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Stiffness and mass parameters as well as the energies of the vibrational states in some
actinide nuclei have been calculated. Only quadrupole and hexadecapole degrees of freedom
have been included. The calculations have been performed in the vicinity of the first minimum
of the energy surface, by making use of three different approaches: Mottelson-Nilsson-Bés-
Szymanski, Strutinsky and microscopic ones. The results obtained in the calculations have
‘been compared.

1. Introduction

Several authors performed (see for example Ref. {2-5]) calculations including quad-
rupole and hexadecapole degrees of freedom to describe some static nuclear properties.
Such approach was very successful in the explanation of nuclear ground state deforma-
tions, nuclear masses, stability etc., as well as some features of the fission process. In the
present paper we apply the two-dimensional approach to the description of nuclear vibra-
tional motion. The energy of vibrational states can be expressed by eigen-oscillations of
the system in the framework of the theory of small oscillations.

This energy is proportional to the square root of the expression containing the ratio
of the appropriate stiffness and mass parameters characterizing the motion. The stiffness
parameters can be calculated using two different approaches:

(i) from the curvature of the energy surface, and
(ii) from the microscopic [!, 2] calculations based on the collective description of the
vibrations obtained from the multipole plus pairing treatment.

The energy surface has been calculated either by adding the energies of the oecupied
single-particle levels in deformed field (Mottelsson-Nilson-Bés-Szymanski (MN-BS)
method) [6, 7], or by the use of Strutinsky [8] presciption. The mass parameters are deter-
mined from the microscopic method only.
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One can see that the physical assumptions underlying the two methods described above
are different. Therefore, the ground state shapes obtained from minimizing the total sum
of single-particle energies are different than those obtained from the shell correction
method (the first give much worse agreement with experiment, except for quadrupole
case; see Ref. [9] and Table I in our paper, as an example). Also the comparison between
the total energies obtained from MN-BS procedure and from the approach based on the
quadrupole interaction between nucleons indicates that the agreement between them
occurs only in the stationary points (see Ref. [10]).

This is the fact of special interest while studying the vibrational excitations. The aim
of the present paper is to calculate the vibrational energies of the lowest quadrupole
and hexadecapole excitations by making use of the different methods applied to the cal-
culations of stiffness parameters.

2. Stiffness and mass parameters

We consider the total energy of the collective motion in the case of harmonic approxi-
mation. It is expressed by the classical formula containing the static and dynamic terms

E = Eo(030, %40)+3 Y. . Coa (2 —30) (2, — o) + 3 y Bzia_,&idj’ 1

ij=2, Li=2,4

where E, is the static energy of the equilibrium state, «; are collective coordinates considered
either as multipole moments or as parameters describing the nuclear shape, «;, are their
equilibrium values, C,,, and B,, are stiffness and mass parameters, respectively.

a. Static calculations of stiffness parameters
From Eq. (1) one can simply derive the expressions for stiffness parameters. They can
be written in the equilibrium point in the following form
O’E
ﬁia] = a

ozﬁocj @ = a0

@;=az0

2

In order to obtain these parameters we should know in principle the behaviour of
the total energy surface. In practice we caiculate E only in a few points around equilibrium
in order to determine the derivatives.

The static energy of the nucleus has been calculated in two ways:

(i) According to Mottelsson-Nilsson [6] prescription including pairing forces what was
done by Bés and Szymanski [7] (MN-BS method). The deformation energy was calculated
by adding the energies of single-particle levels with the inclusion of the pairing interaction
between nucleons in the deformed field with constant volume
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where e, are single-particle energies obtained from Nilsson Hamiltonian H

1 , 2 1
HY = 5ha)o(e;,-, £4) [—Ag+ 3 £y 5(252/’552_62/2_}52_62/6’?2)
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(notation as in Ref. [2]), 4,,4,, G,, G, and v, are the energy gaps, the pairing force
strengths and pairing factors, respectively, connected with BCS [12] description of pairing
interaction (considered for protons and neutrons separately). The Coulomb correction
has been also included (see Ref. [3]).

Since this approach is connected with the description of nuclear shape, we chose param-
eters a; as deformation parameters ¢;. Therefore, formula (2) assumes the following form

O2EMN-BS |
Cppy = ———— | for i,j = 2,4. 5
’ Osiag.i & =10
Ej=EjO

(ii) By making use of Strutinsky [8] method. The potential energy of the nucleus is calcu-
lated as the sum of the energy of the homogeneously charged liquid drop and the Strutinsky
shell correction connected with single-particle aspects of nuclear structure. In com-
parison with the previous method the smooth part of the energy is extracted and replaced
by corresponding term calculated in the liquid drop model. The pairing forces are also
included. Consequently the following expression for the energy is obtained

EStrut = ELD+AEStrut+AP’ (6)

where E'P is the liquid drop energy given by Weizsicker type formula, AP is the pairing
correction term considered as the result of a substraction of the sum of single-particle
energies without pairing interaction between nucleons from the similar sum including
pairing interaction

z/2 N/2
AP = EMNTBS (z 2e,— %’Z—%— ZZev— %N) N
vl v=1
Finally, the shell correction term can be written as
op tp
AE™™ = 2( | G(e)ede— | g(eede), €3]

where

G(e) = ). o(e—e,) (8a)
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denotes the sharp distribution of single-particle levels and

(© = — Zf ex (— e“’“)z 8b)
g ‘y \/E corr p 'y (

denotes the smeared-out level density (for wider discussion see for example Ref. [9]).
For stiffness parameters we use again formula (2)

02EStrut

Strut __
&ggj
i 0g,0¢;

for i,j =2, 4. )]
e

Another way for obtaining the stiffness as well as the mass parameters is the microscopic
method.

b. Microscopic calculations of stiffness and mass parameters

The principles of microscopic calculations are presented in Ref. [1] while the details
of the calculations are described in Ref. [2]. This method is based on the assumption of
independent motion of the nucleons in the single particle deformed potential (in our case
it is the Nilsson potential) and of their interaction by the pairing and multipole-multipole
forces. Small oscillations around equilibrium point as well as the adiabaticity of the
motion are assumed. From the microscopic calculations we obtain the following formulae
for stiffness and mass parameters

Cgich;o = %ailj_'ciéij’ (10)
and
Byise =} h? klz o ZNa (11
1=2,4

for i,j = 2,4, where

<ﬂ|éilv> <V|éj|ﬂ>

Y =
(E,+E)

(u,v,+ uvv,,)2 (12)
f’AY

for n = 1, 3; i,j = 2, 4. In this expression E, denotes the quasiparticle energy, {ulg;|v>
is matrix element of the single-particle quadrupole g,

q2 = 2u’P(cos 0), (13)
or hexadecapole g, (notation as in Ref. [2])
4s = 92P4(C05 0) (14)

moment between Nilsson states and u,, v, are BCS pairing coefficients. The quantity &7
denotes the matrix inverse with respect to XY and x; are quadrupole (i = 2) and hexa-
decapole (i = 4) force strengths.
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It seems that the hexadecapole moment
qs = 8r*P4 (cos 0) (15)

ought to be used when calculating collective vibrational energies. We have taken, however,
the expression g, = 02P, (cos 6,) bearing in mind that the single-particle Nilsson potential
(Eq. (4)) contains the corresponding term.

One can see that in the expression

qs = 8r*P, (cos 0) = p*(aP, (cos 6,)+bP, (cos 0,) +cP, (cos 6,) (16)

(where a, b and c are constant for a given set of deformation parameters) there is no term
like Nilsson’s p2P, (cos 8,) operator. This correspondence is needed in the procedure of
calculating x, parameter (described in Sec. 3).

The description of motion in microscopic approach is given in terms of multipole

forces. In order to make comparison with quantities obtained before (Cy, ™ and C5r),
we transform parameters B&‘Q";" and Cg’ig;" to ¢, and &, coordinates. We obtain

BMicro — an EQL

oo g T2k KL 1
ey 00 e G, amn

kil=2,4

where Q, are the total mass multipole moments, obtained on the base of BCS procedure
Qi = 2 {vlglvyvy. (18)

Similar relations are valid for stiffness parameters Cﬁ:‘:jm. Formula (10) for stiffness tensor

contains the force strength parameters. Therefore, in order to proceed with calculations
we have to determine their values.

3. The quadrupole and hexadecapole force strengths

In order to determine x, and x, parameters we compare two different descriptions
of the deformed system. We start with a two-body Hamiltonian

Ky ao Kg n

H™ = Hy— 7412%“ 3114514- (19)
Applying the Hartree method we obtain one-body Hamiltonian out of Eq. (19)
H®® = Hy—x,0,q,—k4Q4q 4, (20)

where g, and g, are single-particle multipole moments (Eqs (13) and (14)) whereas Q,
and Q, are their total multipole moments (Eq. (18)).

Now, according to Mottelson [13] prescription, we identify this Hamiltonian with
Nilsson Hamiltonian (see Eq. (4)), requiring that the corresponding terms standing in
front of g, and g, operators are identical (see remark connected with Egs (15) and (16)).
If we consider H, as Nilsson Hamiltonian taken in the equilibrium point and the remaining
terms as describing the deviation from the equilibrium we obtain [15] the following expres-
sions for force strength parameters (after comparison with the Nilsson Hamiltonian taken
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in a given point, beyond equilibrium)

Mo} 6Q2>’1 1 2
2776 <6£2 3% 3%2) @0

20\
Ky = —hw, (g) . (22)

The following relation has been used

h 1

Maw, 1 2
1+ 582 1— 582

in order to compare Eq. (20) with Nilsson potential. We have not investigated the coupling
between the two kinds of nucleons.

For the methods of calculating multiple force strength parameters see also Ref. [1,
10, 13, 14].

g, = 2r*P,(cos 6) =

2
(292P2(Cos 0,)+ 3 8292)

4. The energies of the quadrupole and hexadecapole states

In order to obtain the energies of the lowest quadrupole and hexadecapole vibrational
states in two-dimensional plane (e, &,) we investigate the normal modes of the motion.
Therefore, we transform the total energy of the vibrating nucleus (see Eq. (1))

E = Ey(¢30, 40)+3 . Coisf&i—8i0) (€j—8j0) +3 )y B, £i€; (23)
Lj=2,4

i,j=2,4
to the canonical form. The energies of the vibrational state are given by the eigen-oscillations
of the system

E;, = hogy, (24)

which leads, in our case, to the following expressions

—B—+/B*—44C
=

24 ’ (25)
e
E,=h \/ ?BL\/;ﬂ, (26)
where
A =B,,B,.—B...
B =2C...B,e.— CirerBesei— CoisBerers
C = CoptiCupre— Cls

The energies of the vibrational states have been calculated by making use of formulae (25)
and (26) with the mass parameters obtained from Eq. (17) and with the stiffness parameters
calculated according to MN-BS (Eq. (5)), Strutinsky (Eq. (9)) and microscopic methods.
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5. Results and discussion

The following details of the computations underlie our procedure:

(/) The matrix elements of the Nilsson Hamiltonian have been calculated between
the states with the same major quantum number N. The remaining elements have not
been included. The oscillator shells were included up to N, = 9 and the usual Nilsson
model parameters were used:

K, = 0.0577, p, = 0.650,
o = 0.0635, p, = 0.325.

(ii) In the calculations of the matrix elements of single-particle multipole moments
(Eq. (12)) between Nilsson states also the states with AN = 2 have been taken into account.

(iif) Pairing interaction has been accounted for by the BCS procedure with the pairing
forces strength independent of deformation.

The BCS equations were solved within Z or N levels and the pairing forces strengths
were

| =20.02MeV/A, G, = 14.1 MeV/A,

for protons and neutrons, respectively.

(iv) In the calculation of the Strutinsky shell correction the correction factor f,,
(Eq. (8b)) was taken as a polynomial of order six [3] and the smearing parameter
y = 0.8 hw,.

The numerical calculations have been performed for a few nuclei in actinide region
around the first minimum of the energy surface in 16 grid points, by using

4 values of ¢, (¢, = 0.17, 0.19, 0,21, 0.23) and
4 values of ¢4 (¢4 = —0.06, —0.05, —0.04, —0.03).

The equilibrium deformations obtained from MN-—BS (Eq. (3)) and Strutinsky
(Eq. (6)) energy surfaces are presented in Table I. One can see that these methods give
similar results only for quadrupole distortion while in the hexadecapole case the MN —~BS
values are about two times bigger than Strutinsky ones.

TABLE I
The equilibrium deformations calculated using Mottelson-Nilsson-Bés—-Szymanski and Strutinsky methods
E2eg €4eg
Z N
BS ] STRUT BS STRUT
92 142 0.198 l 0.199 —0.022 —0.049
92 144 0.206 i 0.208 —0.020 —0.042
92 146 0.213 0.213 —0.017 —0.036
94 144 ‘ 0.216 | 0.216 —0.020 —0.039
94 146 | 0.222 0.229 ~0.017 —0.029
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For the partial explanation of this descrepancy see Fig. 1. The values of the hexa-
decapole MN—BS equilibrium deformations calculated with the inclusion of the coupling
between the single-particle levels (AN = 0 and AN = 2) by B. Nilsson [5] and our values
without the coupling (only AN = 0) are compared. One can see that the inclusion of coupling

A ELeq

-0.01

-0.03

-0.05F

i 1 1 1 1 |
(92,142)  (92,144) (92146) (94,144) (94,146) (94,148) (Z,N)

Fig. 1. Hexadecapole equilibrium deformations calculated from Mottelson~Nilsson-Bés-Szymanski

method including coupling between two shells (points denoted by /) and without coupling (points denoted

by 2). For comparison the corresponding values obtained from Strutinsky method are presented (po-
ints denoted by 3)

between two shells in calculations of single-particle states influences strongly the values
of hexadecapole equilibrium points. For comparison also Strutinsky’s corresponding
values are presented (as in Table I).

Thus, we shall use in our further calculations the Strutinsky equilibrium values and
we shall not present the results connected with the hexadecapole distortion from the MN-BS
method.

Table II presents the values of quadrupole and hexadecapole force strengths. The
relation between stiffness parameters C)i™® and CMi™ and deformation parameters &,

€262 £4€4

and &, can be deduced from Figs 2-5. It can be seen that the dependence of CMi*™ and

€282

CMie on ¢, is rather strong (Figs 2 and 3). While &, changes from 0.17 to 0.23 the param-

E4atf4q
decreases by about 409% and decreases by about 50% in com-

eter CMicm

CMicro
£28)

£a84

TABLE 1I

Force strength parameters for quadrupole (x;) and hexadecapole (x,) vibrational modes

| " 2 |
z ] N f X2 [mv(‘”:“)] : xs [MeV]

92 i 142 6.29 ! —-4.49
92 - 144 , 5.94 i —4.52
92 f 146 | 5.83¢ x 10-* f —4.38 x 10-2
94 ’ 144 j 6.15 ,! —4.65

94 | 146 5.77 —4.45
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Fig. 2. The dependence of calculated microscopically stiffness parameters Cx,i:m on deformation ¢, for
€4 corresponding to the equilibrium value

-
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=

1 1 1
017 0.19 021 0.23 €

Fig. 3. The same as on Fig. 2 for Cx:m parameters

parison with vatues reached at ¢, = 0.17. The dependence of stiffness parameters on &,
is much weaker. Namely, CMic™ decrease slightly (Fig. 4) and CMi™ increase about 10%
with increasing of ¢, from —0.06 to —0.03. The relations between stiffness and deformation
parameters considered above are valid approximately for all investigated nuclei except
234y and ?*?Pu.

Similarly, the different behaviour for 234U and 24?Pu can be also observed in the case

of studying mass parameters (Figs 6-9). The reason for this fact is not clear for us. Perhaps
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Fig. 4. The dependence of stiffness parameters Cez;:m on &4 for &, corresponding to the equilibrium value

Micro,
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1100+ e —————— U2

006 005 0.04 003 e,

Micro

Fig. 5. The same as on Fig. 4 for Cp,,

one of the single-particle levels with a strong &, dependence appeared near the Fermi
surface giving the stronger dependence of stiffness as well as mass parameters on g, than &,,
which is not valid for remaining nuclei. The mass parameters B} and Bii.c™ are plotted
versus deformation parameters ¢, and &, on Figs 6-9. One can see that B\ parameters
depend strongly on g,. Their increase is approximately equal 509 while ¢, increases from
0.17 to 0.23. In the remaining cases the dependence of mass parameters on deformation

is much weaker. (This is not true for 23U and 2*?Pu as mentioned before).
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Fig. 6. The dependence of mass parameters Bglézm on ¢, deformation presented for ¢4 equal to the equi-

librium value
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15_ \\
10k 234
017 0.19 0.21 0.23 £,
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Fig. 7. The same as on Fig. 6 for B, ° parameters

Table III illustrate the vibrational energies of quadrupole E, (Eq. (25)) and hexa-
decapole E, (Eq. (26)) modes. Mass parameters used in the paper have been calculated
from Eq. (17). The results presented in the corresponding columns differ in the method
of calculating the stiffness parameters. The energies Eﬁ"{ff)"’ have been calculated with
stiffness microscopic parameters C,, ™ while the energies E5¢ and EY™ "™ with stiffness
parameters obtained from the curvature of the Strutinsky (CJiit*) and MN-BS (CNn ™

Eigy
energy surface, respectively.
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Fig. 8. The dependence of B,,zéﬁm mass parameters on &4 for ¢; equal to the equilibrium value
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Fig. 9. The same as on Fig. 8 for By,  parameters

The comparison between corresponding columns including energies E, and E, shows
a good agreement between the vibrational energies obtained from MN-BS, Strutinsky
and microscopic methods in quadrupole case and from Strutinsky and microscopic
methods in hexadecapole case.

The comparison with experimental values (E5*?) shows that the quadrupole energies
are systematically much greater than the experimental ones, which can be partially ex-
plained by the fact of using simplified version of our numerical computation. The experi-
mental values of hexadecapole vibrational energies are not known.



307

TABLE III

Quadrupole E; and hexadecapole E, vibrational energies calculated with stiffness parameters obtained in
different ways (see the text)

E, [MeV] E, [MeV]

V4 N

Micro Strut MN — BS exp Micro / Strut
92 142 1.78 1.84 1.93 10.4 ; 11.3
92 144 1.49 1.44 1.52 10.1 ‘ 11.2
92 146 1.57 1.43 1.53 0.993 9.2 10.1
94 144 1.45 1.46 1.54 0.943 10.4 } 11.9
94 146 1.58 1.25 1.52 0.863 9.8 i 10.3

The results obtained from microscopic calculations are strongly dependent on the
multipole force strength parameters. This dependence is plotted on Figs 10 and 11. It
can be deduced from Fig. 10 that the increase of x, from 5 x 10~ to 9 x 10~* [MeV (M, /#)?]

25
20
15
10

0.5

E MeV]

(Z,N)=(92,146)

(ZN)=(94,148)

/

/

H

9 %, 10

[MeV : (MT“’)Z]

Fig. 10. The dependence of the quadrupole vibrational energy E; on the quadrupole strength parameter x,

causes the decrease of E, about 1 MeV. From Fig. 11 one can see that if x, decreases
from —2x1072 to —7x10-2 [MeV] then E, increases about 4 MeV. The dependence
of E, on x4 and E, on k, is much weaker (it is not presented on the figures). The strong
dependence of the vibrational energies on the multipole force strength parameters indicates
that proper estimation of these parameters plays very important role in microscopic
calculations.
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b E,[MeV]

108 (zZN)=(92,14
N)=(92,146) ~

ot

8k

(Z .N)=(94,148)
'7 -
i % S i 1 1 L o
-2 -3 -4 -5 -6 -7 9
2,10 I MeV]
Fig. 11. The dependence of the hexadecapole vibrational energy E; on the hexadecapole strength param-
eter Ky
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