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The electromagnetic field of an arbitrary source distribution in Schwarzschild space
time is given in linear approximation, using the technique of Green’s functions. For an
oscillating dipole at infinity, the result is the generalized plane wave. This wave gives the
usual deflection of light, and is the starting point for the exact solution of the problem
of the diffraction of a plane wave at a Schwarzschild Black Hole.

1. Introduction

Our goal is to get a first approximation (linear in the gravitational constant) of a plane
electromagnetic wave scattered by a Schwarzschild field. We attack this problem by solving
the Maxwell equation for an oscillating dipole situated at infinity.

This paper starts with a short account of notations, the technique of the bitensor
Green functions for the vector wave equation in an external gravitational field and the
explicit expressions for these bitensor Green functions in Schwarzschild space-time in
linear approximation.

The main results are presented in the following order: In Section 2 the spectral
shift in Schwarzschild space-time for arbitrary positions and velocities of source and
observer, in Section 3 the electromagnetic field (3.14) of an oscillating dipole in the Schwarz-
schild space-time (the generalized plane wave), and in Section 4 the well-known formula
for the deflection of light rays not only in geometrical optics limit, but also for an arbitrary
wavelength.

The exact solution of the diffraction of a plane electromagnetic wave at a Schwarz-
schild Black Hole is given in [5] and [6].

2. Bitensor Green’s functions for the vector wave equation in Schwarzschild space-time

To solve Maxwell equations in an external gravitational field
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we introduce the four-potentials 4, by B,, = 4,.,—A4,,,. Using the Lorentz condition
A", = 0 we get the vector wave-equation

. 1
giA*, + R4, = — - j~ 2.2)
[
De Witt and Brehme [1] solved the equation by the retarded potentials

1 ~
At = p j G5 (x, %) 7 (X)d*%. (2.3)

Here the retarded bitensor Green’s functions has the structure
ret ~ 1 =7 (41 /3 <
G,,;(x, X) = a;[ Q[Z(x)s X] ’lA i g“;()(Q)—l‘u;@[—Q]}, (24)

where Q(x, %) is one half of the square of the geodesic distance between the two world
points x and ¥; J is the Dirac delta function, and @ is the Heaviside step function,
O[Z(x),%] having the value one for all world points £ in the past of the hyper-surface
2(x), and vanishing otherwise. g,; and A(x, %) are the bitensor of parallel displacement
and the biscalar of De Witt and Brehme, respectively. The so-called tail-term bitensor
v,5(x, X) describes the back-scattering of electromagnetic waves due to the curvature
of the space-time. The geometrical meaning of all these bitensors was investigated by
Synge [2].

In the linear approximation the metric of Schwarzschild space-time in isotropic
coordinates reads

5 o « ,
ds® = (1 + ) (dx*+dy* +dz*)— (1 — ;) (dx*?, (2.5)
r r
and the constitutive parts of Green’s functions are found to be [7], [8]
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with the abbreviations
r = [x2+y2+22]1/2, ,'. — [}2+;2+52]I/2’ (29)
a=[(x-X*+(y-’+(z-2)"]"2 (2.10)

In all these expressions (2.5)-(2.10) terms of order «? or higher are neglected. Formula
(2.8) shows that the back-scattering of electromagnetic waves due to the curvature of
space-time is a higher order effect. Following Synge [2], we can use (2.6) to get the spectral
shift
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(2.11)

v

between the frequencies v and v of emission and absorption, valid for arbitrary positions
(w, w) and velocities (w0, ) of source and observer
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(2.12)

For the two trivial casesw = w = 0 (source and observer both at rest in the Schwarzschild
field) and & = 0, w = w = 0 (observer at rest at the flat space-time) we get from (2.12)
the text-book formula for gravitational redshift in Schwarzschild space-time, and Doppler
shift in flat space-time, respectively. Another way to calculate the spectral shift is given
by Jordan, Ehlers and Kundt [3].

3. The electromagnetic field of an oscillating dipole in Schwarzschild space-time
We investigate the field of an oscillating charge situated at
Xt = [esin (w{t +¢}>, 0, Z = const. ct]. 3.1)

Later on we will choose the arbitrary function ¢ in a suitable manner.
From the four-potentials for a moving charge in a given gravitational field ()

e 3 7 - € S a
A = {4 e (@) + - | nax'dE, (3.2)

t=1
ret
Tret

we get with (2.5), (2.6), (2.7) and (2.8) from (3.2)

4 < <
- At = gax (2% o, (3.3)
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and the retardation condition

Qx*, x"(%.e)) = 0, x*—x%, > 0, 3.4
is equivalent to
4 3 r+r+a
XT—Xry = a+oln — . 3.5
o r+r—a G-3)

We get the electromagnetic field of an oscillating charge situated at infinity (the generalized
plane electromagnetic wave) from (3.3) by the following limiting process:

e — w,

o

~ = —(C = const. (3.6)

(1

7 - —o0,

Because of the back-scattering of electromagnetic waves we have to limit ourselves to the
far field

o4
r

and to the region outside the geometrical shadow of the Black Hole

rr+xX+z2 = O(2). (3.8)
Using (2.6) and (3.5) we get
~ z A, . zZ o« 1
tra = t—— + ~In[r—z]+ ——«1n(—2§)+0(:), (3.9
¢ ¢ ¢ ¢ Z
1
Q= —Z+z+0(:>, (3.10)
z
ox 1
Qi=—-—(x=-%)— +0(:). 3.1
r—2z z

To get finite phases after the limiting process we have to specialize the arbitrary function ¢
in (3.1)

Z
p = — -+ -In(-2%). (3.12)
¢ ¢

Inserting all this into (3.3) and performing a gauge transformation 4* = 4*—y"* with

C
y = — .Oé_m [r—z] we finally get
n

A, = (1+ %)A'cos{w <t— g + ;In [r—2]>},
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Ay=2a 2 t— 2+ Zim[r- >}

3 =3 ;(r_z)cos{w<—;+zn[r z] )

o X z o o
= EA' r(r_z)‘COS {(D <t— E + zln [r—Z]>} —C(l— 5;),

4= 2C 3.13
(1=%) G413

as the four-potential of an oscillating charge at infinity.
The field of an oscillating dipole at infinity, i.e. the generalized plane electromagnetic
wave in Schwarzschild space-time is the superposition of (3.13), and the field of a charge —e

i

situated at x* = [—esin{w {t+¢>}, 0, Z = const, cf]. The result is

B %\ w4
A1=—‘ 1+“‘"‘ ew,
® 2r

z o«
A, =0, A=t—-+-In(r—2),
¢ ¢

_ B oax
T 2w r(r—z)

In the case a = 0 we get the plane electromagnetic wave in flat space-time in z-direction.

These expressions (3.14) for the potentials of a plane wave show that the gravitational
field alters the phase of the incoming plane electromagnetic wave even at infinity.

The result (3.14) is valid for A <€ « in far field of the star in regions, where only
on light ray connects source and observer (where Q (x, x) is a single valued function).
Fffects due to interfereuce of two rays are discussed in [9].

Mo and Papas [4] gave a similar formula, but the phases in the plane wave by Mo
and Papas differ from the phases in (3.14) by an additional term — 2o In [x?+ y?] which
is singular on the whole z-axis.

Ay = A, e&l, (3.14)

4. Light deflection for arbitrary wavelength

To determine the angle 8 of deflection of light rays (see Fig. 1) we need the components
S* and S% of the Poynting vector S.

St = T*, & =(0,0,0,1). 4.1)

plane wave o F) s?
g
aa%/s
X —_
ﬁ\ i
NS i
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Fig. 1. Light deflection and Poynting vector
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T* is the energy-momentum tensor of the electromagnetic field. We use the isotropic
coordinate system (2.5).
After a short calculation we get

o
S* =qln(r—z), sinwd; S =— <1+ ;) sin® wd. 4.2)
r
Therefore the deflection angle § is given by
Ny o Xg
tan ﬁ = - = = e S —— (43)
5 lgarn VxZ+22 Vxi+zE —zp

xs being the radius of the sun and zy the distance between the sun and the earth. For
X5izy <1 we get the classical deflection formula of geometrical optics

2u
p=—. 4.4
xs
To get (4.4), no short-wavelength approximation was used: This wave-theoretical treatment
does not produce additional effects to (4.4) with the exception of second and higher order
terms in gravitational constant (see [1]).

5. Concluding remarks

We have found the solution of the Maxwell equations in the linearized Schwarzschild
space-time for an incident plane electromagnetic wave. This solution includes the classical
light deflection formula for arbitrary wavelength. The solution is valid for all domains
of space-time with the exception of the neighbourhood and the geometrical shadow of
the Black Hole (see [2]) and domains of space time where Q (x, x) is uot a single valued
function. Only in these domains one should expect measurable differences from the first
approximation; these problems are investigated in [5], [6], and [9].

We would like to thank all members of our Jena group for valuable discussions.
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