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NON-STATIC CHARGED FLUID DISTRIBUTIONS IN
GENERAL RELATIVITY

By A. BANERJEE AND U. K. DE
Department of Physics, Jadavpur University, Calcutta®*
{ Received December 21, 1973)

Solutions for two different models of non-static charged fluid distributions are given.
'One of them exhibits cylindrical symmetry, while the other may be considered to be plane
symmetric. In both solutions it has been shown that once the contraction starts, the collapse
to a singularity becomes accelerated and the entire collapse occurs within a finite proper
time.

1. Introduction

It has been recently shown that the shear-free (or isotropic) irrotational expansion
or contraction of a charged dust distribution (i. e. with vanishing pressure) is not per-
missible in general relativity (De {1}, Raychaudhuri and De [2}).

In view of the above result it might be of some interest to study shear-free and irrota-
tional motion of models consisting of charged fluid, where the pressure of the matter
cannot be neglected. Indeed there are already few such solutions for models exhibiting
spherical symmetry (Faulkes [3], Vaidya and Shah {4]) and two special solutions starting
with Cylindrical Symmetry (De [5]). While Faulkes from the very outset considered an
isotropic form of the line-element, Vaidya and Shah made a few simplifying assump-
tions, one of which restricts the motion to be shear-free. In the two solutions of De, no
definite conclusion concerning the dynamical behaviour of the distributions could be
reached.

In the present paper, we present two new classes of solutions, for charged fluid distri-
butions with cylindrical and plane symmetries (cf. Taub [6]), respectively. In both solutions
the space is found to be conformally flat and once the contraction sets in, the distributions
are found to collapse to a state of infinite density within a finite proper time.
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2. Cylindrical symmetric distributions

Let us consider the non-static cylindrically symmetric line-element in co-moving
coordinates as

ds® = goolr, Hdr* = CO[dr® +dz*]—(r, dg’. 1)
The Einstein-Maxwell equations in usual notation are:
R = —8[T;/—4 5T], 03]
where
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From the symmetry consideration only the radial component of electric field is present,
and the magnetic field components are assumed to be absent. Since the co-ordinate system
is assumed to be co-moving,
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Eq. (2) written out explicitly gives
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The above equations must satisfy the following conditions:

R} = R3, (6)
Roy =0, (N
Ri—R} = —2F°'Fy, = 2F*(r)e™*¥17!, (8)
where F(r) is a function of p only.
162P = 2F°'Fo, —(RJ+R}), 9
4np = R} +4nP—F°'F,,. (10)

For the motion to be shear-free, we get g,/gs = h(r,t), where the dot denotes time-
derivative and i/, k denote only the space coordinates. h(r, t) is a function of (r, ¢) only.
Then the metric elements of £, (1) may be suitably written as

[ = p? A(r, 1), (11a)
e = e uU(r, 1), (11b)
where f(r) depends only on p and A{r, ¢} on (r, t) only. Then from (7) one can write

goo = (I/1)". (12)

From the relations (6) and (11a, b) it comes out that

_i+,1,i’=f_i_'f_"/:=c(r), (13)

where C(r) depends only on p.
After integration of A-part of Eq. (13), we find

A = PR+ T), (14)

where D(r) = — [C(r)dr and R and T are functions of r and 1, respectively. f-part of

Eq. (13) cannot be integrated unless C(r) is specified. In the previous paper of De [5],

he assumed the form C(r) = (n+1)/r, where n is a constant. Let us take C(r) = 0.
Then we find

A = (R+T)?
and
[ = p*(R+T), (15a)
¥ = p"Y(R+T), (15b)

K being a constant of integration

goo = (R+T)72, (15¢)
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after suitable transformation of time and space coordinates. However, in order to satisfy
Eq. (8) the permissible value of K is found to be zero and

F(r) = r?R2. (16)

From the relations (9) and {i0), the pressure and matter density can be determined
and Eq. (3) gives the charge density. The corresponding expressions are

4rP = ~T(R+T)~-3 T2, (17a)
dng =2 72— SR (17b)
2 (R+T)
4no = & (?R:%?, (17¢)
and the line-element
ds* = (R+T)7dt* —(R+T)*[dr’ + dz* + r’d¢?]. (17d)

The functions R and T remain arbitrary subject to the restriction set by physical condi-
tions, ¢ > 0, P > 0. Becausc there may not be any singularity, (R+7) must not
vanish anywhere. Then without loss of generality we can accept it to be positive every-
where. Thus in Eq. (17a) Tis always negative. Hence we can conclude that for decreasing
(R+T) with respect to time, i. e. once the contraction sets in, the collapse of the fluid distri-
bution is accelerated and a singularity is reached at a finite value of ¢, the coordinate time.

Although the singularity corresponding to (R+T) = 0 is associated with an infinite
value of gy, nevertheless the following consideration indicates that the proper time
(/200 dt) remains finite if the pressure remains positive.

Choosing an origin of time at the epoch (R+T) = 0, we have for t - 0, (R+T) - t*
where « is a constant and it is greater than zero. Now with P > 0. Eq. (17a) indicates
that T must tend to infinity with negative value at least as 1 ®as r — 0. The above two
conditions together give 0 < « < 1 and hence ({./gqo df) converges as ¢ > 0.

If Eq. (17a) differentiated with respect to r, one obtains

4nP' = —TR = |TIR. (18)

Now from Egs (16-18) a number of further conclusions can be drawn as in the following.
(a) Anywhere the electric field vanishes, the variation of pressure also vanishes. As on the
axis r = 0, R’ = 0 (otherwise singularity appears for ¢ and ¢ at r = 0); the electric field
and variation of pressure vanish there.

(b) If the charge distribution has the same sign everywhere (this can be obtained by suitably
adjusting the arbitrary function R with the above mentioned restriction at r = 0), the
pressure can only either continuously increase or decrease from the axis r = 0.

(c¢) In case when the distribution of charges with the same sign everywhere can te bounded,
the pressure will continuously fall from the axis r = 0 and becomes zero at the boundary.
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3. Plane symmetric distribution

Following Taub [6], the symmetry is said to be plane when the space-time admits
translations along two perpendicular spatial directions and a rotation in the plane of
translation.

Then the line-element may be written as

ds? = e*dt* —e*dx? —e*[dy? +d22], 19)

where u, v, w are functions of x and 2.
From the condition of shear-free motion, one can write v = w+ f(x) and by a suitable
transformation of x coordinate the line-element (19) may be reduced to the form

ds® = e™dt* —e*[dx* +dy* +dz*]. (20)

Hence, in this case the space becomes conformally flat for shear-free motion.
Here also, Eqgs (6) to (10) hold good, except that Eq. (8) will now take the form

R2—R} = —2F°'F,, = 2F*(x)e™*". (1)

However, it is obvious that the relation (6) is automatically satisfied for the metric (20).
We omit here the explicit expressions for the Ricci tensors.
From the condition (7) one obtains

e = f(tyw, (22)

where f(¢) is an arbitrary function of ¢ only. Condition (21) yields

"VII zwlwl
] (23)

2F?(x) = &** |:w”—w’2+ _—- .
w w
Let us now consider a trial solution, e* = (X+T)" (24), where X and T are arbitrary func-
tions of x and ¢, respectively, and # is a constant. However, the relation (23) is found to be
consistent only when n = 1.
Thus the metric may be explicitly written after a suitable transformation of ¢ as

e =(X+T)* e*=(X+T)"? and F*x)=X"> 4)
Using Egs (9), (10) and (3), we get

4nP = - T(X+T)-3 12, (25a)
3. X"
drg = ~T?—~ ———, 25b
=y T XY (25b)
and
4dno = (25¢)

+—.
x+1)?
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Obviously T will always remain negative in this case also, and following the arguments
in the previous part one can show that the integral ( {\/gqo dt) converges. Then the conclu-

sion remains identical: from any finife dimension of the distribution to ultimate collapse,
the lapse of proper time is finite.

Differentiating Eq. (25a) with respect to x, one can write
4zP' = —TX' = |T|X". (26)

Oviously we can conclude that anywhere the electric field vanishes, the variation of pressure
also vanishes.

The authors’ thanks are due to Professor A. K. Raychaudhuri for helpful suggestions.
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