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The contribution of the short-range ANN correlations to the binding energy of a A-par-
ticle in nuclear matter, By, is calculated with the help of the simplified method applied orig-
inally by Moszkowski in the pure nuclear matter problem. For the recent phenomenological
AN potentials of Herndon and Tang, we obtain By; ~ —4 MeV.

1. Introduction

The binding energy of a A-particle in nuclear matter, B, is a quantity of considerable
interest in the phenomenological analysis of the A-nucleon interaction v,y. Several
reaction matrix calculations, performed with AN interaction adjusted to A binding in
light hypernuclei and to Ap scattering, have led to values of B, much bigger than the
empirical value of B, ~ 30 MeV (see, e.g., the review by Bodmer [1]). To get close
to the empirical value of B, one has to introduce into v,y a sizable hard core repulsion,
a suppression of v,y in odd angular momentum states, and to consider the possibility of
AZX conversion. The sizable hard core repulsion in v,y makes it important to estimate
higher order contributions to B,. Namely, the existing reaction matrix calculations of B,
have been performed within the two-hole-lines approximation, e.g., they have evaluated
the terms proportional to the nuclear density p.* In the presence of a sizable hard core,
the terms proportional to p? may become important.

* Address: Wyzsza Szkola Nauczycielska, 3 Maja 54, 08-100 Siedlce, Poland.
** Address: Instytut Badan Jadrowych Hoza 69, 00-681 Warszawa, Poland.
! One term proportional to g2, the rearrangement energy, has been considered in Ref. {2].
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In the present paper, a simple estimate of B,,, the contribution to B, proportional
to p?, is given. In order to evaluate accurately B ; it is, in principle, necessary to solve
the three-body ANN problem in nuclear matter. (This path was followed in [3] where
the higher order contributions to B, in the presence of AX conversion was investigated,
however, for a AN interaction without a short-range repulsion.) Here, we shall apply
a simplified method of estimating B,;, suggested originally by Moszkowski [4] for the
pure nuclear matter problem. According to this method we split v, and the nucleon-
-nucleon interaction ryy into short- and long-range parts ¢,y Unns a0d Ugnp. Unnes
the dividing line being made so that the short-range parts alone give zero scattering lengths
[5]. With the short-range potentials alone the contribution to B, proportional to o vanishes.
On the other hand, a conventional perturbation expansion in terms of the long-range
potentials converges quite rapidly [5]. Thus, in estimating B,; we consider only the short-
-range potentials. A more detailed discussion of the method is given in [4]. In the present
note we simply extend the method of Ref. [4] to the case when one nucleon is replaced
by a A-particle. This extension is presented in Section 2..The results obtained for B,
are presented and discussed in Section 3.

2. Calculation of B,

To calculate the short range ANN correlation energy &,y We apply the expression

eann = <YH|w) [ ply) (2.1

of Ref. [4], where H is the assumed ANN hamiltonian:
2 2

1 3 ;
H= — — (4, +4,)— — As+vans(Fi2) +04n5(713) + 0 s(r23). (2.2
2my 2my,

Particles 1 and 2 are nucleons, and 3 is the A-particle. We assume that the AN and NN
interactions depend only on the interparticle spacings r;3, 23, and r;,.. Note that e,yy
includes both kinetic and potential contributions.

For the ANN wave function p we assume the form of a simple product wave function,

P = fan(ri D) an(r23)fun(r12)s (2.3)

where the two-body correlation functions f,y, and fyy are S-state solutions of the two-body
Schrodinger equations:

h? )
;’*1' Ay fan(ri2) = tanslr ) fan(r12)s 2.9
N
2
A fan(riz) = vans(riz)fun(riz) (2.5)
2pan

for i = 1,2, where u,n = mny/(m4+my). The boundary conditions imposed on the
f functions are:

fan() =1, fin(n) > L for  r— 0. (2.6)
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In view of the short range of the potentials v,y and vyys Which excite nucleons
predominantly to high momenta states, the exclusion principle for states occupied by other
nucleons in the Fermi sea is not taken into account in Eqs (2.4) and (2.5). For the same
reason the momenta of nucleons I and 2 are neglected, i.e., we assume these momenta
to vanish outside the range of vyy s and v,y . Obviously, the momentum of the A-particle
vanishes outside the range of v,y in the ground state of the A4 nuclear matter system.

It is readily verified that with the form (2.3) of y, e,4n 15 given by

h? h?
= —1,+ — 1, }[Q?
EANN (2mu 1+4mA 2)/ , 2.7
where
el 2 2 5 x+y
df an(x d
I, = 4n? de %’i:—) (dy Y ”d")@ j dzz(z® = x* = y2)f2(2), (2.8)
[ 0 1=~}
0 2 0 2 x+y
df J(x d
I, = 4n2jdx J‘;’;(x) dy f’;“;y ) j dzz(z® — x* — y)f2(2). (2.9
[+ o} |x—y|

The quantity 2 denotes the normalization volume, and we put

{(plyy = Q3 (2.10)

To get the total ANN correlation enegy, E,3 = —B,;, we have to multiply ¢,yy by
1A4%¢, where 142 is the number of interacting NN pairs, and ¢ = 7 is the fraction of NN
pairs in which the two nucleons have different ¢, and 7, quantum numbers. We obtain

1, 3 ,(h? h?
BA3=—EA3=——§A (,USANN-‘-'-“-‘—BQ ;Il“}‘z_’:"q‘_lz . (2.11)
N A

To compare this expression with the result of Moszkowski [4] for the NNN correlation
energy in nuclear matter, let us write Eq. (2.11) in the form:

Y 2.12
43—371’*11—1\19 s (2.12)
where
- 2 1 my
I=-14+-—1,. 2.13
Sht (2.13)

If we disregard the difference between the nucleon and A-particle masses, and between
the NN and AN interaction, then Eq. (2.12) for E ;5 differs only by an extra factor 6 from
the analogical Eq. (22) of Ref. [4] for the NNN correlation energy per nucleon in nuclear
matter, EP/A. A factor 2 comes from our value of ¢ = ¥ which is twice the value which
appears in Ref. [4]. In our case, we introduce the factor 142, equal to the number of NN
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pairs, whereas in Ref. [4] the analogical factor is the number of NNN triplets which is
143 (or £4* per nucleon). This accounts for the remaining factor 3.

As mentioned in Section 1, the short-range potentials vyys(rny) and vy o(rgn) are
equal to vyy and v 4 for ryy < dyy and r n < dyy, and vanish for ryy > dyy and r > dy
respectively. The separation distances dyy and d,y are fixed by the requirement that vy
and v,y g give zero scattering lengths. This means that fyn(rnn) and fyn(r4n), determined
by Eqgs (2.4) and (2.5), should have zero slope at ryy = dyy and r = d gy Tespectively [5]..
Moszkowski approximates fyy by

Sun(r) =0, F < CnNs
= (r—cenn)/(dun—cnn)s  Onn < T < dyns (2.14)
= ]., dNN < v,

where cyy is the hard core radius of the NN interaction vyy. In our calculation, we use
the form (2.12) for fyny with Moszkowski’s choice of the parameters
CNN = 0.3 fm, dNN = 0.9 fm, (2.14’)

adjusted to Wong’s [6] potential vyy.
For the AN correlation function f,y, we also apply an analogical approximation,
i.e., we put

Jan(r) = 0, r < C4n»
= (r—c,/(dan—can)s Can <1 < dyn, (2.15)
- 1, dAN < r,

where ¢,y is the hard core radius of the AN interaction v .

3. Results and discussion

The AN potentials applied in our estimate of B,; are listed in Table 1. All of them
are of the form

w, r < CAN’

van(r) = (3.1

—Upe 7N ey <,

where U, has the value U,, in the spin singlet state and U, in the spin triplet state. The
HTS potential is an old potential fitted by Herndon, Tang, and Schmid [7] to the binding
energies of the S-shell hypernuclei. Its intrinsic range b is equal to the intrinsic range of
a purely attractive two-pion-exchange Yukawa potential. The new potentials H, HI, EII,
and HII {8], [9] have been fitted to the new experimental values of the A binding in }H,
4H, and 4He, and also to the Ap scattering data. These potentials have also charge-symmetry
breaking components and suppression factors in odd angular momentum states which
are not considered in our estimate of B;.
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TABLE 1
‘Parameters of vy and the calculated values of By (cqN, 8, d4an in fm; 4 in foat; Uy, Bys in MeV)
S
UAN Ref. CAN b A {g“ d‘:N By,
ot dAN
1221.1 0.81
HTS [71 0.4 1.5 5.059 { 9541 { 0.9 22
7131 1.18
H (8] 0.6 2.1 3.935 6769 L1 —48
599.5 1.02
HI 9] 0.45 1.85 3.728 {573.4 {1 04 —3.2
443.0 1.07
EIl 191 0.45 2.0 3219 4150 10 3.6
614.0 1.08
HII 9] 0.5 1.95 3.728 5822 1 3.8

In the simplified estimate of Section 2, with the approximation (2.15) for#f,y, the
only parameters of v,y we need for calculating B, are the hard core radius ¢,y and the
separation distance d,y (for zero relative momentum). The determination of d, for the
exponential potential v,y, Eq. (3.1) is easy because the solution of Eq. (2.5) for this v 5
may be expressed easily in terms of Bessel functions of zero order (see, e.g., [10]). The
values of d, obtained for all the AN potentials considered are shown in Table L.

Knowing the parameters ¢y and dy of the AN correlation function f,y, Eq. (2.15),
and using the Moszkowski values of the parameters ¢y and dyy, Eq. (2.14°), we may
.compute the integrals I; and I,, Egs (2.8) and (2.9). For Fermi momentum kg = 1.35 fm—!
we then obtain from Eq. (2.11) the values of B,,, listed in the last column of Table I.

Although the expression (2.11) has been derived under the assumption of spin inde-
pendence of all the interactions, the AN potentials considered here depend on spin. For
this reason we have performed the calculation with the spin singlet and triplet values
of the separation distances, djy and djyy, for each potential v,y. We then have taken the
arithmetic average of the two values, B3 and B';. This is the value of B,; shown in Table I
for each AN potential. An alternative procedure of computing B,; with an average value
of the separation distances, (d5y+dyn)/2, leads, within our accuracy, to the same results.
For the new AN potentials H, HI, EII, HII, the spin dependence is so weak that the whole
problem of spin dependence is of no significance within the accuracy of the present estimate
of B,s. Even in the case of the HTS potential, which shows a stronger spin dependence,
the whole effect is not very important (B5; = 1.9 MeV, B'; = 2.5 MeV).

Let us notice that according to the remarks made in Section 2 (after Eq. (2.13)), for
AN potentials which are similar to the NN potential, we should expect values of E,;
= — B,; roughly about six times bigger than the value of EP/4, estimated by Moszkowski
[4] to be about 0.4 MeV. This, in fact, is revealed by our result for the HTS potential.

The results for B ; listed in Table I show that the short-range ANN correlations decrease
the A-particle binding in nuclear matter, B,. The bigger the hard core radius ¢, of the AN
interaction, the bigger is this decrease. For the new AN potentials H, HI, EII, HII, we get
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for B,; about —4 MeV which is a decrease of about 109 in the value of B, calculated
in the two-hole-lines approximation (equal about 40 MeV for these potentials [11]).
This suggests that the ANN correlation energy should be considered as an important
factor in the calculation of B, and may help in obtaining an agreement with the empirical
value of B,.
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