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A simple procedure is described for expressing the generators of SU(n) as differential’
operators in the parameters of the group. It is then shown how recursion relations for the
matrix elements of the “boost operator” leading from SU(n—1) to SU(n) can be obtained
by treating the representation functions as basis functions and operating on them by the
differential operators. The matrix elements of the *“boost” appear in the present theory
as solutions of ordinary differential equations. The operators for SU(3) and SU(4) are con-
structed, and some recursion relations and special matrix elements are derived by way of
illustration.

1. Introduction

The unitary unimodular groups SU(#) occupy a position of paramount importance-
in the present-day physics. These groups have been used extensively to classify multi-
-electron states of atoms [1] and states of nuclei. For n = 2, 3, 4, 6, 12 they have been
used as possible symmetries of elementary particles [2]. The experimental evidence in
support of the SU(3) symmetry is now overwhelming, and some of the results obtained
by using this symmetry are likely to be of permanent value. This is not quite true of the
higher groups, though the SU(3) transformations form a subgroup of the larger symmetry.
Nevertheless, persistent efforts are being made to gain a deeper insight into the fundamental
processes by using the higher groups, and it has become imperative to study the structural
properties of these groups in greater detail. The mathematical problems that arise in this.
connection can be divided into the following broad categories: (a) Construction of the
state vectors, (b) Determination of the matrices of the generators, (¢) Determination of”
the representation matrices for finite transformations, (d) Classification and construction
of tensor operators, (¢) Structure of the Clebsch-Gordan series, (f) Evaluation of the
Clebsch-Gordan coefficients (CGC). Some of these problems appear to have been solved

* Address: Department of Physics, Indian Institute of Technology, P.O. Kharagpur-2, India.
(347)



348

for general values of n. In the present paper we investigate Problem (c) and propose
a solution which, in principle, works for any n. A satisfactory solution of the problem is
of considerable theoretical interest and can be used for calculating physically important
quantities like the CGC occurring in the study of reactions with two incoming and two
outgoing particles. As is well-known, the CGC can be determined by integrating the product
of three representation functions [3] if an analytic expression for the latter can be found.

The first step in the derivation of the representation matrices of SU(n) is to introduce
a convenient set of parameters for the group. This was done a long time ago by Murnaghan
[4] by writing the general group element as a product of simpler factors each containing
only two parameters. By successive similarity transformations the Murnaghan matrix
for SU(n) can be brought into a form with a “boost operator” in the middle and two
SU(rn— 1) matrices on the two sides [5]. The problem is, thus, reduced to the calculation
of the matrix element (m.e.) of the “boost” and of the subgroup SU(r—1). In the following
sections we describe a recursive method for the determination of the m.e. of the boost
leading from SU(n—1) to SU(n). The method is based on the theorem that the m.e. of an
irreducible representation (IR) behave like basis functions when operated on by the genera-
tors expressed as differential operators in the parameters of the group. From considerations
of linear independence it is evident that the application of a generator to a m.e. of an IR
written as a sum of products of simpler factors will give a set of recursion relations connecting
different m.e. of the boost. Starting from a simple special case for which the m.e. can
be determined by other means one can then construct the general m.e. by repeated use
of the recursion relations. This constitutes a powerful method of constructing the represen-
tation matrices of SU(n), at least, for lower values of n. Further, it often proves possible
to dispense with the iterative procedure and determine the m.e. more elegantly by solving
an ordinary differential equation. The details of the method are worked out here for SU(3)
and SU(4). The treatment of these special cases gives us an idea of the results to be expected
for general values of n.

2. Differential operators for the generators

Let H be a group of n parameters o; (i = 1, 2, ... n) and let G, be its generators. In
order to express the generators as differential operators we multiply an element H(x)
of the group by I+ &G, The multiplication changes the element H(x) into H(x+A4x)
lying in its neighbourhood in the group manifold. Equating the product of H(a) and
I+) G, to H(a+A4a) and solving a system of linear equations we obtain the values of
da; in terms of ¢;. From the basic theorems on the representation theory it can be easily

Z : Ax; 0
shown that the differential operator for G, is just the sum — F with all other &’s put
equal to zero. However, since the multiplication of H(x) by I+ ¢,G; can be carried out

either from the right or from the left, the procedure gives two kinds of operators for the
same generator. Applied to a m.e. D*(a) of an irreducible representation (o) of H an
operator of the first kind generates a mixture Y (G;);,D%*(®) and an operator of the
second kind generates a mixture Y. (G)),;DQ*(a).
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Let us now see what forms the operators take in the case of SU(3) and SU(4) when
the above procedure is adopted for constructing them. The groups can be parametrized
by writing their general element in the form

g—SU(3) — e—lﬁYe~tange—-szze-in3e—wNew T;em szeld 3T3’ (1)

.VSU(4) — e“::)le—:B}’e—tange-szze-zyT3e—vae~mMex;v T3

% eia'zrzeia'gne—iv"Ne—i;Tge—iizrze—i&,T,e~iir (2)
where [6],
(o 3 1 4, 43 2
T=§ N N =(A41+43), M = (43+42), Y=ﬁHz,
6 . 1
Z= \/'7 H3’ (A{)mn = 5im5jn'— ; 5ji5mn’
H, = 2r(r+ D] Y3 (Ai+... Al—rAITDH. 3)

The traceless matrices 4{ (i # j) and H, (r = 1, ..., n—1) are the n®—1 generators
of SU(n). They satisfy the commutation relations

[4], 4] = 5[4 5:4]. @)

With the above notation the differential operators for the generators of SU(3) and SU(4)
can be written as

0
Ii=—i—, Y=—i—, Z=—i—,
2T T e, op "o
. . ¢ _ 0 d
I (a3, 03, 7) = iexp (Fin;) cota2673+za72-—cscaza—y , %)

b= Ve oo Lais ! o (08
= -expii|B— a3+ - csc —cot v — — —
TP 2B o7 2 oy o

. o, %) 7 J 3 ¢
—21003—2—cotv—+sm-tanv — e ——

o, 2 dy 20B
L. “2 a +4 . az 2 a‘l+_ . B 1 1
~1isin = — sin — ¢sc 2y — iexpi{ f— —oa3— =
s 2 v 2 oy’ | P 27 27
aZ ’ ’ ’
X COS D cscvi_(—vy, —ay, —o3), (6)

. 44 . 1 1 1 as - .
1A2=exp 1 ——Ea3—5y+§ﬂ+n COS? —CSC[LL++ICOtuCOtV
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o)

t 1
I'—,’—,’—, + - —
xXI_(—y', —a) a3)] exp{z( 2cx3+2
2 o 1.0
—ta
3

. Oy — . . Oy
X cscucosvsm?K++smvsm5 —

3 (2,0 0 20) 1 2 28)
—_ _—_ = — — [E— — —— — an — — —_—
TR GE TG e 3ay) 4 M e T g

oy i b7 a
4+cotpcscveos —| —i— —CsCay —— +coto; —
2 Ou, 0oty ay

1 7 i, i) 0
+ ~cotpcosvsin | —i— +4csc2v — +2cotv— ||, ()
2 2 ov ay oy

- 1 0 1
A3 = exp n——ﬁ) cscusinvK 4+ ~icosv— — —icotpu
2 u 2

g 3 5 G, 25
xsinv— —-csc2ucosv{ = -2 —= —2— + -
o 2o H B H o 3*;;
+2t d +3 ! t + t 9
- v— + - = cot usec —tan uc -
3 an u cos an T 2\a jsecy an y cos v o
1 7,
——-—(tanucos v+cotusecv)—mcotptanvsmv— (8)
dy

K., L, are raising operators of the second kind operating on the SU(3) subgroup on the
r.h.s. of exp (—iuM) in Eq. (2). By the substitutions, a3 — —ag, &, — T+, in L,, A3
and the substitutions, a3 - —a3, a5 — n+ay, in K, one obtains the operators, K., A}
and L,, respectively. The remaining operators obey the symmetries

K_= —(KJ)* L.=—(L)% Al=—4%, 4= -4%

The expressions (5)—(8) have been obtained by solving the system of linear equations
for Aa. To test the correctness of the expressions we have evaluated some of the commuta-
tors, in particular, the commutator [L,, 43] which must equal A43. Since

_ S _
I_ = 1_(—*)1"-—0('2—0(3), 13 = lé?, [I..., K+] = L+, [13, K+] = %K.{.,

the commutator of L, with the first term of (8) is seen to have the value

[Li,exp-i(n—%p) sinvescuK.] = —iexp-i(n+5f—}as+%y)

oy 1 1 o -
xsmgcosvcscuK +tiexp- (n+ ﬂ——- iv)-cosfcscyL+.
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These are precisely the terms involving K. and L, in (7). The remaining terms of the
commutator have been calculated in a straightforward manner and an exact agreement
with the expression (7) has been found. 1t is pointed out here that the appearance of 7_,
K., Ly in (6), (7), (8) is a direct consequence of the structure of the system of linear equa-
tions for Ada. The explicit forms of these operators have been determined, but were not
required either for deriving the expressions (6), (7), (8), or for setting up the recurrence
relations (25) of Sec 4. Analogous simplifications are expected to occur in the case of
unitary groups of higher dimensions.

3. Recurrence relations for SU(3)

The basis functions of an IR of SU(3) are characterized by three numbers j, u, &
which are all integral or all half-integral. j, 4 are the quantum numbers of the isotopic
spin and its z-component and ¢ is connected with the hyperchange Y by the relation
Y =25 —% (p—¢q). By Eq. (1) the m. e. of an IR of SU(3) connecting the states |judé>
and {j’u’'6’> can be written as

S =om 8T, 1,0 =Y e Dl (—ay, —ay, —p)i" "

mj
X <j, ;Y;, SIKU’ m, 6>D;":;’(_2v) <]—’ El’ 5 \KU',m', 57) @f;',u(?/, 0"2, (Z;), (9)

1 . o :
where 6—m = 6’ —m’', K = ( ), and 2;..(a, B,y) = e"™°D; .. () e” '™ are elements

io,
of rotation matrices. The operators of Sec. 2, operating on (9), change the quantum numbers
of the final state, j, u, 6, without affecting those of the initial state. To study the result of
such operations we give p the special value j—1. K& is then found to contain prod-
ucts of D-functions of the type

@)"iiﬁmwv 12{—as, —oy, —7)95;.',.'(7’,, a3, 3) (10)
summed over m. On the other hand, since € behaves like a basis function, K, operating
on it must also give

K i=1L01T0j, W, 6% =j+4%,j—%, o+% Kylj,ji—1,6)
+d,j=3, 0+31T17, 0,60 +(j—4%, j—}, 0+3iK4ij,j—1,0)
J=%, =%, 0+3171), 1,67,
Equating the expressions for K,§ obtained by the two procedures gives the recurrence
relations
i(j+m+1)? [Zj cot v—(36—p+qg—m)tan v— a% —4m’ csc 2v] (j, m,d:m)*

=2i[(j—m) (j +m' + 1) (' =m)]"* escv(j, m+ 1,8 : m' +1)*

2 2j+1(‘+6+ +2)(j+o+ 1) (p—j—9) 1/2('+1 +1 6+1 ’)* (11
= —— —f— -, m+ -, —m],
2j+2 J 1 J P=J I73 2 2
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d
i(j—m)'/? [(2j+2) cot v+{(36—p+q—m)tan v+ . +4m’ csc 2\’] (j, m, 6. m)*
Vv
=2i[(j+m+ D) (j +m' + D) (G —m)]'? cscv(j, m+1, 8 : m' +1)*
2j+1 2 1 1 1 *

Similarly, L_ operating on & gives
0
i(j—m+1)"? I:Zj cot v+(36—p+q—m) tan v— p +4m’ csc 2v] (j, m, &: m)*
v
—21[(+m) (= +1) (f +m)]Y2 ese v(j, m—1, 6 : m' —1)*

2 2j+1'+' 5+2)(j—06+1)(g—j+9) " '+1 1 5 Lo\ 3
= 2j+2(P J J q-—J Jts>m=s, 5im ) 13

; R d
i(G+m)t? [(2j+2) cot v—(36—p+qg—m)tan v+ PN —4m’ csc 2V] (j, m, 6 m)*
v
+2i[(j—m+ D) (' —m + ) (' +m)]"? csc v(j, m—1,8 : m’ —1)*

! 8 L) (14)
=, 0——-m'}.
2

2j+1 . - . 1z 1
= =2 ——(q+j+o+ 1) (j+8) (p—j—06+1) j— =, m—
2j 2 2

Other recurrence relations may be obtained by applying K_, L, and the operators of the
first kind to €.

By combining the relations (11)-(14) convenient expressions for special m. e. of
exp (—ivN), such as those given in Sec. 3 of I [7], may be obtained. As an example
we consider the m. e. with the state |000) on the r. h.s. For j/ = 0 the middle terms
in all the four relations vanish. Changing j, m, é to j+1, m+1, d+1 in (14) and combining
it with (11) we then obtain the equation

dz d 2 ' 2 2 ’ 2
o +2 cot (ZV)EV —csc” v —p)” —sec” v(u' + ) +4I(1+1)
x {sin v(j, m, § : 0)*} = 0, (15)
with
I=3p+q+tD), W =Hg—p)+o+j+} p=3Hg—-p)+o-j-1
The solution
(J, m,6:0)* = csc VDH%::-:ﬁlb)ﬁJr 1/2, 172(q - py+3- j—172(—2V) (16)

with the appropriate normalization factor and primes on j, m, d, agrees with function
(26) of 1. In relation (11) now put m = —j—1, and use the symmetry

(jym,o:j,m', 8 = (j',m', §:j, m, J), an
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obtaining
1 1 1\* 2+ +m) (G —m' + 1)
(j',m’—L(S’Ij-l-—, -J__5]+—) :l[(] )‘(] )(j )]
(@+2i+2) (2j+ 1) (p—2))

2 2 2
xesew(j,m', 8" 1 j, —j, D*.

Repeated use of this relation with (j’, m’, §':0, 0, 0) on the r. h. s. then gives expression
(24) of 1 for (j', m’, 8':j, —Jj, j) with the correct sign and numerical factor.

Next, let us consider the m. e. with an arbitrary state on the right and the state
Gp+q), m, Hp—q) = (H| on the left. The technique of expansion in a series of basis
functions employed in I does not give a convenient expression for this m. e., but, as we
shall see presently, the use of the recurrence relations. does.

Forj = X(p+q), 6 = 4(p—q), the terms on the r. h. s. of (11) and (13) vanish. If m, m’
are both increased by unity in (13) and the equations are combined, then for (sin v)~%/7!
(H:m") a differential equation is obtained which is of the same form as (15) but with

I=36-m-=1), p=—-30+m+2j'+1), p=-Ro+m-2j"-1).
The solution is the D-function
Dl—/lz/(gl(gﬁln:’-ll-)2j’+l), —1/2(8 +m' —2j - 1)(—2")- (18)

But, since I+ = —j'—m’ =1 <0, I—p = —j +8 —1 < 0 and I can have either sign,
this must be an analytic continuation of the usual D-function, defined by the equation

(+m)i(i—m)!
G +miG—m)!

x F(—j+m', j+m +1, m —m+1; sin® a). (19)

D;lnm(2a) = [

1/2
] T (cos &)™ *™(sin )™ "™

Although a compact expression for (H:m’) has been found, it seems strange that
the expression should depend on j', m’, 8’ only and not on m which has been kept arbitrary
in the above derivation. To remove this conceptual difficulty we go back to the funda-
mentals of the SU(3) representations and recall that |j’, m’, 8’') is a linear combination
of coupled states of pairs of angular momenta j;, j, with the same values of j', m’, &’
(= ji1—Jja2). The following relations, therefore, hold

8 = ji—js, —m =ji+jr—r, r=0, d-m=0—-m" =25—r.
If m= —j, then 8=m' =p=2i—r,ji =4p, and, if m=j, then & —-m' == —¢q
= —2j,+r. This implies that
Jj+m =0, j+6 =p, for m = —},
jl=m =0, j—06 = gq, for m = j.
If m= —j+1, then 8—m’ = p—1, and, either (a) j; = {p—1), r=0, j'+m

Il
L

j’+5l = P_l, or (b) ]/1 = %p, r= 1:jl+m, = 0, jl+5l =p"'l’ or (C) j; = %P, r=1,
J+m =1, j'+6 =p.
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In all these cases j’, m', &' are connected by two relations, and it can be safely assumed
that m does occur, though in an involved manner, in the expression for (H:m’).

It is instructive to test the correctness of the expression for (H:m') in some special
cases for which the calculations can be carried out easily. By Eqs (18) and (19),

H:m)= G+, m 3(p—q):j,m,9)
= const. (cos v) ™7 "™ (sin 2v)! TVF(—j =&, —j —~m', =2j’; sin? v). (20)

For j/ = m’', or j° = &', this reduces to an expression which follows from (22) or (23) of I
when the primed and the unprimed quantities are interchanged. A more interesting example
is furnished by case (c) above which is not covered by the formulae listed in Sec. 3 of L
The general m. e. of exp (—/vN) can be written as

(ym,§:j,m, ) =Y (=Y "2+ @+ D)+
N {},%(q+25),%(p—5—m)} D?»-(—2v){j’ : (q+25’),%(p—5’—m’)}’ 210

mm’

j,%(p-5+m),éq j,’%(p—é‘{"'n)’%q

where, 2m = —p+q+38+m, 2m’ = —p+qg+36 +m’, and the curly brackets denote 6 —j
symbols of SUQR). Form = —j+1,j=Hp+q), d = (p—q), 0 —m' =p—1,j'+m =1,
Jj'+06' = p, the expression simplifies and takes the form (20).

4. Recurrerice relations for SU(4)

The basis functions of an irreducible representation (4, y, v) of SU(4) carry six labels,
D, 4, j, m, Y and Z. Of these only one belongs to SU(4) proper and the remaining five serve
as the representation and the state labels of the SU(3) subgroup. By Eq. (2) the general
m. e. of an IR can be written as a triple sum

S =(pq.jsm LZLID, g, j,m Y, Z) =3 e "
Jom,Y

X.@L;(—dy — %3, _?) <P9 q, ], m’ Y|e_iVNips q, _7, %15 ?>
x{p,q,j,m,Y,Zie*™Mp' g, j,m, Y, Z
x<p,q' j,m, Y SUB)DP,q, i, m, Y. (22)

The reduction in the number of summations over intermediate states is due to the ex-
istence of relations like

yY-m=3Y-m, 2Z+Y =2272'+Y". (23)
To derive recurrence relations for the m. e. of e™™** we put j = m = 3 = p/2 in (22) and
proceed as in the case of SU(3). The application of the operator 47 to & then yields the
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relation [8]
Ayescu[(j+m)(G—%, m'—%, 6-3Z:8'-3Z)
—@-mY (-4, m+},6-3Z2:8-342))]
—Ayesep[(j-m'+ 1) (G+}, m—},6-32:6-%2)
+@-m)(j+E, m'+}, 6-3Z:6' -3 Z0]+[(p—j-0+ D) (p+j-0+2)]

3 . 2_ 14 1 1
x[icsc?y(Y—§m>—ial——l—2tan,u(82+p 2q— 6m)+—cotu(p+q+5+m):|

xQj+D) (G, m,Y,Z:Y,2) = 6i(2j+1) (p+1) (p+q+2)
x(Z+1, p+1,9IXiZ, p,q) (p+1,q,j,m, Y, Z+1:p,q,j,m', Y, Z),
Ay = £[6(j+8)][(q+]+6) (p+]j—5+2) (4p' +2¢'—3Y '~ 6] +6)
x(2p' —2q' +3Y +6j) 2p +2¢’ +3Y +6j4+6)]"?,
Ay = 5[6G -0+ D] [(q—j—d) (p—j—6+1)(4p'+2¢'-3Y'
+6j+12)(2p' —2q'—3Y' +6j+6) 2p' +4q' +3Y' —6))]"?, (24)

where the abbreviation (j, m, Y, Z:Y’, Z’) has been used for {(p, q, j, m, Y, Zlexp (—iuM)|
P, q'sj, m, Y', Z">. This is one of the many relations which can be derived by applying the
twelve non-diagonal generators to &©. As we are interested mainly in the methodology,
we do not derive the other relations here.

By combining two or more recurrence relations or by the iterative procedure men-
tioned in the Introduction special m. e. of exp (—iuM) can be obtained. Another
useful method is to remove the summations from the expression for @ by a proper
choice of the initial and the final state and then determine the special m. e. as an eigen-
function of a Casimir operator of the group. A good example of a summation-free & is
obtained by setting ji ija = Jrina = 9 = ' = 0 in (22).

One of the authors (D. K. G.) wishes to thank the C. S. I. R. (India) for the award of
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REFERENCES

[11 B. R. Judd, Operator Techniques in Atomic Spectroscopy, McGraw-Hill, New York 1963.

[21 A. Pais, Rev. Mod. Phys. 38, 215 (1966).

[31 S. D. Majumdar, B. K. Basu, J. Math. Phys. 14, 1248 (1973).

[4] F. D. Murnaghan, The Unitary and Rotation Groups, Spartan Books, Washington D. C. 1962.
[51 S. D. Majumdar, J. Phys. AS, 1573 (1972).

[6] G. Jakimow, R. T. Sharp, Can. J. Phys. 47, 2137 (1969).

[71 S. D. Majumdar, B. K. Basu, Ann. Phys. (USA) 56, 464 (1970). This paper is referred to as L.
[8]1 R. N, Sen, J. Math. Phys. 8, 536 (1967).



