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ON THE DISCONTINUITY FORMULA IN KADYSHEVSKY’S
FORMALISM
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The problem of the discontinuities of the Feynman amplitudes is discussed. Kadyshev-
sky’s formalism is used to obtain the Cutkosky formula.

1. Introduction

The problems connected with the singularities of the amplitudes in the Feynman
formalism were discussed by many authors [1-5]. All these discussions were based on the
well known Feynman formula
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applied to the usual Feynman amplitudes; the expression
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denotes the Feynman propagator in the momentum space. The momenta ¢, are combina-
tions of the external momenta p and the independent internal momenta k, over which

integration is performed
d*k, ... d*k,
flp) = f . : (1.3)
AI(P’ k) An(pa k)

! is the number of independent loops in the graph, as usual. The functions A(p, k) are
in the denominator of the integrand and this suggests that the singularities of the inte-
gral appear when some A,(p, k) vanish.
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The considerations presented in [1-5] confirm this suggestion, but it seems to be
difficult to perform a detailed and complete analysis of the problem in this way.

For a self-energy graph, for example (Fig. 1), each of the propagators reaches the mass-
shell g2 = m? when it is integrated over d*q,d*q,, but the amplitude f(p?) is nonsingular (on
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Fig. 1

condition that p? < 9m?)). The singularity appears when p? > 9m?, namely when all
three propagators can be on the mass shell ‘“‘simultaneously”.

The form of the singularities is discussed in [4]. The outline of considerations is given,
which leads to the conclusion that if the propagators 4, ... 4,, are responsible for a given
singularity (a cut), then we obtain the discontinuity disc f(p) on this cut by substituting
into the expression (1.3) the form

5. (a3 —m?) ... 5,(g%—m?) (1.4)
instead of

1
(@2 —m*+ie) (g3 —m* +ig) ... (g2 —m® +ic)

(1.4')

A rigorous proof of this formula, when classical methods are used, is rather complicated.

The method which we want to present here is based on Kadyshevsky’s formalism
[6]. Its simplicity comes from the fact that the singularities are computed directly from
their “‘source’.

2. Kadyshevsky’s formalism

This chapter is based on [6] and included to fix the notation. Kadyshevsky worked
out a method of computation for the S-matrix elements in perturbation theory, different
from the classical Feynman method. The starting point is the well known formula for the
S-operator

S=1+iYy 1",

n=1

with

T® = (=i fO(x]—x9) ... 0(x0_ | —xDL(xy) ... L(x)d*xq ... dx,.  (2.1)
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Making use of the fact that
[L(x), L(»] =0 for (x—y)* <0,
we can write (2.1) in the form
T™ = (=i)" [ 0(A(x; = x3)) ... O(A(Xy- 1 =X )DL(xy) ... L(x,)d*x, ... d*x,, (2.1)
where
A=A =1, 1°>0.

The Heaviside functions 8(Ax) can be represented as
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0(Ax) = — — —dr, 2.2
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and after the Fourier transformation of the field operators we obtain:

T™ — (—jy~! 1 dr, dt,—, eiTA (B1=x2) it ik (Rnm 1= %)
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X1 @(py1) - (P1) 17 @(P20) - P(P2)7 -t P(Pa1) - P(Pu):

x @*1 EPsgi¥2 T has e”"‘?”"‘d“’pd“x}, (2.3)

where in the symbols p,, describing the four-momenta, the first index denotes the number
of the Lagrange operator and the second one the number of the field operator in a given
L-operator.

Under the integral we get a product (not a chronological product, but a simple one!)
of the normal products and we can apply Wick’s theorem to it. A contraction in this
case has the form

p(R)g(p) = <0lp(k)p(p) 10> = D (k)3*(k+p)
= §*(k+p)0(P°)3(p* —m*) = 5%k +p)3.(p* —m?). (2.4)

After this the formula (2.3) disintegrates into a sum of terms according to the various
configurations of the contractions. Each term contains a normal product of the field
operators (the external lines), some contractions (the propagators) and the factors
1/(t;+ie).

The integration over the space-time coordinates yields the §4-distributions responsible
for momentum conservation in the vertices

OMZ kid =2 kgl + At -y — ATy,

where k{2 denotes the whole momentum entering the vertex (i) by the external lines
and propagators. Zk®, is connected with the lines leaving the vertex (/). The “momenta”
At; come from the transformates of the 6(ix) distributions. The “momentum” At, leaves
the vertex (1) and enters the vertex (2). Next Az, leaves the vertex (2) and goes to (3).
At last A7, _, binds the vertices (n—1) and (n), respectively. Thus, to the Feynman graph
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a line must be added, starting from the vertex (1), going in turn over all other vertices and
ending at the last vertex (n).

The succession of vertices is determined by the numeration of the Lagrange opera-
tors, and more precisely, by the relation between this numeration and the configuration
of contractions. This remark will be useful below: one can always deform a graph in such
a way, that the added line will not intersect itself in any point. (If necessary, one can imag-
ine the graph as being constructed in three dimensions.) This line we shall call and de-
sign as a dashed line. For example, for a Feynman vertex-graph

Fig. 2

we have in our formalism

Fig. 3

and an expression obtained after trivial integrations

§ d*pid*p,d*ps0*(py + pa+ p3): ¢(p)g(p)#(ps):

dr dt . . X
J d*q j —1 f 2 5.,(q*—m*o,((p, —q— A1)} —m?)o (0, + P, — g — i1,  —m?),
Ty+ie ) 1+1E
(2.5)
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where 6,.(k?2 —m?) denotes the upper mass shell k, > 0. The limits of integration over
dt come from kinematics. It is necessary to stress here that to a given Feynman graph
(Fig. 2) correspond several Kadyshevsky’s graphs (Fig. 3) with different runs of the dashed
line. In order to obtain the whole amplitude we must sum up over those graphs.

3. The discontinuity formula

The expression connected with certain Kadyshevsky’s graph contains a product of
terms (t;+ic)~! representing the segments of the dashed line and a product of distribu-
tions 8,.(p2—m?) connected with propagators. The singularities’ of the amplitude result
from the denominators (1;+/¢). So the amplitude becomes singular if 0 € [g;, ;]. On the
contrary, if zero does not belong to any interval [a;, b;], then the amplitude is real, and the
possibility of making this statement comes from the formalism used. To see this let us collect
powers of the imaginary unit in Kadyshevsky’s approach. We have i~ ! before the integral
(2.1"Yand i~V from the 6(Ax) distributions. This two powers cancel each other and the
amplitude is real (except the possible residues). In the Feynman approach we have i"~?
as before and one power of (i) from every field propagator. So the picture is not sé clear
in this case.

Let us consider the simplest case, when zero belongs to one interval [a;, b;] only.
The integral over dr; desintegrates in the principle value (real) and the residue at 7, = 0
times (—mi).

Let us now divide the graph in two parts by a line intersecting the 7, dashed line only
and some propagators if necessary (in the case when the graph is imagined in three dimen-
sions, we have a dividing surface). There is no freedom in this division because the
dashed line goes through all vertices and the ends of it are separated (the beginning in the
vertex 1 and the end in 7). This can be presented schematically:
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Fig. 4

For simplicity we assume that both parts of the graph regarded as individual graphs
are the bound ones. In the case when the dividing line cuts s propagators, they will form

1 The term ‘‘singularity” does not contain the divergences removed by regularization. Here and
below we understand it as discontinuities of the amplitude appearing for certain values of the external
variables. In agreement with this convention “the amplitude is singular” means ‘“‘the amplitude has a non-
zero imaginary part for real values of external parameters”.
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s—1 loops. So they will have a form:
1

5+(qf—-m§) 5+(qs2—l_ms2—1)5+((2 p— z qm—ﬂ‘fi)z"mf)- (3.1)
1

Zp is the algebraic sum of the external momenta connected with the left-hand side of the
graph.
In the circles all remaining propagators and the ends of the dashed line are contained.
An assumption was made that the integral over dr; contains zero on the contour.
It is equivalent to the condition that the momentum Zp can be decomposed in s vectors

on the suitable mass shells, So it must be (Zp)* > me with Zp, > 0 in the situation
i/t

in Fig. 4 and with Zp, < 0 when the direction of the 7; line (and of the propagators, of

course) is opposite. In the first case we have the upper mass shells and in the second the

lower ones. We obtain the discontinuity formula (the residue) by inserting 7; = 0 in the

integrand. The parameter t; exists in the distribution 6.((Zp—Xq—At;)?—m?) and in some

other propagators in the circles (Fig. 4).

It was already noticed that from the circles in Fig. 4 together with the external
lines and the halves of propagators treated as external lines, the individual Kadyshevsky
diagrams can be made if the parameter t; is put equal zero. In order to make amplitudes
from the circles we have to sum up over all possible runs of the dashed line in the circles.
It is not the way to obtain all possible runs of the dashed line in the whole diagram of
Fig. 4, but we obtain all Kadyshevsky’s graphs giving contribution to the discontinuity
formula. A simple example makes it clear:

Let us consider a box-graph

2 3 /

Fig. 5

We assume that only the propagators (1.4) and (2.3) can be on the mass shell simul-
taneously. So the singularities will exist in graphs:
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Other graphs will be regular. For example in the graph
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none of the parameters t; can reach zero because of our kinematical assumptions. (E. g. if
7, could be zero, then in the Feynman graph in Fig. 5 the propagators (1.3) and (1.2)
could be on the mass shell simultaneously.)

Now the Cutkosky formula is trivial: both circles represent the suitable Feynman
amplitudes and the divided propagaters yield the 6.(g* —m?®) distributions.

We can recapitulate as follows. The discontinuity of the amplitude is connected with
the possibility that one (or more) parameter 7; can reach zero. In our simplest case (only
one t; equals zero) it is equivalent to the possibility that some Feynman propagators reach
the mass shell simultaneously. To find them we must divide the graph into two parts
cutting the t; dashed line only. The propagators cut this way are what we are looking for.
The detailed analysis of the cases when more than one parameter 7; can reach zero seems
to be difficult. Generally, the limits of integrals over 7; are not independent. In particular
cases as in Fig. 8

Fig. 8

they are independent, but e. g. in the graph of the structure as in Fig. 9 we have three
possibilities:
1. p? > (m; +m;,)?, but k2 < (m,+m;)?* — the parameter 1, reaches zero, t; does not.
2. p? > (m+m,)?, ki > (m;+m;)? but the propagators (1.2) and (1.3) cannot
simultaneously be on the mass shells for the same values of the momentum ¢ as the propa-
gators (1.3) and (2.3). In this case both the variables 7; and 7; reach zero, but not simul-
taneously. (The limits [a;, b;] depend on 7;, and when 7; = 0, then 0 ¢ [a;, b;].)



3. All three propagators can be on the mass shells simultaneously, the variables t;,
7; reach zero simultaneously (anomalous threshold).

It is not clear whether this approach leads to any significant simplification for more
complicated cases, nevertheless it gives some guidance in the problem of possible singulari-

Fig. 9

ties connected with a given Feynman graph. It stresses also the direct dependence between
the discontinuities and the possibility for thc Feynman propagators to reach the mass
shell simultaneously.
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