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The paper contains an investigation of Bargmann transformations of free relativistic
Green’s functions.

We prove the equivalence of two types of triplets on the space of entire analytic functions.

We present explicit analytic expression for the Bargmann transformation of free field
propagators in one-dimensional case with any value of the mass parameter. In four-dimensional
Minkowski space we derive Bargmann transformations for massless particles. In the case
of massive particles it has been shown that the Bargmann transformations can be obtained
in the form of power series representing entire functions. An analytic representation of the
unitarity and causality conditions is given and the invariance of the growth and type with
respect to Poincaré transformations is shown.

1. Introduction

The use of the conventional Hilbert space is not sufficient for the description of
Quantum Field Theory. Recently several generalizations of conventional Hilbert space
methods have been developed (cf. e.g. [1]). One of them is the method of dual Hilbert
spaces of functional power series [2-4].

In Sec. 2 of this paper we prove the equivalence of the triplets in the spaces of entire
functions introduced by Bargmann [5-6] and Rzewuski [2]. Bargmann transformation
transforms distributions into entire functions. Since in many cases it is more convenient
to deal with entire functions than with distributions, we attempt in this paper to transform
some of the distributions appearing in relativistic Quantum Field Theory into the Bargmann
space.

In Sec. 3 we obtain all Green’s functions in one-dimensional case and in Minkowski
space for massless particles. According to the prediction of the present theory, because all
Green’s functions, with the exception of the two-dimensional case with mass equal to
zero, are Schwartz distributions, they become entire analytic functions after the Bargmann
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transformation. In our examples they have growth index 2 and type 1/2. The use of the
power series expansions of analytic functions has this positive feature that it allows to
perform the estimations based on the functional power series method. This fact is used
in Sec. 3 of this paper to estimate the analytic Bargmann transformations of the free
particle propagators, when mass is not equal to zero and straightforward calculation
is very complicated.

An application of the analytic representation for the investigation of Quantum Field
Theory seems to be interesting and has been undertaken already for Euclidean field theory
(cf. e.g. [7], [8D-

Sec. 4 of this paper contains analytic formulation of the axioms of Quantum Field
Theory for the scalar field.

The unitarity condition gives a restriction for the generating functional for the
S-matrix: |S[g; o, ]| < e+ 3" The local causality condition takes an integral
form. The lack of invariance of the Bargmann transformation with respect to the Poincaré
transformations does not give a Lorentz invariant theory, but in that paper we pay only
attention to the analytical properties which remain invariant in the sense that the growth
index and type are the same for all Poincaré frames.

2. Relation between certain Hilbert spaces of power series and entire analytic functions

We introduce here a method of obtaining triplets in the space of entire functionals
as described in [2]. We define, in the linear space of entire functions, Banach spaces 7,
and 7 ,-: having the norms:

HIfHll: = sup [f@2)lexp {—%A7%z{*)} for 0< i<, Q.1
WSl = sup [f(D)lexp {—3A%z]*} for O0<i<l 2.2)

We define further, in the same space of entire functions, Hilbert spaces o, #, .
with the help of scalar products:

o = ne""’f(}.z)g(ﬁ)d (\%) for 0<i<1 2.3)
and
fo @)a-1t = ne"z'zf(l"lz)g(l"lf)d (\%) for 0<i<l, Q.4
where
PP VO B 2 =L ewiy), x, yeR 2.5
J <\/—E> = \/2—1? \/fﬁ’ z = ;/-,E(x+ly), x, yeR. .5)

Because of the relations:

K, DT DHyy Hp-1DF;-1DHj;-n when A<, (2.6)
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we can alternatively define

T = U '7‘1—1 = U %1—1, (27)
0<a<1 0<a<1

g”: = m ‘71 = n ..yf‘;_. (2.8)
0<a<t 0<i<1

Taking into account that the scalar product in the central Hilbert space # is defined as

—1z]2 z
frgyi= | e g2y | =), (2.9)
NL:
the following relation is evident
T' DYH#DT. (2.10)

As was shown in [2] ' C 7 *, where Z * is the space of linear continuous functionals
on J . The idea of Bargmann transformation in the functional power series formulation
appears in the natural way. Let us introduce the entire functions

f@) =3 ()7 V3(f,, 2", (2.11)
g(z) = Y (n)~ (g, 2", (2.12)

belonging to the Hilbert space determined by the scalar product:

8 =X (fur 8- (2.13)

It can be shown [2] that the scalar product (2.13) is equivalent to {2.9) and to

Sog = J P(x)p(x)d (\/_}E) (2.19)
where
@(x) = Y fulH (%) = | A(z, X)f(Z)du(2), (2.15)
du(z) = e"‘lzd—’-‘ﬁ z= —1—(x+iy) (2.16)
H 5 NG . .

H,(x) are the Hermite functions. The A(z, x) is the kernel of the Bargmann unitary operator
[S5]. It has the form

A(z, x) = e ¥4z, (2.17)

The inverse transformation to (2.15) is:

_ (4 dx 2.18
f(2) —f (z, x)<p(x)ﬁ. (2.18)
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One finds
§ du(2)A(z, ) AZ, y) = d(x—y), (2.19

dx =
J‘—J—ﬁ Az, X)A(Z', x) = &7, (2.20)
and e plays a role of the reproducing kernel:

[ du()e” f(Z') = f(2). 2.21)

In papers [S], [6] Bargmann proves that the space of test functions § and Schwartz distri-
butions S’, transformed by means of the Bargmann transformation to the space of analytic
functions are defined respectively as follows

=N F*= N H, (2.22)

F' = U F'= U HY, (2.23)

where #* is the Banach space of entire functions defined by the norm:

WSl = sup o; '@If(2), (2.29)
OXz) = e““l‘zz“l"z(1+1z12)7k. (2.25)
The norm in H* is defined as
Ifil: = § 1A% du(2), (2.26)
di*(z) = 0%, (2)dz, (2.27)
dz = dxdy, z = x+iy. (2.28)

Equality of the spaces 7 and & is shown in the following theorem:

Theorem: = F

The proof consists of two parts: first we show that fe J = fe & (part a) and further
feF = feT (part b):
a) from (2.2) we have
feT < NV ilfllla- = sup 1f(2)] exp {—% |21*} < oo, (2.29)

0<i<1

where

z = —=(x-+iy), A:0<i<], (2.30)

1
NG
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hence we get the estimation

(@0 < IS 1a-1 exp {3 A%z*}. (2.31)
Because of (2.26)
fe = N IFIE: = § @R A+ 2P @32

From (2.31) and (2.32) we obtain
1-42

e
=P

=23

A1v%<JEWWWM+mWh=

k=-wo

Ik+1,1-2* < o, (2.33)
where I'(x, x) is gamma function and A is fixed.
b) fe # = f is entire analytic function and from (2.24) it follows:
oo 1z]2

A iflll: = sup if()le 2 (1+]z? )2 < o0, (2.34)

what leads to the relation:
feF = |f(2) < 271 g 50, (2.35)

Substituting (2.35) into (2.2) one can obtain that the condition:

2o
- = sup |f(@le” 2F < 0 (2.36)

is fulfilled if 4 = +/1—2e.
We may note that the norm (2.26) cannot be generalized to the case when z is an ele-
ment of an infinite dimensional space, in contradiction to norms (2.3), (2.4) and (2.9)

(cf. e.g. [2]).

3. Free particle propagators

The free particle propagators occur as integral kernels. The Bargmann transformation
of any kernel K(z, z’) is given by the following formula:

R(z,2) = f w A(z, x)K(x, DAZ', y). (3.1)

In one-dimensional case after the Bargmann transformation the inhomogeneous Klein-
-Gordon equation is equivalent to the following one:

o2 0 . >
[-“‘2' —2z— +2"-1 —mz} A0z, 2) = & (32

(%4
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and its homogeneous solutions are:

. 2 - -
Az, z) = - ¢ 22w g [2m(z —21)], (3.3)
A9z, 7)) = 2me™ T12ETI 2 oo [dm(z — 7). (3.4)

For j(z, z’) which is the solution of the inhomogeneous equation we have the formula:

1

j(z’ E') — 5__ ezz’+1/2(z—;')2—2m2 {e_Zim(z_;')ErfI:\/f (im_ Z;Z/)—J

mm

+e2mGEIEr [\/2 <im + Z——ziﬂ} : (3.5)

where Erf(z) is the probability integral.
We may obtain further the particular solution of (3.2) by considering the suitable
linear combinations of those kernels.

In two-dimensional case the Green’s functions for massless particles are not
Schwartz distributions, and they are well defined only if one introduces regularization
(cf. e.g. [10]) leading to the appearance of indefinite metric. The regularized expressions,
however, after performing the Bargmann transformation do not satisfy the transformed
Klein-Gordon equation. ‘

In three-dimensional case, after the integration over angles, we were not able to per-
form the last integration over the radial variable. In four-dimensional case, for m = 0
using the analytic extension we obtain the following kernels:

-, -
zoz'o+ 22+ 1/4(z0—2'0)2 + 1/4(z— 7')? sh [% (20—z0) ‘z_z,|]
lz—2'|

Az, 7)) = ¢ , (3.6)

where

12-7| = V(2,21 +(2,—25)° +(23—25)%,
zoz’0+ 22+ 1/4(zo~2'0)2 + 1/4(z— 7')2

A9z, 7)) = -
( ? ) 2n3/2iz_zll

{e1/2(zo'z_'o)|z—E’IErf[_;; |z—2’l

2

zoz'o+ 22’ +1/4(z0—2'0)2 +1/4(z—7')2

i —r - 20—z’ -7 i 1 i ot
D) (Zo—Zo):l e t/AFom Tz IE"fI:E lz—2'|+ —(zo_zo)]} s 3.7

€

432z -7

x{e 2O FIENTY |2 -7'| =} (20~ 20)] "N BN 2~ +4 (20— Z0)]}-

(3.8)
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The index of growth is equal to 2 and type is equal to 1/2. The equation corresponding
to (3.2) in four-dimensional case has the form:

0* + o* + o* o* ) 0 + 0 + 0 0

— et = — s — z z -z

dz%  8z3  8z% oz e z, | 0z, 08zy oz
+zf+z§+z§~—z(2,—2+mz} AD(z,7') = goo+a¥ 3.9

where A®)(z, z') denotes any inhomogeneous solution (similary as in one-dimensional case
(see Eq. (3.2)).

For m# 0 in all dimensions greater than one the calculations of the Bargmann
transformation of Green’s functions are very complicated, however we can express them
as the product g(zo, Zgs 2, 2')f(zo—Zo, 2—2') Where g(z,, Zo, 2, 2) is an analytic function
and f(zo — 2o, 2—2') is given by the integral representation. For instance in four dimensional
case

. _ @
zoz'ot+zz"—2m? ds

s
lz2—2'] Cn)* 2+ m?
0

Az, 7)) =4 sin [|z—2'|s] sin [(zo—zb) Vs +m?],

(3.10)

where |z—7'| = V(2 —2})?+(22—2;)? +(z3—Z3). In every case the analyticity of f(zo
—Zo, Z—2') We can test using the method of the functional power series [2].

This method permits to test the analyticity of the functions of many variables when
we can estimate their expansions coefficients without the idea of the associative radii [11]
which is more complicated.

The method is following: let us expand f(£) in the double power series:

© ® .
f(f) = Z Z W—' an,mf{)él’ é = (609 él)' (311)
el nim:

LA
In our cases &, = z,—7Z/, &, = \/z (2,—%)?; here N =1, 2, 3 for two, three and
i=1

four dimensions respectively.
This power series is equivalent to the functional series:

f(é) Z e Z qu l"éll éi,.

in=0

Z 'Z(;)fn-mé’é‘"'é'{', (.12)
\/n L
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where

fn-m,m =fO...O 1.1 (3.13)

Comparing coefficients of equal powers of &, and &, in (3.11) and (3.12) we have:

L - n)f 3.14
Jn—m)lm! "_m'm_\/ﬁ_!(m m 319

hence

(n—m)!mf

fn—m,m = E— P (315)
n!

But we can also write (3.11) in the form:

- 1 " 2 2 2
—= ("), where (= §E5+L0. (3.16)
Jn!

n=0

Introducing the complex numbers y, and y,, satisfying |y,|*+ {y,]*> = 1, we can rewrite
{3.16).

S ()i 1)
) n-mmlo Y1(6G s .
n! m ’
n=0 \/ m
where

->: n —m, m

fn= ( )fn—m,m?'(') 71s (318)
m
m=0

substituting (3.15) to (3.18) we have

n n
aemml T (n—m)!m! n! . m
fn = Yo Vi Ty an—m.m = T e an—*m,m)’o 71-
m n! (n—m)m!

m= m=0
(3.19)

From Cauchy-Hadamard’s theorem the convergence radius of the single power series

(3.19) is
R = lim sup(z \/(n i Ot v,) , (3.20)
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It can be showed that for every f(zo—Zo, z—2') connected with the given Green’s function
R = oo. From this fact the analyticity of Bargmann transformations of relativistic Green’s
functions results.

4. Formulation of the axioms of Quantum Field Theory in the Bargmann space
A. Unitarity condition
Unitarity condition (cf. e.g. [13]) in the Bargmann spaces takes the form:
Qe] %k Qg] =1, @.1

where Q[g] denotes the generating functional for the vacuum expectation value of the chro-
nological product of current operators transformed to z-space.

%,
w(zla reey zn) - ag(zl) 5;2—) [g] g=07 (42)
2 : 1
‘Q[g] = m -[d”(zl) jdﬂ(zn)w(zla wrey Zn)g(zl) g(zn)a (43)

here g(z) is the test function.

* = exp 5= 4 5z’ (4.9)

du(z)) = e_lz'lzdxid)’ia Z; = jli(x,-+iy,), i=1,2,..n, 4.5)
Atz 7 d'x x)4 A 46
*(z, )'_”(21:) 2 )2 , X)4F (x=NAE', y). (4.6)

Unitarity condition imposes the restriction on growth and type of the functional Q [2].
Using the connection of S and Q [12]

s[g; o, B] = e¥QLg+go[a, 11, 4.7
where
gla, ;2] = § du(2) {a(2)f 4 (2, 2))+ B(D)f (2, 2)}, (4.8)

f+and f_ are the Bargmann transformations of the orthonormal solutions of Klein-Gordon
equation:

f:lz(z9 Z,) =

1 d*x &3 R e:l:il?;;im(i)xo
4.9

@n)*2 ) 2n)* } 2n)* A, 4 E) V2w
fdu(D(2)B(z) < 0, Z = (zy, 25, z3). (4.10)
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We have the restriction
IS[0; a, B]1 < liSle! /Il 11211811, @.11)

||S]} is the norm of the bounded operator. Due to the unitarity condition we may put
[|S!] = 1 and because of (4.7) we have further:

Qg+ gol, B1]] < eV/PH=AIE, (4.12)

B. Causality condition

In general the causality condition in Minkowski space R* has the form (cf. e.g. [13])

gi—) [x]+(x e y) =islg;x,y] for x5, 4.13)

where J[x] is the generating functional for the retarded functions

o

J(x; Vis <o yn) = 5q(y1) 5Q(yn) [ ] 0, (414)
- 1
J[x] = z o fdyl fdy,.J(x; Vis o5 Y)Wy - @(Yn)s (4.15)

here g(y) is the test function.
The connection between J[x] and Q[g] is following:

— 0
¥} = —iblg] » 5 ol 0

) o
where * = exp 5—qA+—5_ and o[g; x, y] is the quasilocal term.
q

It is evident that (4.13) is equivalent to

BO(xo~yo) IJ[X]+(x > y) = io[g; x, y], (4.17)

5
04(y)

if we take into account that (4.17) is Lorentz invariant.
After the Bargmann transformation the equation (4.17) turns into the following
expression:
8J'[z] 6J[2]
og(z') ~ dg(2)

xErf(ZO—zs+¢z— ) [«w[fa, 2] 8J[&, ]
J2 0g(&o, 2) 5g(€o, z)

+ Jdu(io) fdu(fb)e’°§*°+"°"'°

] \/; n olg;z, 2], (4.18)
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where

d*
) = f (2-7[—?5 A(z, y)q(y)dy, (4.19)

¥ - 1
J[z] = Z - de(zl) jdu(z,,)][z; 2y, e Z,]8(2)) ... 8(2,), (4.20)
n=1

J(z; z z,) = J )J‘dh Az Y 'n)
5“1 ver < (2 ) (2 )2 (2 )2 15 vesZps Vs s Va

XJILX; Y15 oees Vuds (4.21)
A,,(Zl, ceny Zn; yls LRR] yn) = A(Zla yl) A(Z”, yn) (422)

We note that the Lorentz invariance of (4.17) corresponds in z-space to the validity of the
condition (4.18) transformed to any Poincaré frame by means of the kernels (4.24)-(4.27)
from the section C. This problem will be treated in detail in subsequent work.

C. Invariant analytic properties of scalar field in Bargmann space

The general Lorentz transformation can be always written as the product of three
Lorentz transformations (cf. e.g. [13])

o= 0,007, (4.23)

where o is the transformation which does not change the variables x; and x,, whereas
p; and g, are rotations in space which do not change the variable x,. In z-space, the
kernel corresponding to rotation R is:

0%z, z) = f (E%i A(z, x)A(Z', RX, x,). (4.24)

Performing the calculation one gets
O%(z, 2') = eniR¥1+7070, (4.25)

The kernel corresponding to Lorentz transformation (rotation about the angle § in x,
and x, plane) can be written as follows

. 1 L (zoz'0+z37'3) + tgh P(zoz3—2'0%'3)
0(2, 2;) — 61/2(22+« 2) ecoshﬂ (4.26)
cosh

and the operation of the translation a, is given by

Tz, ') = e—1;‘8a2,,,+1[2(;’“—2“)-*2“;.’“' 4.27)
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We see, therefore, that two major properties of free fields in Bargmann space — its growth
and type — remain invariant under the Poincaré transformation.

The author is greatly indebted to Professor J. Rzewuski for many valuable discussions
and constant encouragement. The author is also grateful to dr K. Walasek for checking
some calculations.
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