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The first family of the flow-stationary and vortex-homogeneous solutions presented
in Part 1 is investigated. Their symmetry group is shown to be 3-parametric, abelian and acting
transitively on timelike hypersurfaces. Exterior solutions of the same symmetry are found
and matched to the interior ones. The conformal curvature tensors are of Petrov type I, with
one exception which is of Petrov type II. Matter filling the spacetime is shown to consist of
co-axial cylinders rotating with different angular velocities. The redshift is found to be strongly
anisotropic. The equation of state appears to result from the field equations.

Introduction

In this paper the flow-stationary and vortex-homogeneous solutions presented in
Part 1 [1] are investigated. Since the second and third family were discussed by many other
authors, the present investigation is concentrated on the first family, references being
given for the corresponding properties of the other families.

The symmetry group of the first family solutions is recognized as a 3-parametric
abelian group acting simply transitively on timelike hypersurfaces. Invariant properties
of this group are then used to construct a general metric tensor with these symmetries,
which is substituted in the empty-space field equations. Four types of solutions are found,
one of which is static while the other ones are stationary-nonstatic. In the case 4 = 0
all the solutions are identified with metrics found long ago by many other writers. Their
generalization to A # 0 is a new result. It is shown that with appropriate values of constant
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parameters they are the exterior metrics to the first family solutions. It turns out that the
type of an exterior solution is limited or even fixed by the type of the interior solution.
Empty-space metrics with 4 ¢ 0 are shown to be the formal limitting cases k — 0 of the
interior ones. The conformal curvature of the first family solutions is shown to be of
Petrov type I, with one exception which is of type II. The geometrical structure of the
space-time appears to be that of a family of co-axial cylinders of matter rotating with
different angular velocities around an axis. The red-shift of light emitted from one particle
and received by the neigbouring one is shown to be strongly anisotropic and thus un-
realistic. Also it is shown that the equation of state is, in a sense, a consequence of the
field equations.

Most of the discussion is carried out so that all solutions may be treated simultaneously,
without differentiating between the types. The numeration of sections, formulas and
tables is continued from Part 1.

8. Symmetries of the solutions

a) The first family of solutions

It is seen from the very definition of the symmetry group that symmetries constitute
a subgroup of every group of admissible transformations!. We have finished (see remarks
after (5.7) and (5.8) in [1]) with a very simple group of admissible transformations given
by (2.18) with y = 0. It is easy to see that it is a symmetry group only when « = 1. Thus
for all the first family solutions the symmetry transformations are as follows:

xo ’—"xo'{‘to,
x!' = xV+1,,
xZ — x2’

x> = x¥+1t5, o, t;,1; = const.

(8.1)

The corresponding Killing vectors are k* = 6%, i = 0, 1, 3. We see that (8.1) is an abelian
®
group. Notice that the group (8.1) acts simply transitively on the timelike hypersurfaces

x% = const. Space-times with a symmetry group acting simply transitively on 3-dimensional
spacelike hypersurfaces were classified by Bianchi (see e.g. [2], [3] and Appendix C in [4])
into 9 types. No specific signature of the metric on the hypersurface is assumed in that
classification. Therefore spacetimes with a congruence of homogeneous timelike hyper-
surfaces may be conformed to the same classification. Since the group (8.1) is abelian,
we see that it is of Bianchi type L

! For the definition of admissible transformations see [1], Sec. 2c.
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The group (8.1) is completely characterized by the following statements:

a) There exist 3 commuting Killing vectors k*, k*, k", whose integral lines are the
© 1) 3
x°, x!, x® — coordinate lines. The x%line is timelike.

b) The x2-line is orthogonal to the other ones.

) guk'k’ = g k'K’ = 0.
(0)(3) (1)(@3)

d) g k"k* # 0. (8.2)
0)(1)

b) The second family of solutions

Godel suggests in his paper [5] that the solution obtained by him has a symmetry group
of only four parameters. This statement has been repeated by Wright [6]. Three of the
parameters are connected with the group (8.1), while the fourth one belongs to the symmetry
transformation:

X0 =x% xt=e%xt, x?=e%Y, xP=x¥ (8.3)

(in the coordinate system of (6.9) in [1]).
In fact, the solution (6.9) has a five-parametric symmetry group, as pointed out by
Ellis [7] and Wainwright [8]. The transformation connected with the fifth parameter is:

o o 242 V21, . KAV (M —tx") -2t
X0 =Xt A+ arctg —— 7 X T 52 g "z
K Kx*(1—tx") 2+ K (x* ) (1 —t,x")
x? = (1—t,x")Yx% +205/K*x%, x> = x¥, (8.9)

def
where 1, is the group parameter and K = (kpH-1)!"/2. We see that when t, = 0 the trans-
formation reduces to the identity.
¢) The third family of solutions

Wright [6] and Ellis [7] have shown that (8.1) is the entire symmetry group for this
solution.

9. Exterior solutions

a) Statement of the problem

It is reasonablie to look for exterior solutions with the same symmetry group as the
interior ones, to which they are to be matched. Taking the properties (8.2a)—(8.2d) as
axioms we easily arrive at the following metric form:

ds? = (adx® + pdx*)? — (ydx1)? — (ddx?)* —(edx>)?, 9.1)
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where a, B, 7, J, € are arbitrary functions of one variable x>. Now two cases must be
distinguished:

I' > (ﬁ/a),Z == 0’
II. > (Blo),, # 0. 9.2)

In the first case § = Sx where S = const, and the transformation x° = x%' —SxV, x' = x¥,
i = 1, 2, 3 shows that the form (9.1) is static. In the second case the metric (9.1) is stationary
but possibly nonstatic.

It is easy to see that (9.2.I) may be considered as the special case of (9.2.I1), except
when (g/a),, = (¥/0),» = (Bla),, = 0. If (BJa),, = 0, but (y/a),, # 0 then the transforma-
tion x! = x¥+const * x° produces a new B’ with the property (B'/x),, # 0. If (y/a),,
= (B/a),, = 0, but (g/a),, 0 then the same result is yielded by x! = x¥, x3 = x1'
+ const + x°. If (g/a),, = (y/0),2 = (Bla),, = O then the direct integration of the field
equations yields:

ds? = w‘2/3[(dx°)2 —-(dxl)Z] — w—-z(dxz)z - w—z/s(dx:i)z, (9’3)

where:
w=Px*+Q, 9.4
A = LP?, (9.5)

P and Q being arbitrary constants.
This metric might be called a A-version of the flat metric since for A = 0 it becomes
flat. It is not interesting for us.

b) Algebraic form of the metric tensor

We consider now the case Il of (9.2). Then we can introduce a new coordinate:

, def
x* = B(x?)fo(x?). (9.6)
We also introduce the following notation:
a=f"1(x*), B*=g(x*), & =K@E"), &=-RICEFPE. O

Now f, g, K, R are the new unknown functions, and (9.1) assumes the form (we drop
the primes)

ds® = f72(dx° + x%dx")? — g(dx')? — K(dx*)* + R~ 3(dx>). 9.8
This is closely analogous to (3.4) from [1] under the following identifications:
f«H, g<h Kok, RerglG. 9.9)

The equation R = 0 (in the scalar components Rj., see section 3b in [1]) is easily integrated
to give:

def .
gKRf? = const = —J2, (9.10)
This is an analog of (3.3) from [1].
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We consider the field equations R} = A8, The procedure of integration goes exactly
the same way as in Sec. 5b of [1]. The results are as follows:

g = V&I, 9.11)
Ve?) = ()24 pr g, (9.12)
K = —J*/(RVf), (9.13)

5 2
R=s fT/ exp (J%— dxz), (9.14)
f=20'7, (9.15)

where s = const > 0 # J = const.
The function v must obey the following equation:

V,,—x? 3V, Vi x*v, 1
2 (e - D)oo
4 Vv vV Vv Vv
Formulas (9.11)—(9.16) were. obtained by subtracting the field equations from one

another. Substituting those expressions in any of the diagonal components of R; we
obtain the definition of A by means of the other constants:

1 x? - _ - - -
A=~ é}isfs I:CXP(J‘7dx2)](V -2y lV,zf Yt 2f 2fs§—2f Yo22) = 0.

(9.17)

So we have found that the stationary-nonstatic empty metrics have the following algebraic
form:

Us22—

(9.16)

ds® = f7H(dx°)* +2x7dx%dx" +[(x*) - V] (dx')}

i a2 )| [ @ty s 2wy 9.18
ol ]

The reader is asked to compare (9.18) with (5.12) from [1] to see the high similarity
of those two metrics.

Here Eq. (9.16) has also various types of singularities (analogously to (5.11) from
[1]) and various solutions depending on the type and number of roots of V.

The reader should have (9.18) in mind when looking into the tables below. The
constants P and Q appearing there are both real and never vanish simultaneously.

¢) Type A solutions

p?—4q < 0. (9.19)
V has two complex roots x2 = p, and x> = g, = p,, and may be represented as:
V = (x*—po) (x*~qo). (9.20)

For definiteness we assume Im (py) < 0. Here V > 0 for all values of x2.
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TABLE VII
Type A solutions
= [Pv+Qu,)'/?

x*=po g (Xz“qo v
Uy =
" \2-L) \po—L
2=poV [(x2=q.\"
vy = Po o , L = const
qo—L Po—L

u 1
} = ————— [ Po—2Go+(p5—Pogo + 45)*/?]

o 2 po—qo)

v = u* 1
Vo= B Z(ﬁo_QO

‘)‘ [2Po—qoF (P}~ pogo-+43)/?]

A = ($3J)PQ(PE~Ppodota?) (po—L) =90/ (Po=40)(gy — LyPo/(Po =40

2 1 Re x2—Re
dl dx?* = — In [(x*—Re po)*>+(Im po)2]-+ Lo arc tg 2o .
14 2 Im Do

Im pe

Both linearly independent functions v, and v, are real so they could be represented
without using complex numbers but our notation is simpler. When Q = 0 (and conse-
quently A = 0) this solution is identical, with one of Lewis’ solutions [9] (formulas
(4.6)’~(4.9Y in his paper). In both cases P = 0 and Q = 0 the type A solutions are of the
form (18) from the paper of Dautcourt, Papapetrou and Treder [10]. When A # 0 these
solutions are new.

If po and g, are such that p2 —pogo+g2 = O then u = g/, v = v and v, with v, become
linearly dependent. This case is called “type A’” and must be treated separately.

d) Type A’ solutions
Po

= gexp (-T-i %) , (9.21)
do

where g > 0 is an arbitrary constant.
In the case Q = 0 (what means 4 = 0) this solution is still of the form (18) from the
paper of Dautcourt, Papapetrou and Treder [10], while for A # 0 it is new.

TABLE VIII
Type A solutions
V= (xz__qe—inls) (xz_qe+in/6)
= [Pos+ Q.13

vy = (x2—ge~iM6)3=iVI)4 (x2_ gotin/6)(3+iV3Y4
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xt—ge~inl6
2
v? = In e
A = (s]375)Q*

-2 1 _ a R
J J—;; dx? = > In [(x?)%>— v/3 gx?*-+q*]+ /3 arc tg 2x*— v/3).

e) Type B solutions
p>—4q > 0. (9.22)
¥ has now two distinct real roots x? = p, and x* = g, > p,, and may be represented as

V = (x*—po) (x* — qo)- (9-23)

In order to assure the proper signature of (9.18) we have to demand V > 0. This is fulfilled
only for x% < p, and x? > q,.

TABLE IX
Type B solutions

All the formulas, except for the last one, are identical with those of Table VII. This time po and g,
are just independent real constants, p, # L # qo, 50 (s, ¥) and (¢, ') are also pairs of distinct real con-
stants and no analogue of the equations » = s¢*, v" = u'* holds. The solution has the proper signature in
the non-connected region {x* < p, or x* > ¢o}. The points x> = p, and x% = ¢, are singular points of

the solution.
2 1
X dx? =
vV Po—do

It is just the type B solution which appears to be static, and by appropriate choice
of coordinates may be changed to the form (9.2.I). In the case A # 0 the solution is new.
In the case A = 0 it has been known since long ago and appeared several times in various
papers. In the cases P = 0 and @ = 0 it is identical (exact to coordinate transformations)
with the metrics found by Levi-Civita [11], Kasner [12], [13], Lewis [9], Marder [14],
Dautcourt, Papapetrou and Treder (formula (18) in [10]), Gautreau and Hoffman [15].
It is also identical with Mitter’s solution [16] if only Mitter’s constant m is equal to (—2)
instead of the crazy value given by the author; otherwise the field equations are violated.
Moreover, it is the special, cylindrically symmetric case of Weyl’s axially symmetric
metrics [17], [18]. Mukherji’s solution [19] in the case of vanishing electromagnetic field
is the special case P = 0 = p, of the type B solution.

[P0 In (x*—po)— o In (x* — qo)].

fy Type C solutions
pP—4g =0, q#0. 9.24)
Then V has a double real root x2 = py # 0 and is of the form:
V = (x?~pg)>2. (9.25)

Now ¥V > 0 everywhere except for x% = p,.
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TABLE X
Type C solutions

f = 1x2—py V2P QePo/ (X~ po)Ji/3

A = (53J*)PQp}

x2
Jf/— dx? = In |x*—po|— Po

2
X" =Do

For x* = pg the solution has a singularity.

When @ = O this solution is the degenerate case p, — g, of the type A and B solutions.
Then it is also the special (independent of =) case of Hoffman’s solution [20]. When P = 0
the solution is contained in the class of metrics considered by Lewis [9], although it is
not given in his paper (one can find it in van Stockum’s paper [21]).It is then the degenerate
case of the type A solution with @ = 0.

In both cases P = 0 and Q = 0 (A4 = 0) this solution is of the form (21) in the paper
of Dautcourt, Papapetrou and Treder [10]. With A # 0 this is a new solution.

g) Type D solutions
p=qg=0. (9.26)

Then ¥V is of the form:
Vo= (x2)2. (9.27)

V > 0 everywhere except for x2 = 0.
TABLE XI
Type D solutions
f= (PP Q|13

= —(s/3J%)Q*

2
J‘)_r_ dx? = In x?
V

x? = 0 is a singular point of the solution.

In the case Q = 0 this is again a special Hoffman’s solution [20], the special case
Do = 0 of the type C solution, and at the same time it is of the form (24b) from the paper
of Dautcourt, Papapetrou and Treder {10]. With Q # 0 this is a new solution.

h) Exterior solutions matched to the first family interior solutions

We use (5.12) from [1] and (9.18) as the representations for the interior and exterior
metrics, respectively. Then the equations of continuity of g,, and the second fundamental
form on the hypersurface x? = r, = const are equivalent to:

J = 1/G, (9:28)
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{V(ro) = G W(ro),

V,a(ro) = G~ ' W, (ro), (9.29)
1 x? G? Gx*
—— — - d 2 _ . e d 2 , .
: exp( ‘[ 4 )xz=,o D exp( W )xz:m (9.30)

{f("o) = H(r,),
foa(ro) = H,5(ro)- 93D

Egs (9.29) define the constants appearing in V in terms of G, B, E appearing in W.
After (9.29) are solved, Eq. (9.39) defines s in terms of D, G, B and E. Then Eqs (9.31)
define the constants P and Q in f in terms of M and N appearing in H.

Now we are going to establish which types of exterior solutions can be matched to
an interior solution of a given type. The ranges of values of r, appearing in subsequent
sections result from the investigation of Eqs (9.29).

i) Exterior solutions for type I

Here Egs (9.29) do nvt lead to a contradiction only when V is of type A. Then:

Po

1
} = —{2a—Dro+b+c
qdo 2a

FL(b+c')* —4abc’ +4(a—1) (b+cro—4d(a—1)rd]' 7} (9.32)
Eqgs (9.31) are equivalent to:
(Poy+Q0y) 2=, = [M(u+u*)—iN@u—u*)]| 2=,
(Poy 5+ Q0; Dlyzmpy = [Mu+u*),;—iN(u—u*),,]l 1227, (9.33)

They can be solved for Pand Q if the determinant of the left-hand side is different from 0.
As v; and v, are linearly independent, this condition may be broken at most in some single
points. Therefore, if our first choice of r, were unfortunate, so that the determinant of (9.33)
would be 0, then in an arbitrarily small neighbourhood of r, there would exist such points
in which this determinant is different from 0.

The equations analogous to (9.32)-(9.33) and the remark above are true for all the
other types discussed below and we will not repeat them.

J) Exterior solutions for type II, case a <0

Since these solutions have the proper signature in the region » < x2 < ¢’, one can
match exterior solutions in both regions outside the segment [b, ¢']. However, it cannot
be the same metric for both regions. Once p, and ¢, are given, r, is unique.

Let us define:
I3 def . 1/2
o 1 a
=—|b+F{— "—b)|. 9.34
7‘2} 2|: te (a-—l) (e )] ( )
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Since a < 0 and b < ¢’, one verifies that:

b<ry<rh<c. (9.35)
Egs (9.29) imply now:
If r) < ro < rg, then the exterior metric is of type A (or A’, if @, b and ¢’ are suitably
chosen).
If ro = rb or ro = ry, then the exterior metric is of type C.
If b < ro <ryorrh <r,< ¢, then the exterior metric is of type B, and thus static,
with p, and g, given by (9.32), and p, < g, < b or ¢’ < py < ¢, respectively.

k) Exterior solutions for type I, case a > 1

Here the interior solution has the proper signature in the disconnected region x*> < b
and x? > ¢’. Notice first that it is not possible to match one empty-space “bridge” to both
these regions because again, once p, and g, were determined, r, is unique. Therefore
these two regions must be considered as two different solutions.

We define rf, and rg as in (9.34). This time, however, ¢ > 1 and:

ro<b<c <rp (9.36)

If ro < ro or ro > ry, then the exterior metric is of type A.

If ro = ry Or ro = ry, then the exterior metric is of type C.

If rh < ro < bore <ry<ry, then the exterior solution is of type B with p, and ¢,
given by (9.32), and b < py <qo OF po < go < ¢', respectively.
1) Exterior solutions for type IIl

Here (9.29) imply that V is necessarily of type A.

m) Exterior solutions for type IV

Again (9.29) point at type A.

n) Exterior solutions for type V
Here Egs (9.29) yield:

ZO} = ro+3F(ro+Eo+ D' 9.37)
o

If ro < —E,—1}, then the exterior solution is of type A.

If ro = —Ey,—1%, then the exterior solution is of type C.

If ro > —E,—1, then the exterior solution is of type B, and thus staic. Since always
ro < —E;, we have ro < pg < ¢o-

o) Exterior solutions for type VI

Here they are necessarily of type A with:

2’0} = roFi(~Ef0)"? (9.38)
0
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p) Exterior solutions for Raval-Vaidya’s [22] and G&del’s [5] metrics
Since they are the limitting cases of type IV from the first family, their exterior metrics
are of type A.
r) Exterior solutions for Lanczos’ metric [23]
This problem has been solved by van Stockum [21]: the exterior solutions are those
of Lewis [9].
s) Some remarks concerning exterior solutions

Notice that the field equations inside matter reproduce the empty-space field equations
in the formal limit x = 8zk/c? — 0. Therefore we expect that if some interior solution
still exists when x = 0, it should then reduce to an empty-space solution. It happens
that our first family solutions reduce in this limit precisely to the metrics considered here.
The reader is asked to consult section 5 from [1]. If x = 0, then (5.18) implies a = 1.
Then we easily see that type I reduces to type A, type II to type B, type III to type C and
type 1V to type D. The types V and VI do not exist in the limit x — 0.

10. The type of conformal curvature

a) The first family

A special solution of type IV corresponding to B=E =0, G = —(x/2)( \/§+1)
in (5.5) (see [1]) is of Petrov type IL It has the following form:

ds? = N™23(x%)'~2[(dx®)? + 2x?dxdx! +2(/2-1) (x*)*(dx")*]
+DN"2(x) "% (dx?)? — (4D)" N~ *3(x?)~>'2(dx?)2. (10.1)
All the other solutions of the first family are of Petrov type I (general).

b) The Raval-Vaidya [22] and Gddel solutions [5]
Wright [6] and Wainwright [8] have shown that these solutions are of Petrov type D.

¢) The Lanczos [23] solution

Wright [6] has shown that it is of Petrov type L.

11. Geometry of the space-time

a) Geometry of the hypersurfaces x2 = const

It is easy to verify that the x2-lines are geodesics. The metrics (5.12) induce, on the
hypersurface X given by x? = r, = const, the following metric form:

ds* = H™2(ro) [(dx° +rodx")? =G W(ry) (dx)* 1+ Go ™ '(ro)H(ro) (dx*)?  (11.1)
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This form represents a flat Riemann space. Therefore we can embed it into the Minkowski
space and investigate its geometry there.

Every hypersurface S in the Minkowski space defines (at least in its neighbourhood)
a coordinate system in the following way: we choose 3 coordinates in the hypersurface
quite arbitrarily, and through each point of the hypersurface we draw an orthogonal
geodesic (i.e. the straight line). On each straight line we choose a parameter A such that
A = Ao on S. Then the condition 4 = const # A, defines another hypersurface of the same
topology, and the coordinate net on it is transported automatically from 4 = 4.

Let us make such a construction for our X. Let y?> = A, and inside each hypersurface
¥* = const let use the coordinates (3°, ¥, ¥*) which coincide with (x°, x!, x®) on Z. Let
¥*(%) = ry, and consequently the metric induced on X is (11.1). In such a coordinate
system the metric of the Minkowski space assumes the form:

ds* = [a(y®)dy°® + B(yHdy' ] —[y(¥*)dy' 1> = (dy*)* — [e(y*)dy>]?, (11.2)

where the corresponding Riemann tensor is equal to 0. The equations R;;; = 0 have
four sets of solutions:

ds® = (ady®+pdy')* —(ydy")* —(dy*)* —(edy®)’, (11.3)
where o, B, y, &€ = const,
ds® = (ady®+ pdy*)* —(ydy")* —(dy*)* — C*(y*)*(dy*)?, (11.4)
where «, 8, y, C = const,
ds* = £C*[(y*)® — B*/4C*] (dy° + Kdy*)* +(B[E)dy°dy*
4 (BK/E—eC*/E*) (dy")* —(dy*)* —(edy®)?, (11.5)

where B, C, E, K, ¢ = const, € = +1.
ds® = (ady® + pdy')* — C*(y*)*(dy')* —(dy*)* —(edy®)?, (11.6)

where a, 5, C, ¢ = const.

In each case the metric may be put in the Cartesian form ds? = ¢2dt? —dx?—dy?—dz? by
a simple transformation of coordinates. From those transformations we can recognize
the geometrical meaning of the coordinates (3°, y1, y%, °).

In (11.3) (3%, y?, y®) are orthogonal cartesian coordinates. The presence of the term
dy®dy' means that the time is measured by a clock moving in the y!-direction. Here the
surfaces y°, y2 = const are euclidean planes, and the y'-lines are straight.

In (11.4) ()%, y%, y®) are cylindrical coordinates: y* is measured along the generator
of the cylinder, y? along the radius, and y® is the azimuthal coordinate. The surfaces
3% y? = const are cylinders, but the y'-lines are again straight.
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In (11.5) two subcases ¢ = +1 and € = —1 must be treated separately. If € = +1,
then the Minkowski space is parametrized by a collection of observers moving in the
y2-direction with constant, but different accelerations. Their world-lines are labelled with
the value of acceleration y* (compare Bondi’s lecture in [24]). Simultaneously the
observer has a constant velocity in the y!-direction and uses a clock moving in the
yl-direction with another constant velocity. Here the (p', y?, y)-lines are straight.

Now let € = —1. Then (', y?, ) are again the cylindrical coordinates but now Cy!’
is the azimuthal angle, y? is the radial coordinate, and y® is measured along the generator.

Finally, in (11.6) (3*, ¥, »*) are cylindrical coordinates with the same meaning as
above. Hovewer, this time the observer does not rotate although he still uses a revolving
clock for time-measurements.

We see from (1.35) that «* is tangent to the hypersurfaces x? = const and every
particle of the fluid moves still inside one hypersurface x? = const. Therefore the trajectory
of every particle can be described in one of the metrics (11.3)-(11.6) instead of (5.12).

The non-zero projection of 4* onto x'-line means that, in the hypersurface y° = const,
the particles of the fluid follow the y'-lines. On the other hand the acceleration vector
u* = u%u®is tangent to the x*-lines, and the vorticity vector (1.39) is tangent to the x>-lines.
In (11.3), (11.4) and the first subcase of (11.5) the y'-lines are straight and consequently
the accelaration, if present, can have only the y° and y' components. In the second subcase
of (11.5) and in (11.6) the motion along y'-lines is a typical rotational motion with the
angular velocity parallel to the y3-line and acceleration parallel to the y2-line. This is in
perfect agreement with our space-time. So both these metrics may be the models of
our manifold. We decide that (11.5) with ¢ = —1 is a better model, since in
the presence of rotating mater it is not possible to define a nonrotating observer.
Consequently, the invariance with respect to the additional Killing vector df means
axial symmetry.

For comparison the reader is asked to see a nice discussion of Gautreau and Hoffman
[15] concerning a similar problem.

b) Structure of the space-time

Thinking in a non-relativistic, three-dimensional way we can say that the space
consists of co-axial cylinders. Matter rotates in such a way that every particle moves
still along the azimuthal circle of a fixed cylinder. The velocities of all the particles moving
on the same cylinder are equal but they vary from one cylinder to the other. The density
of matter, the pressure, and all the other scalars are constant on a fixed cylinder but they
also may vary in the radial direction.

¢) Geometrical meaning of the assumptions (1.42)

The assumption d,g,, = 0 meant stationarity what was obvious from the beginning.
The assumption d,.g,, = 0 meant that the space-time is homogeneous in the direction of the
vorticity vector, i.e. the axis of cylinders. It is interesting that these two assumptions imply,
as it appeared from the field equations, that then the spacetime is necessarily axially sym-
metric. This property was not contained in our assumptions.
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12. Physical properties of the solutions

a) Invariants of the velocity field and the red-shift

We denote § — the expansion, ¢ — the scalar of shear, and #* — the vector of accel-
eration (for definitions see e.g. [25]). As we already noticed in Sec. le [1] we have:

0=0=0. (12.y
Moreover we have:
u® = WoH,,55 (12.2)
for the first family, and:
w=0 (12.3)

for the second and third family.

In consequence of (12.1) the formula for the redshift di/A (as measured by an observer
travelling with a fixed particle of the fluid and receiving light signals from a nearby
particle), given in [25], simplifies to:

diji = —1i,8 x* = —H 'H,,8 %, (12.4)

where:

def

8 x* = (85— u"ug)ox?’, (12.5)

dx* being an infinitesimal vector pointing from the observer to the particle sending the
light signals.

From (12.4) we see that in the second and third families there is no redshift, whereas
in the first family it is strongly anisotropic: equal to 0 when & x* 1 4* and maximal when
0, x*{|a*. This contradicts observations. More realistic models require at least non-zero
shear.

b) Some remarks concerning the equation of state

In our first family o and p are functions of one variable x2, and therefore the equation
of state is given in a parametric form:

e = o(x*, p=px?) (12.6)

The functional dependence of ¢ and p on x? is in general so complicated that it is not
possible to obtain an explicit equation ¢ = o(p). We only emphasize that the equation
of state appeared to be a consequence of the Einstein field equations. Usually one
expects that the equation of state can be postulated independently of the field equations,
hence our result may seem surprising. However, this is always so if there exists such a set
of coordinates in which the metric tensor depends only on one variable. If we look



237

into the tables of chapter 5 from [1] we see that the most general metrics contain six
independent arbitrary constants. All of them appear in the formulas for ¢ and p. The
equation ¢ = g(p) with six arbitrary parameters represents, in fact, a large class of equa-
tions of state.

13. An interesting special case

a) Solutions with cut-off hypergeometric series

The ordinary or confluent hypergeometric series can degenerate to elementary func-
tions when their parameters assume some special values, The most obvious cases are when
the first or second parameter of the ordinary hypergeometric function and the first para-
meter of the confluent hypergeometric function are negative integer. Then the series be-
comes finite, i. e. degenerates to a polynomial.

It is seen at once from Table VI that this is impossible in type VI solutions. It is also
impossible in type III. However, in the types I, II and V the hypergeometric series may be
cut off at some values of parameters. Plebanski? even suggested that then it would be pos-
sible to obtain the equation of state in the form of the van der Waals isotherms. This ques-
tion has not yet been investigated.

b) A special solution of type IV.

If we take the type IV solution with M = 0 or N = 0 then p and o become power
functions of x2> and obey the polytrope-type equation:

po~ 7 = const, (13.1)
where:

a—1
S5a—6+(a*—a+1)"*’

y=06 (13.2)
upper sign corresponding to N = 0 and lower to M = 0.

The condition @ > 1 implies that y <0, 1 <y < 4/3 or y > 3/2. It is seen that re-
alistic values of y may be chosen just by signature requirements (g > 1 is such a one).

14. Concluding remarks

Our solutions appeared to be unrealistic both as models of stars (because the portion
of matter is necessarily infinite) and models of the Universe (because of the redshift-aniso-
tropy). They may be of some importance only for relativistic hydrodynamics as a mathe-
matical theory. If one intends to obtain a model of star, then the assumption d,g,, = 0
should be abandoned, but d,g,, = 0 might be retained. Conversely, to obtain a realistic
model of the Universe the assumption ,g,, = 0 must be abandoned, otherwise the shear
and expansion scalars will vanish and the redshift will be still anisotropic.

2 Private communication.
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However, the coordinates (1.32) have an essential defect. Most of the authors postulate
the metric form for a stationary and axially symmetric space-time as follows:

ds® = e*(dx°+Qdp)? —e*dp? — h ypdxAdx®,

where 4, B = 1, 2, and Q is called “the angular velocity of dragging inertial frames”. The
limit Q — 0 corresponds to the static spacetime in which matter does not rotate. In the
coordinatés (1.32) we have Q = x?, and we cannot pass to the limit  — 0 without changing
the coordinate system.
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