (2.11)
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where U(gp) contains the mass term as well as the interaction, then

() y
57)500) O6(x—y)—U"(9)o(x—y). (2.12)
Note that the first term in (2.10) is entirely classical; there is no . (We assume that A
occurs in the theory only through the definitions (2.1) and (2.3), and that it is not also
present in #.) The second term is the first quantum correction; it is proportional to .
Moreover one can show that the loop expansion is precisely an expansion in powers
of h: the number of loops coincides with the power of #.
If ¢ is taken to be time independent we obtain E(g), according to (2.9). In the time
independent configuration, the time integrations inherent in the definition of the Fredholm
determinant may be performed and we find [2]

Bp) = Ep)+ 5 [ 4567/ 3 G132

where E,(g) is the classical energy of a static field (X)

E(p) = [ax[$(Ve)*+ U(p)] (2.13b)
and G(%, y) is defined by
- 8%E, . -
167G, 5) = M}ﬁ% = [~V + U (PG ) (2.130)

Let us for the moment ignore even the first quantum correction. Then in the time-
-dependent case the stability equations reduce to the classical Euler-Lagrange equations

ol(y) _
dp(x)

—Oe(x) = U'(). (2.14)

b

In the time-independent case one obtains the requirement that the classical energy be
stationary

SE (o) _
Sp(x)
Vip(x) = U'(g). (2.15)

We see therefore that classical field equations are encountered in the first approximation
to ¢(x), the expectation value of the quantum field.

Of course the development which I have here presented is familiar in the study of
spontancous symmetry breaking by the Nambu-Goldstone mechanism. Since in that
context one is computing the expected vacuum value of @(x), one seeks constant solutions
for (Q|P(x)|Q> = ¢, because the vacuum is invariant under space-time translations
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For constant ¢, the equations (2.14) and (2.15) reduce simply to U’(¢) = 0. For example
in a theory with

i
Ulp) = (m?—Ap*)? (2.16)
the minimum of U(g) is at
m
== ﬁ .17

which is the lowest order approximation to the vacuum expectation of @(x). The fact
that (Q|®(x)|Q> is non-vanishing indicates spontaneous breakdown of the symmetry.
@ <> —¢@ which is present in (2.16). Note that the classical energy of this classical
solution is zero

Eg)l o2 = 0 (2.18)

which is as it should be if we are dealing with the vacuum state.

Although a priori one expects only constant solutions to the stability equations,
our formalism has allowed for a space-time dependence. Moreover, it is clear that since
the lowest approximation coincides with the classical equations, non-constant solutions
exist. Therefore the question arises whether or not these space-time dependent solutions
have any significance for the quantum theory. One thing is clear — we cannot suppose
that a non-constant solution has anything to do with the vacuum state, since we shall
always insist that the vacuum is translationally invariant, and consequently <{Q[®(x)[|22)
is constant. How then should we interpret the non-constant solutions? Our answer is
that at least some of them have physical significance; they signal new and unexpected
particle content of the theory. In the remainder of my lectures I shall explain how all
this comes about. In the next Section we shall be concerned with time-independent but
position-dependent solutions. In the following Section time-dependent solutions will
be examined.

3. Quantum meaning of static classical fields

A. Stability criteria and the zero frequency mode

We want to examine those solutions of the classical static equation

V2p(x) = U'(y) G.1

that may have quantum mechanical significance [5]. A partial differential equation is
under discussion; it possesses many solutions, and the first task is to delimit this vast
variety. One requirement is that E(g), evaluated at a solution of (3.1), be finite. This is
justified by the observation that E, (¢) is the lowest approximation to the energy of the
state which is being exposed, and certainly a physical state should have finite energy.
A second requirement is that E(g) not only be stationary, but actually a minimum.
Otherwise the classical solution is unstable, and correspondingly the quantum state is
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not a stable state of the theory. Amazingly this condition is severely restrictive, as is
demonstrated by the following scaling argument. The static solutions of (3.1) are those
fields ¢(X) which stationarize E(¢) = ET((p)-tEV((p);ET(gzs) = [dx}(V¢)%, Ex(g) = fdxU(g).
If @ (x) is such a solution, and ¢,(x) = ¢.(x/a), then E(g,) must be stationary ata = 1.
A change of integration variable shows that

Ec((pa) = ad_zET((pc)+adEV((pc)a (32)

where d is the dimensionality of space in the models under consideration. From

M = 0, we deduce a virial theorem.

aa {a= 1
2—d
Ey(p) = —7 Exlgo). (3.3)
But now it follows that
0E{¢.)
a=1

Since Ef(¢,) = jd}}(V(pc)z is positive for position dependent solutions, E(¢,) will be
minimized only for 2—d > 0, i.e. d = 1. Thus we see that only in the unphysical world of
one spatial dimension will a static, finite energy solution of a scalar field theory be stable.

I do not at this stage abandon discussion of this entire subject, not because a one-
-dimensional world holds any particular interest, but because it is possible in three dimen-
sions to construct classical solutions which lead to finite and minimized energy. What is
required is particles with spin, and there exist several such examples in the literature
involving Yang-Mills fields [6]. These physical examples are complicated, while the
ideas that will be developed with the unphysical examples, involving a scalar field in one
dimension, are completely applicable to the three-dimensional case.

Thus I confine the subsequent discussion to one-dimensional models, where the
equation (3.1) simply becomes

¢(x) = U'(g). (3.5a)
{(Now x refers to the single spatial dimension.) This may be integrated once to give
3 (¢'(x))* = U(g). (3.5b)

(Compare with (3.3) for d = 1.) The constant of integration which occurs when one passes
from (3.5a) to (3.5b) is set to zero, otherwise the energy

E(g) = [dx[3(¢)*+U(p)] (3.6)
would be infinite. Let us denote the solution of (3.5) by ¢.; then
E(p) = | dx(¢). 3.7

Since E (¢.) > 0, we again see that we are not discussing the vacuum state.
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Even in one dimension, stability must be carefully investigated. Stability requires
that the second variation of E.(g) be non-negative at ¢ = ¢,.
The second variation is

SEfp) [ 4 .,
30 9G) [-‘ el +U (%):] 3(x—y). (3.82)

To study the spectrum of this operator, we solve a Schrédinger-like equation

dx?

dZ
[ + U"(%)] P(x) = o’ p(x) (3.8b)

and stability requires that @w? > 0. This condition may be understood in another way.
Consider the time-dependent classical equation of motion.

G o
[— e W] @(t, x) = U'(g). (3.9a)

If we try a solution of the form

@1, x) = @(x)+e“"5p(x) (3.9b)

then to first order, §¢ satisfies (3.8b). The requirement that w? be non-negative ensures
that the frequencies are real and @ (x) is stable against small oscillations in time.

A general property of the solutions of (3.8b) is that there is always a zero-frequency
mode. It is a consequence of translation invariance: since U(g) does not depend explicitly
on x, differentiating (3.5a) with respect to x gives

d2
[ — +U”((pc)] Pix) = 0. (3.10)

T dx?

For stability, the zero frequency mode, ¢ (x), must be the lowest mode. (In more than
one dimension Ve(X) satisfies the analogous zero frequency Schrodinger equation. Since
V() involves several components, it is a degenerate solution; but the lowest eigenstate
of the ordinary Schrddinger equation is never degenerate, and there must ‘exist a solution
with negative @?. Thus we again see that in dimensions greater than one, stable solutions
cannot be achieved with scalar fields. For a degenerate solution to be the lowest one,
tensor forces must be present — in other words spin is required.)

One may understand the occurrence of the zero frequency mode in the following
way. If we were computing the vacuum expectation value of @(t, x), then a position depend-
ent solution would indicate spontaneous breaking of translational symmetry. Spontaneous
breaking of a continuous symmetry leads to a zero frequency mode in the excitation spec-
trum, by Goldstone’s theorem, and the zero frequency mode which is here encountered
is an example of this. However, since we insist that we are not dealing with the vacuum
state, the zero frequency mode will have to be interpreted in a different fashion, see below.
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B. Explicit examples

There are many formulas for U(g) which lead to static stable solutions with finite
energy. I shall discuss two examples explicitly; however our theory is independent of the
specific form of U(g).

4 212
o* theory: v =" 1= 22, (.11a)
22 m?
. m* JA
Sine-Gordon (SG) theory: U(gp) = T 1-—-cos o o}l. (3.11b)

m
The stability values of ¢ for the vacuum state are ¢ = ~:/—i— in the ¢* theory, and ¢ = 0

in the SG theory [7]. The energy is zero for these solutions. We see that symmetry is broken
spontaneously in both examples; in the first it is the ¢ «» — ¢ symmetry; in the second

2nm
the symmetry is ¢« + @+ —=n,n = +1 £2, .... Expanding U(g) about the vacuum

Ji
value of ¢ indicates that the mass of the “mesons” in the ¢* theory is 2m, while in the SG
theory it is m.
Position dependent solutions to (3.5b) are the following [7]:

m
¢* theory: @(x) = —= tanh m(x—x,), (3.12a)

Ji

4m -1 _tm{x-xg)
SG theory: @(x) = —=tan" " e* xo), (3.12b)

Ji

The occurrence of the parameter x, is a consequence of translation invariance; frequently
we shall set it to zero. The classical energy of the solution is

m3

¢* theory: E(p) = % - (3.13a)
m3

SG theory: E(p) =8 i (3.13b)

The stability equations become

4 d 2 6m’ 2
¢ theory: 0 +4m*— cosh? mx Y(x) = o yp(x), (3.14a)

d? ) 2m? )
SG theory: 0z +m°— v — p(x) = o”p(x). (3.14b)
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These Schrodinger equations can be completely solved. They are L=2and L = 1
cases of the class

d? L(L+1
[" il s cishz )] W(2) = w’y(2), (3.15)
with very simple properties. There is a continuous spectrum for w? = k2412, k2 >0
with 9(z) ~ €** multiplied by a Jacobi polynomial of degree L in tanh z. (There is no
reflection, only transmission.) In addition w? takes the discrete values I2—n? n =1L,
L—1, ..., 1. For (3.14) this means that in the ¢* theory there is a zero frequency state ¢,
one discrete state, and a continuum beginning at w? = (2m)?; in the SG theory the zero
frequency state is again ¢, and the continuum begins at w? = m? Note that in both
cases the continuum begins at p? where u is the mass of the meson.

We conclude therefore that the solutions are stable, and have finite energy. Clearly
they are some kind of approximation to the properties of a new state in the theory; the
question is which state? We shall show presently it is a particle state of the theory,
distinct from the meson states. However before establishing this we discuss the first quantum
correction.

C. The first quantum correction

The energy functional, calculated to the one-loop approximation, so that it includes
the first quantum correction, is

E(gp) = E(p)+ %J‘de_‘(x, x), (3.162)
Efg) = | dx[3 (¢)’ +U(9)], (3.16b)

L FE(p _[_ 4 ]
1G7(x, ) 5¢(x)6§9(y) I: I +U"(p) | 6(x— ). (3.16¢)

To compute E(¢) to order f, it is unnecessary to evaluate ¢ to this order, since E(¢) is
stationary at the classical value. It suffices therefore to determine G(x,y) at ¢ = ¢..
This quantity is obtained from (3.16). We find the spectral decomposition of G—*(x, y)
by again solving the Schrodinger equation

d2
[ ) +U”(<pc}] (%) = 0 p,(x) (3.17a)
and
G (x, y) = ¥ vi(x)Aoly(y), (3.17b)

G™H(x, y) = ¥ ¥r ()20,9,(9)- (3.17¢)
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If the eigenfunctions were normalizable to one, then

h

n

Of course the continuum ones are not so normalizable, and the quantum correction
possesses an infinity proportional to the volume of space. This infinity is removed by sub-
tracting an analogous infinity occurring in the ground state energy, i.e. we compute the
energy difference between our solution and the conventional vacuum solution. It turns
out that even then the sum over frequencies is still logarithmically divergent. This logarithmic
infinity is removed by renormalizing the mass parameter which occurs in E,(g,). The mass
renormalization is entirely the conventional one, familiar from ordinary perturbation
theory. (In our two examples, conventional estimates of divergences indicate that the
mass, but not the coupling constant, must be renormalized.) We shall continue writing
the energy as in (3.18); however it is understood that infinities have been removed [8].
The explicit results are [9, 10]

. 4 m> 3 1
¢* theory: E(p) = ST —hm pa 5—\/—3 (3.19a)
8m®  hm
SG theory: E(p,) = o T (3.19b)

We again encounter our stability criterion: if any 2 < 0, then the energy is complex
at the first quantum correction and quantum fluctuations destroy any physical inter-
pretation that we might entertain concerning these solutions. The fact that for w2 >0
we can obtain a finite, real energy difference between the ground state and our new state,
including the quantum correction, shows that quantum fluctuations are controllable in
this model and that a sensible quantum theory can be discussed.

Note the emergence of a systematic coupling constant expansion: the classical term
is O(A™); the first correction is O(4°). This will always happen if the potential is chosen
to depend on the coupling constant according to rule

1 _
Ulp; H = 1 U293 1) (3.20a)
which is satisfied in our two examples. Then the classical action scales according to
1 _
Ip; D) = JIJ2 93 D). (3.20b)

Since in classical mechanics, the magnitude of the action is irrelevant, it follows that
classically \/,_1% is independent of coupling constant, which is indeed the case (compare
(3.11)). However in quantum mechanics the magnitude of the action does matter since

1 i ~ _
it enters into the theory as ?I((p; A) = h—'ll(\/lq); 1). Thus we expect \/ip has an ex-
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pansion in powers of A, where the classical part is independent of 4; the first quantum
correction proportional to 1; the second, to A%; etc. Therefore the energy starts with
O(A™Y); first quantum corrections are O(A%); seeond, O(A!), etc. A systematic coupling
constant expansion is possible, and our results, which necessarily terminate after few
terms because of computational difficulty, are accurate for weak coupling, even though
the first term diverges as the coupling goes to zero. (In the subsequent we set 2 = 1, since
powers of h are correlated with powers of 1.)

D. Quantum reinterpretation

We now must confront the question of what is the physical, quantum mechanical
meuning of all these computations. We suggest that in fact the exact I'(p) does not have any
stationary points for position dependent ¢, and that our translation non-invariant solution
is an artifact of the approximation. Nevertheless the approximate solution does expose,
in an imperfect fashion, true properties of the theory. The situation is again familiar
from ordinary quantum mechanics. For example the Hartree-Fock approximation to
the nucleus violates translation invariance, which is an exact symmetry of the system.
Nevertheless it is a good approximation, provided the nucleus is very heavy — in which
circumstance translation invariance is not significant, disappearing entirely if the nucleus
is infinitely heavy.

Evidence for the fact that the exact I'(p) does not possess a position dependent
stationary point appears if we try to compute the first quantum correction to ¢. From
(3.16) we see that to this order

_ OE(g) _ SE(9) ,J‘d 3G,y
dp(x)  dp(x) dg(x)
The functional derivative of jdyG”l(y, y) is computed as follows. From the identity
5G‘2_(§i1) _ [ i [56“1(;:, x") G )16 %) 8G™(x, y)]
o9(2) J o9(2) o9(2)
it follows that

(3.21a)

fdx A —) G(x', y)

39(2)
[ II I 5G—l(x,’ x”) rr
Jd X GTHx, ¥) =g T G )

_8G” (', y)
d¢(z)
Setting x equal to y and integrating over y yields
dedy 56700 G, ) = 2de 860.3)
o9(2) dg(z)
The left hand side is evaluated from (3.16c), and the final result for (3.21a) is

¢"'(x) = U(@)+4G(x, x)U"" (). (3.21b)
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If we set ¢ = .+ 0@, then the first correction d¢ satisfies

d2
[-— ) +U”(<pc)] dp = —3 Glx, x)U""(¢o)s (3.22a)

where G(x, y) is evaluated at ¢ = ¢; i.e. according to (3.17) it is given by

1
G(x, y) = Z ?’:(x) 20 'I’n()’) (3'22b)

n

However we now see that because of the zero frequency mode G(x, x) does not exist

since it involves wg(x) Po(x) and w, = 0.

The singularity is ni(foa consequence of any approximation; one can establish it
exactly. If ¢(r, x) = @o(x) satisfies —‘%% = 0, then by translation invariance, so does
@o(x+0x) and

i 8’ I(g)

ardx’ ——— —— ) = 0. ‘
J * 59, 959(, ) =g 7o) (3.23)

8*r
(?) —- is the. inverse of the one-meson propagator, see (2.8), and
op(t, x)oe(t’, x')

according to (3.23) has an eigenvector at zero frequency with zero eigenvalue. The exact
propagator therefore has an infinity exactly as in the approximation above.

The reason for the singularity is clear: I'(¢) is constructed for the purpose of studying
translationally invariant, vacuum Green’s functions; we have used it for a translationally
non-invariant application. We now change our approach, taking into account the low
order results, which show no inconsistencies, and modifying the perturbation theory so
that the zero-frequency mode is removed. In order to insure translation invariance, we
work in momentum space.

We postulate that in a theory where the classical field equations possess a stable,
static solution of finite energy, there exist, in addition to the usual mesons, new particles
which we call baryons. The states will be described by their momenta: |ky, ..., k,» for
the multi-meson states, |p> for the one baryon state. Also there are baryon-multimeson
states denoted by |p; k4, ..., k,» where p is the total momentum. When there are several
distinct solutions to the classical theory, there are different ba-yrns in the gquantum
theory. For example in the SG model there are two solutions. correspondingly there is

a baryon and an antibaryon. The baryon is taken to be absolutely stable. This means
N

that all matrix elements of the form (ky, ..., k,| [[ ®(;, x)|p; kY, ..., &, are zero — no
i=1

finite polynomial in the meson field can connect the baryon state with the meson states.
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The single baryon state is a Lorentz covariant energy and momentum eigenstate

Pip> = plp),
H|p> = E(p)|p), (3.29)
E(p) = p*+M>

We further postulate that the baryon mass M has an expansion in powers of A where the
first term is O(1~!) and coincides with E(¢,.), the classical energy of the classical static
solution. It is now understood why the first order results appear to violate translation
invariance. To lowest order, M dominates p and the baryon energy becomes static
E(p) * M — the baryon cannot move and becomes localized at some point. (This point is

just xo, the parameter in the classical solution.) Kinematic corrections arise only when
2
the expansion of the energy is taken to the next term: E(p) = M+ ;M

. Since M is O(4)

only in O(A) does the energy exhibit a momentum dependence.

We now show that our postulates are consistent. First we demonstrate that ¢ (x)
is related to a lowest order approximation to the baryon field-form factor (p|®|p’)
= f(p, p'). From the Heisenberg quantum equations of motion for the quantum field

il il 2 = U'(® 3.25
(—§+§) (%) = U@ (3:29)

it follows that [11]

E(R) —E(@N —(p—p)?+2m’If(p, p') = 2p|®*|p>, (3.26)

where for definiteness we have used the ¢* theory as an example. Eq. (3.26) may be solved
to lowest order; the following approximations are made. From Lorentz invariance, we
know that f( p, p) is a function of (E(p)—E(p'))*>—(p—p')*. But to lowest order E(p) = M,
hence the form-factor is a function only of momentum differences. Therefore the left
hand side of (3.26) becomes in lowest order [—(p—p')?>+2m*]f(p—p’). On the right hand
side we saturate with intermediate states. Since the baryon is stable, only one-baryon
multi-meson states contribute. In lowest order we keep only the baryon states, and get

24 dlz;:;m— flo—=p" M (p"—p")(p"' —p"). Upon introducing the Fourier transform of
the form-factor
fip—p) = [ dxe'" " g(x) (327
Eq. (3.26) is recognized as the static classical equation.
¢(x) = —2m*p(x)+24¢*(x) = U'(g). (3.28)

Hence ¢ (x) is the Fourier transform of the field form-factor in lowest order. (The arbi-
trariness of the origin of the coordinate system now becomes an arbitrary phase of

p|?|p>)
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In the same approximation we may calculate the energy.

{plH|p"> = E(p) 2m)o(p—p’), (3.29a)
H = [ dx[3 &*+3 (82 + U()], (3.29b)
E(p) = <pl[3 #*+1 (&)’ + U(®)]Ip). (3.29¢)

The matrix element is evaluated by saturating with intermediate states, retaining to lowest
order only the baryon state. Matrix elements of ¢ do not contribute, since they involve
baryon energy differences, which vanish to lowest order. It is then easy to show that

E(p) = [dx[3(¢')*+ U(9)]
= fdx(p)* = M. (3.30)

Thus, consistent with our postulate, the lowest order energy coincides with the classical
energy and is identified with the O(A~!) expression for the baryon mass. Therefore the
lowest order results are entirely consistent with our interpretation. We also see that if
a wave packet state is constructed |y = jdpg(p) |p> corresponding to a baryon localized
at x,, then in the limit as the baryon gets very heavy, {p|®(s, x){v) = @ (x—x0).

To compute to first order, we may still keep E(p) independent of p, since the kinematical
dependence enters in O(2), two orders beyond the lowest O(4~). However in the saturation
by intermediate states we must keep the baryon, one-meson state |p; k); an expression
for {p|®|p’; k> = fi{p, p') is needed. The exact equation for that quantity is

(E(P)—E(p))*—(p—p)+2m*1fi(p. P') = 2A{p|P*|p; k>. (3.31)

E(p’) is the energy of the baryon one-meson state; p’ is the total momentum; k is the
meson momentum. To lowest order we take E,(p) to be M+ w(k). In saturating the right-
-hand side we keep the no-meson, and the one-meson states, thus encountering the following
matrix elements {p|®|p'>, {p|P|p’; k> and {p; k|P|p’; k'). The first is known to lowest
order; the second is being calculated. The third we decompose into a connected and
disconnected piece.

(p;ki®@|p';s k') = Qu)otk—k' )X pl®[p">
+ {p; k|P[p'; K.

To lowest order only the disconnected piece is kept. Also we take fi,(p, p') to be, in lowest
order, a function of p—p’, the total momentum difference. With these steps (3.31) becomes

o*(K)fp—p) = [(p—p)*—2m*1flp— D)

d /Id trr
+2/1J isz(P—P")f(P"—p”')fk(P"'—p')- (3.32)
(2m)

Upon introducing the Fourier transform

flp—p') = [ dxe’® " f(k; x) (3.33)



934

(3.32) is recognized as the Schrodinger equation which we have repeatedly encountered.

2
[-—- 5—1—2 —2m2+6i¢3(x)}f(k; x) = o*(k)f(k; x),

d2
[ +U”(<Pc)]f(k; x) = o (k)f(k; x). (.39

dx?

Now we have a clear physical interpretation for the solutions of this equation. The
continuum solutions, which begin at w(k) = \/ k?+pu?, where p is the meson mass, are
interpreted as meson-baryon scattering states. If there are discrete states, other than the
zero frequency state, (as in the @* theory) they are excited states of the baryon. The zero
frequency solution of (3.34) is not associated with any state. For later convenience let us

set flk; x) equal to —_—]:; w(x) for all states with the exception of the zero frequency
vV 2w(k)

state. Note also that the normalized zero frequency state is (p;(x)/\/ M, since M = jdx(q"é)z.
Is it consistent to exclude the zero-frequency mode; i.e. are the physical states complete

even though we are excluding one of the functions which contribute to a set of mathemati-

cally complete functions ? Note also that (3.34) does not determine the normalization of

p,(x). To settle both these points, we consider matrix elements of the canonical commutator

between baryon states

{plI®(0, x), B0, Y| p') = id(x—y)2m(p~p')- (3.35)

Saturate with no-meson states and one-meson states. The contribution of the one-meson
states can be shown to be

iz (k) U gz o HOTD WO D y}. (3.362)
. V2o(k) N 2w(k)

The prime on the sum indicates that the zero-frequency state is excluded. If we take the ¢,’s
to be properly continuum normalized, then the sum can be evaluated by completeness.
A delta function does not emerge, since the zero frequency mode is excluded; rather we get

gx—2) @y—2)
M JM
Next the no-meson contribution is evaluated; here are encountered contributions of

the form

i6(x—y) 2n)d(p—p)—i jdze"(""”)’ (3.36b)

d .
f 2ol (0, )q)> <q1(0, )Ip'>
@n)

d
= ( (-2% [E(g)— E(p)] <p|®(0, x)ig)> {qI®(0, y)Ip">- (3.36¢)
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The matrix elements are each O(4-1/2), consequently we must retain E(g)—E(p') to order A,
since we are computing the commutator which is seen from the right-hand side of (3.35)

g*—p'?

to be O(A%). The energy difference is taken to be Y where we have put a prime

to distinguish the mass that occurs in the kinetic term from the rest mass; we shall prove
that in fact M = M’. Evaluating the relevant integrals gives the no-meson contribution
to O(1°)

i i{p' —p)z 1 12
W sze'(” P2l (x — 2)@(y — 2). (3.36d)

Thus when M = M’, (3.36d) cancels the second term in (3.36b).
By this exercise we have learned three things. First, the properly normalized matrix

element is (p|®|p"; k> = j dxe'®~ "%y (x), where w,(x) is a normalized solution

20(k)
of the Schrédinger equation. Second, the zero frequency solution is not a state of the
theory, rather it describes the first correction to the motion of the baryon. Third, to O(1-1)
the theory is Lorentz invariant since the rest mass coincides with the kinetic mass.

From the scattering solutions of (3.34) the meson-baryon S matrix can be found.
For the ¢* and SG theories there is no reflection, only transmission. The transmission
amplitude T is a pure phase by unitarity

2is(k
T = *%®,

L
k
tan 6(k) = — tan”! — 4+ % ,
: ; nm

n=1
¢* theory: L = 2,

SG theory: L = 1. (3.37)

Note that phase shift is independent of 1.

With the one-meson matrix element determined, the first order correction to the
energy and baryon form-factor can be computed. Returning to (3.26) and retaining the
one-meson states in the saturation of the right hand side, we find that the equation satisfied
by ¢(x) is

2

d .
e @(x) = U'(¢)+1 G(x, x)U"" (),

- ", 1
G(x,y) = Z i (x) 20(R) wi(x). (3.38)

k
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This is analogous to the equation derived from the effective action, (3.21), with a crucial
difference: G(x, y) is no longer infinite, since the zero frequency mode is excluded. Similarly
one can calculate the energy to order O(A°). Keeping the one-meson intermediate states
in (3.29) gives agreement with (3.18).

E(p) = E(p)+% ; a(k). (3.39)

To O(A°) there is no kinetic term; and we identify the second term in (3.39) with the first
quantum correction to the baryon mass.
Let us note the important fact that again a systematic coupling constant expansion
has emerged: {p|®|p'> is O(A~1/2), (p|®|p’; k) is O(2°) and one can show that the connected
S ntn 1
part of {p;ky,.... kPP’ 5 kY, .., k) is O(A 2 ) By keeping track of powers of
A, one can perform calculations in the one-baryon sector to arbitrary order of 4.
Finally we turn to the question of the baryon’s stability: if it is heavy, why does it not
decay into ordinary mesons ? Stability is usually associated with an absolutely conserved
quantum number. To see the existence of a conservation law in our models, observe that

J* = 0.0 (3.40)

is a conserved current, not because it arises by Noether’s theorem from a symmetry of
the theory, rather because it is trivially conserved since it is a divergence of an antisymmetric
tensor. The charge associated with this current is

Q = [dxJ® = [ dx® = |, y—Dlre o (3.41)

In the meson sector the field tends to the same value as x - +o0, and Q vanishes. In
the baryon sector, the field tends to different values, Q is non-zero and its conservation
renders the baryon stable. (In higher dimensions, a totally antisymmetric tensor, whose
divergence is a conserved current, can be constructed with the help of the spin degrees
of freedom.)

E. Canonical quantization

The perturbation theory which was outlined above involves expanding matrix elements
of the field in powers of A. One may exhibit a more conventional perturbation theory by
shifting the quantum field @ by the classical solution ¢.. (Recall that in the vacuum sector,
conventional perturbation theory is obtained by first shifting the quantum field by its
vacuum value.) However since ¢, is position dependent, translation covariance would be
lost if we merely subtract g, from &. Rather we proceed as follows. A new dynamical
quantum variable, the center of mass X(z), is introduced by the definition

(1, x) = y(t, x—X(1))+ p(x — X()). (3.42)

Here y is 2 new quantum field; in order that the total number of degrees of freedom not
be changed it must satisfy a subsidiary condition, which for convenience we select to be

fdxgi(x)x(t, x) = 0. (3.43)
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We view (3.42) as a canonical point transformation from the dynamical variable & to
the dynamical variables ¥ and X [12]. The corresponding transformation law for canonical
momenta is complicated

a(t, x) = m(t, x—X(1))
3 {tpé(x—X(t))
M+&()

where M = [dx(p;)* and &(t) = {dxy'(t, x)@pi(x). Again a new variable, P(), has been
introduced; it is the momentum conjugate to X(¢). To preserve the total number of degrees
of freedom, 7, is required to satisfy a subsidiary condition

, PO+ f dxy'(t, x)m,(t, x)} (3.44)

s
+

Jdxg(x)m(t, x) = 0. (3.45)

If the P, X variables are chosen to commute with the r,, y variables, and if the nonvanishing
commutators are taken to be

iLP(, X()] = 1,

Tyt ), 26, 9] = x— )~ TN, (3.46)
one can show that the transformation is canonical [12].

The significance of P(¢) is seen by computing the total momentum operator. In terms
of the old variables it is — jdxn(t, x)P'(¢, x); in terms of the new it is just P. (The ¢ depend-
ence is irrelevant since P is a constant of motion.) The Hamiltonian operator in terms
of the new variables is obtained by using (3.42) and (3.44) in (3.29), and shifting the x
integration from x to x—X. The result is

P(1)
oM

o Jdx(ely
T(M+EW)?’

H=M+ +H, ()~

P(1) = 3 [P+ [ dxm(t, x)x'(1, x)]

1+€(t)—/1\—/[ +h'C.,

Hy(6) = [ dx[ m+3 () + UG 9],

U, o) = U(x+ @) —xU' (@) — U(e,). (3.47)

In spite of its awkward, non-covariant appearance, the theory is Lorentz invariant,
as is established by constructing the Lorentz generators and verifying their algebra. One
may separate H into a “free” part H, and an ““interacting™ part H,

Ho = M+4 § dx[nl+()* +U"(pdr*],
H, = H—H,. (3.48)

Thus it is seen that in the “free” theory the y field provides for meson excitations, super-
imposed on a static baryon of mass M. Corrections are computed in the standard way
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by expanding H; in powers of A. In this manner one regains all the results of the previous
section. In particular the subsidiary conditions (3.43) and (3.45) insure that the zero
frequency mode is absent from the spectrum.

F. Additional aspects of the theory in one dimension

The reasoning has been quite general so far; now we mention some especially interesting
properties of baryon solutions in the two explicit examples that we have examined: ¢*
and SG theories. Let us observe that in the ¢* theory the explicit solution (3.12a) is an
antisymmetric function of its argument. Consequently {(p|®|p’> is antisymmetric in
p <> p'. Since there is only one kind of baryon in this model, we may also consider
{p|®|p’> to be the analytic continuation of the two-baryon, vacuum matrix element
of @. Evidently the latter is antisymmetric in p <> p’, hence the baryons satisfy Fermi
statistics [5]. (There is of course no spin in one dimension.)

For the SG theory the above argument cannot be used since there are two kinds of
baryons: particle and antiparticle corresponding to the two distinct classical solutions
(3.12b). Therefore (p|®|p'>, though antisymmetric, is the analytic continuation of a bar-
yon-antibaryon, vacuum matrix element, and no constraint on the statistics of identical
particles is found.

However one can show that the SG theory is equivalent to the massive Thirring
model with the Lagrange density

o g
& = ipy o, p—Mipy— L) Y 9Py, (3.49)
and the identifications [13]
47m? —1+gf
PR
m~ A2 0, b = 2nipyty. (3.50)

Thus the fermion number current is just our ““trivial” current, and the fermion field of
Thirring model is associated with the baryon solutions to the SG theory.

It appears that there are two equivalent description of the physical content. One may
use the boson formalism of the SG theory, in which the mesons are elementary and the
fermions are coherent solutions of the theory. Alternatively one may use the fermion
formalism of the massive Thirring model where the baryons are elementary and the mesons
are ordinary bound states. It is not known at the present time if this fascinating duality
occurs in other models in one space dimension, nor is it clear whether any such phenomena
is present in physical models in three space dimensions.

4. Quantum meaning of time dependent classical fields
A. Soliton solutions of classical field equations

The previous section was devoted to an exhaustive discussion of the quantum mechani-
cal significance of static solutions to classical field theory. An interpretation was given
in terms of a new state in the theory — the baryon, and the one-baryon sector of the
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Hilbert space was analyzed. It is plausible to suppose that the time-dependent solutions
of the classical field equations have something to do with multi-baryon states. As yet
a complete and systematic perturbation theory for the multi-baryon states has not been
developed. However using semi-classical methods for field theory some results have been
obtained. In these semi-classical calculations, a direct quantum mechanical role, analogous
to the interpretation of the static solution as the baryon field-form factor, is not assigned
to the classical solutions, Rather information about the quantum theory is extracted from
them by WKB techniques. We first examine the nature of time dependent classical solutions.

Whenever there exists a static, time-independent solution ¢ (x—x,), then by Lorentz
invariance there is also a time-dependent solution @ (y[x—vt—x,)), 7 = (1 —v?)"¥2,
v? < 1, with energy My. This is sometimes called a stationary wave solution; for the SG
equation it is the one-soliton solution. It may be associated with the quantized baryon
state in a moving reference frame, and need not concern us any further.

For the SG theory there exist other time dependent solutions whose form can be
explicitly given, and in the remainder of my lecture, I shall deal exclusively with this
model. These are the famous soliton solutions which have been discussed extensively
in the mathematical literature [14]. They have the following properties: the N soliton
solution depends on 2N parameters. As ¢ - — 0, the solution becomes a superposition
of N one soliton solutions and 2N parameters correspond to the asymptotic velocities v
and positions x§ of the N solitons. As f — + 00, the solution again decomposes into
a superposition of N one soliton solutions. The asymptotic final velocities are the same
as the initial ones, the asymptotic positions differ from the initial ones by an amount
that can be ascribed to a time-delay in the multi-soliton collision. By translation invariance,
two constants of motion can be arbitrarily set to zero, and a third can also be made to
vanish if the calculation is performed in the center-of-mass frame. For example the 2 soliton
solution depends on 1 constant, u, the relative velocity of the two solitons. The explicit
form of the 2 soliton solutions is [14]

4m u sinh myx
soliton-soliton: @ss = —=tan" ! mrx , (4.1a)
\/ A cosh myut
4m 1 sinh myut
soliton-antisoliton : -1 LAl (4.1b)

- = — tan —_ -
Fss JA u cosh myx
y=(1—u?)""2

The total momentum of each solution is zero; the energy is 2My, M = 3m3/4. Examination
of the asymptotic forms of the two solutions shows that in both cases there is time delay

At(u) = —2~— Inu. 4.2)

muy

There is another solution, the soliton-antisoliton bound state or “breather” which
is periodic in time. It is obtained from (4.1b) by taking u = ig, a real.
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-1_1_ sin myat

i 43
= — tan N )
s N/ a cosh myx (@.3)

y = (1+a*) "2
The energy is 2My. There is no soliton-soliton bound state.

B. WKB method for field theoretic bound states

The periodic solution (4.3) may be quantized by the semiclassical method. Let us
recall that in one-dimensional quantum particle mechanics, the semiclassical quantization
condition, valid for large quantum numbers, is in lowest order

T o(@)dq = n. “.4)

X1
Here p(q) is the local momentum and x;, x, are the turning points. Eq. (4.4) may be
equivalently written as

{pqdt = {(L+H)dt = I(E)+ET = nr, 4.5)

where the integration is over a semi-period. I;(E) is the classical action of a periodic
solution with semi-period T and energy E. In the next approximation # is replaced by n+7
where y depends on the shape of the potential.

For field theory, the lowest order quantization condition is again (4.5)

I{E)+ET = [ dt | dxn(t, x)&(t, x) = n=, (4.6)

where 7 is the canonical momentum. The next approximation has also been derived, but

we shall not use it here [15]. Therefore in order to quantize the breather mode, we evaluate
x/2mya

(o)
| ar § dx@z and set it equal to nm, thus quantizing a. Since the energy is expressible
—x/2mya —oo
in terms of a, this is equivalent to energy quantization. An elementary calculation gives

8rm?

A

(Eq. (4.7) is valid also in the second approximation, provided the value (3.19b) is used
for M [10].)

This result indicates that a soliton and an anti-soliton (baryon, anti-baryon) bind
and form mesons. Note that for weak coupling and small excitation E~ mn, which
makes it plausible that these bound states may be equivalently described as #-meson
bound states; this is an example of the duality mentioned previously.

m
E,,=2Msinmn,n = 1,2,..., < (47)

C. WKB method for field theoretic scattering states

It is well known that in the semiclassical approximation, the .S matrix for one
dimensional “‘scattering’ is given by

S(E) — eZiJ(E)’

8(E) = 8(Ew)+} | dE'AYE). (4.8)
th
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Here E,,, is the threshold energy and 4#(E) is the time delay as a function of energy. Eq. (4.8)

merely states that the time delay is twice the energy derivative of the phase-shift [16].

The constant of integration may be evaluated as follows. Consider the classical

action I (E) for a solution to the equations of motion, with energy E, which passes from
dI(E)

an initial configuration to a final configuration in time 7" Since = —F, it follows
that
d (I/(E)+ET) = B NIT r o 4.9
dE " T “\ 4T dE T T (4.92)

That is, the time of flight can be expressed as an energy derivative. Total time delay is
equal to the time of flight in the presence of forces, less the time of flight in the absence
of forces, in the limit as T goes to infinity. But the time of flight in the absence of forces
is given by (4.9a), where the term in parentheses on the left hand side may be written as
PE)x(T)—x;], with p(E) being the relative momentum of the particles and x;, x; the
initial, final position. Thus the total time delay is

AHE) = lim % (IAEY+ET— p(E) [x(T)—x;]) (4.9b)

and the phase shift can be taken to be
26(E) = lim ({ (E)+ ET — p(E) [x{(T) — x;1)- (4.10)
At threshold p(Ey) = 0,
28(Ey,) = lim (I (Ey)+E,T). (4.11)

Next let us consider the quantization condition (4.6). The total number of bound
states is given by ng, the maximum value of n, which occurs for E just below E,, since
at E,, the semi-period becomes infinite. Hence it is true that

ngm = lim (I(E)+ET). 4.12)
Comparing (4.12) and (4.11) we find

Y
M(Ey) = > e 4.13)

which we call the semi-classical Levinson’s theorem. (The exact Levinson’s theorem is
o
HEgm)—6(0) = 7113, where the factor of 1/2 is peculiar to one-dimensional motion.)

Therefore the semi-classical phase-shift is given by

E
3E) = L ngn+% | dE'AWE"). 4.14)
Eth
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Using (4.2), as well as the fact that nz = 0 for the soliton-soliton channel and ng = 8zm?/2
for the soliton-antisoliton channel, we find the following phase-shifts {16]

u

16m? Inx
5ss(E) = ) fdx 1_x2 ’ (4153,)

0

u

4n’m® 16m? Inx
S(E) = — d .
(E) Tt f X2 (4.15b)
o]
3
E = 8—';3 A—-u?)~12

The phase-shifts come out to be proportional to A~!; we suspect that they are the
first terms of an expansion in powers of 4. We expect therefore that they are accurate
for weak coupling, except that as always with WKB approximations, the analytic behavior
near threshold is unreliable. Away from threshold they are analytic functions, and it can
be shown that the soliton-soliton phase-shift is obtained from the soliton-antisoliton
phase-shift by the crossing relation [17]. Note that when A is small, the phase-shifts are
large, indicating strong forces, even though the coupling is weak. At present we are studying
the O(2°) corrections to (4.15) and we hope to give a systematic coupling constant expansion
for scattering in the multi-baryon sector.

5. Prospects for the theory

The structures that have been exposed in the examined models are very fascinating.
I find the following aspects especially interesting. As it has been long suspected [18], there
exist stable states in quantum field theory, which are not bound states of a definite number
of mesons; rather they are coherent superpositions of an infinite number of mesons. The
stability is not a consequence of a conventional conservation law of the Noether variety;
rather a topological distinction between different kinds of solutions prevents transitions
between them. Finally the emergence of large effects and strong forces, for weak coupling,
due to a singularity in the coupling constant, suggests a unification of strong and weak
interactions. It is certain that the above features persist for three-dimensional models.
Equally intriguing are the phenomena found in the one-dimensional examples; fermions
form bosons, with an attendant duality which eliminates the distinction between elementary
and composite particles. It is not known to what extent this carriers over to three dimensions.

In my opinion, the most important area for further investigation concerns the multi-
-baryon sectors. Techniques must be developed for analyzing these states in a way which
does not depend on the soliton property of classical differential equations. With the ex-
ception of the unphysical SG theory, where the equivalence with the massive Thirring
model provides us with a local field for the solitons, we do not as yet know how to allow
for baryon creation and annihilation.
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The practical utility of these ideas for realistic physical theory is unclear, though
it is very tempting to speculate that some of the “fundamental” particles occurring in nature
can be associated with our mathematical baryons, and that some absolute conservation
laws are topological in character.

Editorial note. This article was proofread by the editors only, not by the author.
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