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A separable, quasirelativistic, potential model is used to describe XN elastic and in-
elastic scattering. Free parameters of the model are set to reproduce the scattering data
up to 300 MeV/c momentum and the virtual Y,(1405) bound state energy and width. Various
inelastic processes occurring below the KN threshold and observed in the kaon nuclear inter-
actions are studied. The dependence on the phenomenological parameters is discussed.

1. Introduction

The stimulus to study the negative kaon interactions at low energies, apart from the
interest of elementary particle physics, comes from nuclear physics. It has been argued
since a long time that kaon is the best tool to study the nuclear surface composition [1].
This requires a knowledge of kaon nucleon multichannel scattering amplitudes off the
energy shell. The aim of this paper is to provide a simple model of such amplitudes. Here,
the model is tested on the available two body scattering data. A further aim is to use it for
a description of few body kaonic processes and for nuclear interactions of the kaons.

Our analysis is done in terms of a quasi relativistic Schrodinger equation. The inter-
action is introduced in the form of separable multichannel potential. Some properties
of the equation are given in Sec. 2. In Sec. 3 we discuss the procedure and numerical
results which consists of a reproduction of the kaon-nucleon scattering data and extra-
polation of the amplitudes below the KN threshold. A special attention is paid to the be-
haviour of the resonant state. A dependence of solution on the parameters of the potential
is also studied and a fairly strong sensitivity of the off shell behaviour to the range of the
forces is found.
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2. The model

The two main features of K—N reactions at low energies are a short range of the forces
and the presence of open hyperon pion channels. The forces are believed to be due mainly
to the exchange of vector mesons, thus being of the range 1/u =~ 0.25 fm, [2]. However,
a longer range component arising from the two pion exchange is also possible. This is
left open and the range parameters are free parameters which eventually turn out to be of
intermediate magnitude. This is supported by a number of phenomenological analyses,
[2-7], which show that the S wave scattering dominates the picture up to 300400 MeV/c
of the kaon laboratory momentum. We restrict ourselves to this wave only. The coupling
of the initial K—p channel to another kaonic K°n and the hyperonic Zn, An channels is
pretty strong giving rise to a resonant state of the X7 pair. We shall consequently consider
only the S wave in all the channels. The three body Ann channel is also open but this is
known to be of no importance in the region of interest, being usually disregarded.

Within the two body space the plane wave states will be normalized in a Lorentz

invariant way
2

+r 7y

g . (27-[) - -y nd >
ip\palipip2> = ‘\‘/? E{p)wfp2)5(p, — p1)d(p,— P2)d;;

= 8(P-P") {N}(9)5(4—4)}d:; (1)

where i, j are channel indices and P, g are the total and relative momenta,
Here from we use the centre of mass system and thus the momentum conservation
delta factorizes out in all equations. The normalization factor becomes

N} = QuPEof(E+w),
E = (mi+¢)"? o, =@l+4)" (1a)

The scattering matrix will be determined from the Lippman Schwinger equation. If
we denote
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We need a quasi-relativistic approach because of pions in the inelastic channel. A number
of relevant methods may be found in the literature, differing by a choice of the Green
function G in Eq. (2). These are various reductions of the Bethe-Salpeter equations to
the equal time formalism. For some the probabilistic interpretation seems to be unclear
although relativistic invariance is achieved.
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We would rather prefer to loose partly the latter so we project on the positive energy
solutions only. The Green function is then normalized by the propagation condition

o ) dE . dE _ »
lim G(t, tO) = 1/1 = |\ — G(E) = -~ " (pn(pn(E_En) H (3)
—to 2n 2n

which is equivalent to the completeness of the set of positive frequency solutions ¢,.
With the normalization (1) we obtain
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and the integral equation simplifies to the form
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The normalization (1) was chosen so that the residue in the Green function (4), when in-
tegrated over momenta, equals unity. Hence the asymptotic behaviour of the wave func-
tion is

iger
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and the Lorentz invariant expression for the current yields the cross section
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3. Results

Experiments distinguish the initial K—p channel coupled to the other kaonic state
K°n. A suitable combination forms the pure isospin 7 = 0, 1, I; = O states. These are
coupled to Zn I = 0, 1 and An I = 1 states, which together form a five dimensional basis
in the isospace: (KN)o, (KN),, (7)o, (%), (An), . The other I, components for example
K~n states are not accessible in the two body experiments but appear in the K~ deuteron
or K- nucleus scattering. The potential ¥ is assumed to be an isospin invariant 2 x 2 for
I = 0 and 3 x3 for I = 1 matrix. This symmetry is broken, however, by Coulomb inter-
actions and by the mass splitting of the isospin multiplets. These will be introduced into
the Green functions. In the region of interest far from the XZn threshold the mass splitting
of the X and = multiplets is not relevant but the 4.9 MeV difference of K~p and K°n thresh-
olds should be considered.
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The Green function is thus diagonal in the channel representation (K-p), (K°n), and
(Zn),,0, (Am), while the potential is invariant in the isospin representation

(KN)o

i

1/y2(K™p)=1/y/2 (K°n),
(KN), = 1//2(K™p)+1//2 (K°n), (7)
of the kaonic component. The corresponding transformation is achieved by a matrix U
GkL = Z UxiGiUZis Vij = Z U;:iVKLULja (®
where capital indices denote isospin representation. In the kaonic subspace U

= 1/\/5 (i _i) follows from Eq. (7). In the hyperon pion channels the isospin represen-

tation is used throughout.
We use potential with one separable term only

VéL(?J, 'é') = V(@D D)V (q), )]
with Yamaguchi formfactors
Kx
4 = 10
x(q) e i (10)

and this corresponds to the S wave only. The potential matrix A(7) is real and symmetric

to guarantee hermiticity and time reversal invariance. For simplicity reasons the inverse

range parameters k are chosen to depend on the channel (and not isospin) index only.

The free parameters are then: two inverse ranges ag, oy and three depth parameters

A (0) for I = O and six A4, (1) plus one k, for I = 1 that is twelve parameters altogether.
In the channel representation the solution of Eq. (5) has the form:

T:44, q"; E) = V{DtLLEYV (q'), (11)
where
[l_l(E)]ij = [;‘_l]ij—Ri(E)éfjs
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Since the masses of barions m; are much larger than those of mesons y;, we may
approximate the functions R; by the following expressions

1 f E ¥} q)q*dq

R(E) ~ —~ .
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For the Yamaguchi formfactors this integral may be performed explicitly. To do it let us
introduce abbreviations:

, 1
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The function R(FE) is then

E

R(E) = —ik{(E
B = O G =y

V' i(k1)+ PE), (13)

where

P(E) = —

n(2nliE+ui2—mf)1/2 [Mll(E)"Mlz(E)]

Let us comment on the effect of the Coulomb forces. To calculate it exactly the proce-
dure of separable model must be repeated with the free Green function G,, (3), replaced
in Eq. (2) by the Coulomb Green function. This is performed more easily in the coordinate
representation. For the region of energy under study the Coulomb force is significant
in the K~p channel and close to the threshold only. Thus we use nonrelativistic form of
the Coulomb corrections. The exact solution of this problem within our Eq. (5) is also
simple but somewhat lengthy. As the details will be published elsewhere we give the result
which consists of a change of Eq. (13):

R®E) = R(E)+2pux { —In (“4”“) +iy Z —1——} , (14)
K n{—iy+n)

n=1
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where y = o/ V'm‘. Only the leading term in po/x is retained. This formula is valid on the
whole cut energy plane and yields also energies and widths of the atomic quasibound
states of the K~ and p. These are given by positions of the poles in the elastic K—p amplitude,
that is, by the equation

U <—4ik1(E)>_, . 1 s
B g ® T\ )T )Zm(m—iv(E»’ ()
m*n

where n is the principal atomic quantum number. Keeping the first dominant term only
a well known formula is obtained

pa’

"=—
2n?

200>
E + — KE,), (16)
which gives the strong shift to 159, accuracy. The relativistic corrections to the lowest level
are still 102 of the strong shift. The other change to be made concerns the relation of
the matrix (10) to the experiment. The on shell scattering matrix which enters formula
(6) for the cross section is now

Ty = ¥ KIE (B (K ENT(L +7)e2 ™

x T(1 = i7,)e2 " + 8¢ feoutoms(0) (17)

which together with Eq. (14) are a slight generalization of the well known effective range
formulas.

Let us now turn to the description of the experimental data. To determine the parame-
ters of this model the following conditions will be met:

a) reproduction of the energy and width of the Y, resonance,

b) best fit to the low energy K—p elastic and inelastic data.

The requirement a) leads to the conditions

Re T(Enl)o(xn)o(ER) =0,

d _
aTE Im T():nl)o(zn)o(ER) = TI/2, (18)

with E; = 1406 MeV and I = 42 MeV chosen. These turn out to yield strong restric-
tions on kg, K5, and A(0). The best fit to the scattering data was made in a simplified way
by comparing our reaction matrix

K;; = "Vi(q)kij(E)"Vj(‘I),
kit = At —8yP, 19)

with phenomenological sets of the reaction matrices found by various authors [3-7].
This may be done at a given, fixed, energy as our K matrix is energy dependent in a compli-
cated way while the phenomenological matrices are given either in the scattering length
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approximation or in the effective range approximation

KI;I(E) = Ki;l(o)"% riqizéif
The difference of the models manifests itself mainly through an energy dependence of the
nondiagonal terms which appear in our formalism. If we keep the resonance conditions
(18) fixed it becomes difficult to obtain a reasonable fit to those solutions for which
det |K;.,(0)] < 013, 5,7, solution “b’]. This happens so because the sign of the determinant
introduces correlation of the relative signs of the scattering lengths and the effective ranges.

This phenomenon known already in the effective range approach [8] occurs in this
model too.

TABLE I
Potential matrix parameters of this paper and the reaction matrices of Ref. [7], in fermis
(KN)o (Zm)o

(-2.27, ~1.14> (—0.48, —0.42)
KI=0)= ;M =0) =

, —0.90 , 025

(KN), (Xm), (4m),
0.183 —-0.649 —0.476

K(I=1)= -0.324 —0.141
0.550

142 -2.09 —-1.73

N =1) = 2.03 1.99
1.07

We find good overall agreement with the solutions of A, D. Martin and G. G. Ross [4]
and B. R. Martin solution a, [7]}. The parameters of the best fit are given in the Table I
together with the B. R. Martin reaction matrices which were used for this fit. The reciprocal
range parameters are kxy = 1094, ky, = 799 and x,, = 700 MeV and the ranges of
corresponding potentials are roughly 2/x,. The solution is pretty stable with respect to
the energy at which comparison is made up to E = 1480 MeV. The actual fit was made
at E = 1470 MeV or gxy = 240 MeV/c. For higher energies of comparison other, un-
physical, solutions with comparable y? arise too. Various scattering matrices T(E) on the
mass shell, but without the Coulomb penetration factors of Eq. (17) and corrections (14),
are drawn in Fig 1. In Figs la, b the elastic amplitudes K—p and (Z7), coupled strongly
to the resonant I = 0 amplitude are given. The continuous curves come from the best
fit parameters. Those dashed correspond to the reverse ranges k,y and ky, reduced by 20%;
and the unchanged strength parameters A, The amplitudes in the scattering region, above
the threshold, are very stable but the effect on the resonance is significant. This sensitivity
to the off shell behaviour is an unpleasant factor for the many body low energy kaon
interactions. The lesson is that the amplitudes below the threshold must be treated with
care and possibly checked in an independent way.

The elastic 7 = 1 amplitudes shown in Figs 1c, d are almost x independent.

! The authors are grateful to Dr. B. R. Martin for sending us his results prior to publication.
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<KplTlkp>

Fig. 1a. The diagonal matrix element T(x-p), (x-p) versus energy. Best fit parameters. The dashed lines
represent the same element but with x reduced by 20%
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Fig. 1b. The diagonal matrix element Tzz),, (zr)o Versus energy. Best fit parameters. The dashed lines
represent the same element but with x reduced by 209,

Finally various cross sections and branching ratios are given in Figs. 2-7, with the
corresponding experimental data. Various characteristics of the sigma hiperon production
are given in Figs 2, 4, 5, 8. The sensitivity of amplitudes to the range of forces in the sub-
threshold region is shown in Figs 2 and 8 where the branching ratios:

R, ,_ = Yield (Z*n)/Yield (Z-7F)
R,, = Yield (Z+n~+ Z-n+)[Yield (Z-n°)
are given.
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Fig. 1c. The diagonal matrix element T xy, (4x), VErsus energy (see caption to Fig. la)
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Fig. 1d. The diagonal matrix element Tyzqy, (zx), Versus energy (see caption to Fig. 1a)
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Fig. 2. The non diagonal matrix element T(zx), (k- p)o VETsus energy, in the isospin 0 state (see caption to
Fig. 1).
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Fig. 3. Calculated cross section for K—p — K°n versus kaon laboratory momentum
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Fig. 4. Calculated cross section for Kp — 2@+ versus kaon laboratory momentum
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Fig. 5. Calculated cross section for K-p — X+n~ versus kaon laboratory momentum
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Fig. 6. Calculated cross section for K-p — An° versus kaon laboratory momentum
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These ratios have been used to characterize nuclear kaonic interactions and are a key
to study the neutron skin effect in nuclei [9, 10]. The dependence on « is moderate and
probably cannot be used to explain the high experimental number for R, ~ 20 in light
emulsion nuclei, [9]. A plausible explanation as noted in Ref. [11] lies in a poor knowledge
of I =1, KN — Zn amplitude at low (zero) energies. Many body effects are also not
negligible in the nuclear case, [12]. The Coulomb effects given as corrections in (15)
and multiplicative penetration factor in formula (17) are important only in the very low
energy region and in the atomic region. For relative momenta gyy ~ 100 MeV or gy
~ i-100 MeV below threshold only the logarithm is nonnegligible. Around the resonance Y,
it becomes of some significance as Re tK‘Nl, xn =~ 0 and causes ~0.5 MeV upward shift of the
27 MeV resonance binding energy. This value of energy shift is accurate to about 259
as only the first term in the development of the Coulomb correction in (g/x) was used.
The accuracy of this development in thre atomic region is 0.5 %,.

Let us comment also on the stability of the model itself. It was based on the simple
form (4) for the Green function. If we choose another, for example Klein Gordon equation’s
Green function for mesons, the contribution from negative frequency states appears. This,
however, for the energies of interest contributes almost energy independent term to the
real part of the function R of Eq. (12). The net result is a (small) renormalization of the
coupling constant 4, only. Refinements of the potential in terms of new parameters do
not seem necessary with the data at hand.
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