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The e* contribution to the electromagnetic vertex function of spin-1 particles is cal-
culated in the framework of source theory. A magnetic moment of arbitrary strength x is
included in the primitive interaction. In particular, the quadrupole form factor is shown
to be finite with no need of adding any contact term if and only if x = 1. A general discussion
of the contact terms is included in the present work and the explicit expressions of the form
factors are obtained alorg with their asymptotic behaviour, when k = 1. The dynamicalily
induced quadrupole moment, in that case, is calculated to be ®/187, and the associated
spectral form is superconvergent.

1. General presentation of the e3 contribution to the vertex function

The causal process considered is described in Fig. 1. An extended photon source
emits a virtual photon of momentum Q and spectral mass M, which decays into a pair
of spin-1 particles of momenta p, and p5. These particles then interact by exchanging
a spacelike photon of momentum p; —p, = py —p3, p, and p} being the momenta of the
scattered particles which are absorbed by the sources K; and Kj.

In order to calculate the vacuum persistence amplitude for this causal process, one
can follow Schwinger’s method [1] used in spin-0 and spin-} cases. Basically, one must
evaluate the two-particle effective emission source equivalent to the extended photon
source. This is done by using the same technique as presented by the author elsewhere [2].
This method is not as easy to apply as it is in the spin-0 and -} cases. There exists a short
way of writing down the final result using the so-called ‘““causal rules” [3]. Finally, the e?
contribution to the vacuum amplitude is (do, = dp/(27)® 2p°):

A, = —} e do,do,do, do, (27)5(p,+ Py — P~ P3)

v

x K%(— p)gsu(P1)ea ] g:p DK (— PDALD)(p; — P2)>. (1)
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The third-rank tensor J** involves contributions coming from the internal part of the
diagram of Fig. 1,

JHa = T%(p  — o, Py — P8 T (P1s — iy P1— P2 ElP2)80s(P) T (P2, D3y Q).
)

Here the T tensor is the value associated with each vertex of the diagram under considera-
tion and depends on the incoming and outgoing momenta,

T"(py, =Pz P1—P2) = (1 + ) = (1 +x) (g%°pT + 8™ p2), (3)

Fig. 1. The ¢* contribution to the spin-1 electromagnetic veriex function
and g,,(p) is associated with each spin-1 particle line of mass m,
g(p) = g"+p'p’im’. )]

Finally, 4, is the electromagnetic field, e the electric charge and g the 2 x 2 charge matrix.
Introducing unity expressed as

1 = | dwogdM*(21)*8(p, + p5 — Q). (3)
Eq. (1) becomes
Av = - ez j da)mdwp'dezde(zn)‘*é(pl +p,l - Q)
% K4(—p1)godp1) 3 g1 g, (p)K(— pALQ), (6)
with

1 = [ dwy,dwy, (21)*8(ps + Py = Q" *[(p, — p2)". Q)
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First of all, gauge invariance is secured as
Q.I"** = 0. (8)
Furthermore, crossing symmetry implies that

1"(py, Py = —I*(p}, py), )

and this condition is manifestly satisfied.

2. Form factors

According to the above general presentation, I** is a third-rank tensor involving
two independent vectors, say Q and p, —p) for convenience, restricted to satisfy the
constraints (8) and (9). The most general structure of such a tensor is (dropping the index 1):

ag"”+b0"Q*+c(p—p'Y(p—p')*
1"*(p, p') = f(g"Q*~ Q") +(p— )"
+d[Q"(p—p) —(p—p')Q*"]
+e[Q*(p—p) + QN p—p)]1Q"+ Mg g"(p— P+ g*(p— p')"1. (10)

where a, b, ¢, d, f, g are scalars depending on the spectral mass M. These scalars can be
determined in terms of the following linearly independent dimensionless amplitudes:

By = (p—p )i {(p—p)°

B, = 0.0:p—pP)I""IQ*(p—p')’,

By = (p—p)(p—P)ilp—p)I"*[(p— "),

By = (p—p) 0" a/(p—-p')’,

Bs = Q(p—p)ilp—p)I*"1Q*(p—p'),

Bs = Q,1"*2/Q. (11)

In the expression (6} € 4,, I** is sandwiched between the transverse projection
operators g,,(p,) and g,.(»}), so that the terms in I*** containing either p% or p* do not
contribute to the overall expression of A4,. Then, in the Lorentz gauge, the contributing
terms of 7** are

1" — a[(p—p')y'g" —(1+x) (g"°Q" - g"0")]
+[A+x)a+f+Mg] (80" — Q") +(b—c+2d) (p—p')°Q"Q". (12)

In order to obtain the proper physical significance of the terms in the above expression,
one must take into account the primitive interaction normalization condition. To do so,
let us write the vacuum amplitude for the process considered in Fig. 2, where a photon
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source emits a virtual photon which decays into a pair of spin-1 particles absorbed by the
sources K; and K.:

P (@0 (DA(x) = —i | do,do, Ki(—P)gsu(p1) } eqle g, (p)KI(~P)ALQ). (13)

Here j° is the electric current vector in source free regions (G* and ¢" are the spin-1 tensor
and vector fields)

J* = G%ieqg,—0,(¢"ieq@"), (14)
and

I = g*(p—p) ~(1+x) (g"Q" — "'Q"). (13)

Fig. 2. The primitive interaction

From the primitive interaction normalization condition, Eqs (13)-(15), the first
two terms of Eq. (12) must be associated with the electric charge and magnetic form
factors, respectively, while the third term is associated with the dynamically induced
electric quadrupole moment. The corresponding weight functions will be called

f{M?) = a = } (B, —B,—B;), (16)
fM?) = (1+K)a+f+M*g = 1 (1+x)(B,—B,—B3)+}(—B;+B,+Bs—Bj),
17
fAM?) = m*(b—c+2d)
1 m? 1 m?
=3 (B;—3B,—B3)+ 5 »(p—_—p?(B,—BZ—SB3+2B4+6B5—-286). (18 )

Finally, the vacuum amplitude (6) is equivalent to

A, = ie? { dw, do, dM*idoy(2n)*8(p, + pi — QK (—P1)gs(p) } eq

1 -
x [f.,(M I (MO + 1M O, )'“] & (PK(—p)ALQ), (19)
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where the tensors I, I, and I, are immediately identified by comparison with (12). Clearly,
Eq. (19) is made up of three parts which are separately gauge invariant, indeed, under
the causal conditions being considered, since

Qultma =0, Qp,—p)) =0 (20)

The space-time extrapolation of the result (19) consists in generalizing the causal
calculation to any arrangement of the sources. This can be done by considering sepa-
rately each of the three parts involved in (19).

First, we shall consider the electric charge term:

A = ie’ [ dw, do, dM*idoy2m)*d(p, + p; — Q)
X K3(=p1)gndpi) § eqlef(M*)g, (PDK(— P1IALQ).
It can also be written as
A = ie® [ dw, do, dM*idwy exp [iQ(x —x")] exp [ —i(p, + p1)x] (dx) (dx")
x K3(P1)2su(P1) } eql e f (Mg, (pDK (= PALX). (21)

Let us note that the electric current vector evaluated in a region that is prior to the action
of the detection sources is given by

Jx) = — [ do,doy, Ki(—p;)g,(p,) } eqlt*
x 2:(PDK(—pY) exp [ —i(p; + py)x], (22)
so that (21) yields
AL = —ie? [ dMPf(M?) [ (dx) (dx")j%(x)idwg exp [iQ(x — x')]A(x). (23)

Now we are in a position to perform the space-time extrapolation of the causal
calculation by making the following replacement [1]:

( : (dk)
i J dwg exp [IQ(x—x")] —» J‘7—~—4 exp [ik(x—x")] [
(2m)
where there no longer is reference to the causal arrangement. The contact term (c.t.)
is a polynomial in the momentum variable k2. These additional terms must be chosen so
as to meet the charge normalization requirement.
The action term that combines the primitive interaction with the interaction induced
modification that have just been evaluated can be presented as

1
m";‘; +C.t.] , (24)

§(dx) (@dx)PR)F o(x + x)A(x"), (25)

where the form factor F, expressed in momentum space is

- 2- 2 2 2 [ 1
F k) = 1—e f AM?[(M )LWMTE +C.t.]. (26)

4m?
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Charge normalization requires that F,(k? = 0) = 1, so that

+c.t ! ! + K + 27
s tCtl = e — —— + — 4. ~
k*+M?*—ic K+M*—ie M* M* (27a)
- —k2 M2n
(—k*/M7) ey (27b)

where n represents the number of subtracted terms in (27a). A4 priori, the only restriction
that one has on n is n > 1, In the next section it will become apparent that the smallest
value of n which makes the spectral form in (26) finite is n = 3.

Before discussing the other form factors, one should point out that F,(k?) is a parti-
cular expression of the charge form factor. As a matter of fact, the reduction (12) holds
only in the Lorentz gauge. In App. A, the space-time extrapolation is performed in
a gauge-invariant way showing explicitly the tensorial structure of the general expression
of the form factor, which reduces to F.(k*)g,, in the Lorentz gauge.

Following exactly the same discussio 1as for the charge form factor, the magnetic
form factor can be written as follows:

(o9

SulM?) Ky
Fm(kz) = "'82 J‘ sz m{“j——m(‘— A‘—'/,"2> 5 (28)

4m?

where we have taken into account the magnetic moment normalization condition
F(k* =0) = 0.

As to the dynamically induced quadrupole moment coupling, there are no physical
restrictions at all on the number of contact terms and the way to choose them. It happens
that the spectral form is finite without adding any contact term, when x = 1. In that case,

Fk*) = € j dM*f(M?)

4m?

K4 M2—ig’ (29)

3. Weight functions

Although the calculations are long, there are no basic difficulties in determining the
weight functions f(M?), f,.(M?) and f(M?). We proceed by steps and construct new
amplitudes, C;, analogous to the B;’s, except that in Egs (11) the I-tensor is replaced by
the tensor J,;,, whose expression is given by Eq. (2). Then, the infrared problem arises
naturally when performing the dw,, dw,, integrations, since the zero mass of the photon
is responsible for the unlimited range of the Coulomb potential. This suggests that the
difficulty is only superficial and will disappear when additional soft photon processes
are considered. The general way of bypassing the problem is by imagining that the photon
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has a very small but finite mass g. According to the definition of the C;’s, these amplitudes
are related to the B;’s in exactly the same manner as J,,, is related to 7,;, (see Eq. (7).
Recalling the origin of (p; —p,)? in the structure of the photon propagation function, we
are lead to make the following replacement:

1 1
g .
(Pr—p2)*  (py—p)*+u°

(30)

On physical grounds and by analogy with the spin-0 and -4 cases, one expects the
magnetic and quadrupole form factors to be x independent, on one hand, and the charge
form factor In z dependent on the other.

One chooses to perform the dw,, dow,., integrations in the centre-of-mass frame of
the incoming and outgoing massive spin-1 particles, i.e. in the rest frame of Q == p,-+p}
= p,+p5 = (M, 6). Let 6 be the scattering angle in that frame, then the relationship
between B; and C; becomes

I, ., 0 C{(M?*, 6)

B(M?) = ———— | d{sin®* -} - d , 31
M) Mz_mzf (sm 2) — (1)

sin® - + ————

? 2" MP—am?

with
¥ , 1 4m>\'/?

IO == jdwpzdwpfz(Zn) 5(p2+p2-—Q) == (4—71:)2 (1— W) . (32)

- It happens that the C,’s have a simple 0 dependence, and the only integrals to be evaluated
are

1

! il sin? 0 cos" "0 (33)
= sin” -
" 2 o

4 sin? 5 +u?{(M*—4m?)

with n = 1,2, 3,4, 5. These integrals are simply calculated to be

12=I3=Il""2, I4=I5=Il_%. (34)

In this way the photon mass dependence is isolated in a single term f;. Finally, we are
interested in the linear combinations of the B;’s as appearing in Egs (16)—(18). The algebra
involved in the calculations of the weight functions is based purely on kinematics. In



372

Appendix B, the basic kinematic expressions used to determine C(M?, 6) are given.
The results are (x = 4m?/M?):

2x—-1
fe=Io{ - (11—2)+ (1+K)(8x —4x—1)

—1@x* =1+ 1 +r)A(—16x*+2x-3)+4 (1 +K)3x} , (35)

fm = I{(@x—=1) (x~1)—1 (1 +x) (18x* —6x—1)

+1 (1 +1)%(18x* —8x+ 1)+ L (1 +x)*(—12x* +6x — 1)~} (1 +x)*x}, (36)
3 (2x—1) (10x—1) 16x* —14x+1
fa=1o {— 12x(x—1) {1+ 12x(x—1)
L1 28_x2—32x—1 1 L 37
_( J K —48x(x_T+8( +K) . ( )

4. Discussion and conclusion

As expected, F,(k?) is logarithmically divergent in the x4 =0 limit for any value
of k. F(k?) and F,(k?) are Inu independent as they should be on physical grounds.

As to the number of contact terms needed to make the spectral forms ultraviolet
convergent, in general, three are necessary in the expressions of F, and F,, and only one
in the expression of F,. In the special case where k = 1, F, is finite without adding any
contact term. As a matter of fact, the large x behaviour of f,(x) is (g = 1+K):

(g 2) (2g*>—3g+10),

@n )2—(g—7g +16g—20) = @ s

which is zero if and only if g = 2, i.e. ¥ = 1. Furthermore, for the special choice of k¥ =1,
fo(x) ~ 1/x? for large values of x, and the corresponding spectral form is superconvergent.

In gauge theories unifying weak and electromagnetic interactions, the choice of
k = 1 for the massive W bosons mediating the weak interactions has a dynamical origin [4]
and is responsible for the cancellation of some of the divergences [S]. Therefore, there
is a strong motivation for choosing ¥ = 1 and from now on we shall specialize our previous
results to that case:

2x— r .,

fu(x) = —Io[ —2)+ - (dx +18x+4)], (38)
x—1 3

fu(X) = —I,2x*+3x—1), (39)

fo(x) = Iy/6x(x—1). (40)
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Making the change of variable

1 1/2
b= (1- ;> , (41)

and fixing the number of contact terms to three (» = 3) in the expressions of F,(k?) and
F.(k?), Eqgs (26), (28) and (29) become
4m? v?
Lo+ (A-v)In—5 — —
A+ A= I — =

o [ E2\?
FkH)=1- —— dv
() 2n<4m2> [ ‘ L+(K*/4m?) (1—v?)—ie
0

1

2 08 +100* — 1607 +3 o
- —{dv
3 1+(k*/4m?) (1 —vP) —ig|’ 42y
o]
2 3\3 ! 2 2
ok V(4 —v* —0v*)
Fo (k) = — — ——) d , 4
( 27z(4m2 j Ul+(k2j4n12) (1—vH)—ie (43)
1]
1
F (k%) = — | d -2 44
= —— v .
4 127 1+ (K*j4m*) (1 —v*)—ie (44)
0
Let us define
1
er
J, = |dv , r=0,1,2,.... 45
J 1+ (k%/4m*) (1 —v?) —ie “5)
0
which satisfies the recursion relation
J 1+ 4i® J 4m* 1 46
rt1 = )T (46)
Jo is easily evaluated to be
4m2 1/2
2m? dm*\ 1?2 <1+ 7) +1

Now using the recursion relation (46), one obtains

1 (14 am\!
7= (1 4m? 'J 4m? k2 48)
a kz) o k2 2r—D)—1" (

i=0
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According to Egs (45)—(48), one can obtain the following explicit expressions for the
form factors (except for part of F (k?)):

4m?  v?

N IR Bleere
Fk)=1- —(—) 3|4

K9 2n(4m2) j” 1+ (2 jam?) (1 — o)) —ie
[¢]

—~Z2(J3+10J,—16J,+3J4), (49)
2 a (k*\° -
Fm(k ) = 1— 5;; Zn?i (4.]1—.]2—']3), (30)
2 o
Fo(k*) = E{(I”Jo)‘ (51)

So far, we have been assuming, implicitly, that —k&? < 4m?. For —k2 > 4m?, the
phase of the logarithm involved in Jo(k*) (and J,(k%) in general) is appropriately chosen
to give the imaginary part of the corresponding integral.

Using the fact that the behaviours of Jo(k?) in the neighbourhood of the origin and

at infinity are given by
2 2/ k*
Jo(k ) ~ 1_ - ’

k2-+0 3 4m2
(k2 2m* , 2m? i k? 52
‘e ~ e — e n-—-—
0 K2 o k2 k2 m2 ’ ( )

one deduces that

F o 1 1 k?
94250 187 10 m2)’

o m 2m? k2
F 1— In—|.
m

e ~ S 77 p) 2
k2-¢°037tk k

Hence, there is an induced quadrupole moment, F (k* = 0) = «/18x, and its dynamical
origin is evidenced here in the vanishing of the quadrupole moment form factor, F (k?),
for k* — oo. For comparison, one notes that the k2 fall-off of F,(k?) is faster than k2
fall-off of the electron magnetic moment form factor, which is

em? k2
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The situation seems different for the charge and magnetic form factors, where

F. (k) ~ 1+ i("—)

x2-0 127 \m?

, ) « k2 2 k2
Fok®) ~ ——(=) In=5,

Koo 187 \2m? m

a [ K2\ K?
Ay ~ ——{—) In—.
) )kz_,w 3z <4m2> m?
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APPENDIX A

Charge form factor!

The expression of A as obtained in (23) is gauge invariant under the causal condition
being considered, since

0,j°(x) =0 as  Q(p,—py) = 0. (A1)

Being rooted in the kinematics of free particles, this property will not be maintained

after the space-time extrapolation is performed. Accordingly, we must rewrite (23) in

a way that is without consequence for the causal situation but ensures its gauge invariance
in general. Returning to the momentum space, one observes that (n > 1)

1 Q2 n—1 . 1 Q2 n—1
IYE (Q,‘Qv*nguv) <— ﬁf) A" = Aﬂ'Qu}\? Y 0,4 (A2)
differs only by a gauge transformation from A4,(Q), and can replace it in (23). The substitu-
tion is:

1 vea2yn—1
4y > 5 OO o (A3)

u

and the resulting space-time extrapolation of (23) is:

oo 2 -
~ie® J %fc(Mz)j(dX) (@x)j, ()44 (x=x', MHOL*) T F(Y),  (Ad)

4m2

!Here we follow very closely Schwinger’s discussion (Ref. [1]) relative to the spin-O and —3%
analogues of he present calculation.
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with

(dk) exp [ik(x—x')]
@rn)* KP+M?—ig

A, (x—x", M*) = (A5)

The primitive interaction and the above interaction induced modification leads to
the action term

§ (dx) (dx")j#(x) L, (x = x") 4" (x"), (A6)
with

Luv(x - xl) = guvé(x - x’)

2

—(8,0,~ 2,,0%) (62)"‘1e2fdM f(MDA,(x—x', M?), (A7)

IZn

and the four-dimensional momentum space equivalent expression is

k2 : k2 n-—1 2 dM 1
Luv(k) = guv+(kukv-guv )(_ ) xXe Izn fe( ) _+_A'/72’:"l; . (AS)

One immediately deduces that, in the Lorentz gauge, the above tensor reduces to

L, (k) = g, ,F(k*), (A9)

where we recognize the appearance of the scalar charge form factor F.(k?) as obtained
in (26)-(27).

APPENDIX B
Kinematics of the e contribution to the spin-1 electromagnetic vertex function
x = M?4m?

f = scattering angle in the centre-of-mass frame

Notations

guv(pZ) = guva Euv(pIZ) = g;’w
Let p and g be any 4-vectors; we define

p.49.8" = (pqg),  p4.8" = (pag),

guvg”w = (§ : gl)’ puguvqléjlv = (pé) : (qg/)s

—ruv AT

r.2"q"g, = (p®) - (qg), p.g*d’'g), = (pg') - (qg)-
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pipt = papy = —m*(2x—1),

p1p2 = m*[(x—1) cos 6 —x]},

pipy = pipa = —m*[(x—1) cos 0+x],

0p; = Qp} = Qp, = Qps = —2m’x,

(p1—p2)? = 2m*(x—1)(1 —cos ),

(p1—p))* = 4m’(x-1),

p2(p1—P1) = —pa(py—p}) = 2m*(x—1) cos 6,

pi(p1—pY) = —pi(py—pp) = 2m*(x—1),

pi(p1—p2) = Pi(Pi—p3y) = m*(x—1) (1 —cos 0),

Pi(py+p2) = pa(p1+p2) = mP[(x—1) cos H+3x—1],

(g-8) =2+2x=1)%,

(p1P28) = (P1p2g") = 2m*x(x—1) (1 —cos 0),

(p1p28) = (P1p28) = 2m*x(x—1) (1+cos 0),

(p1p18) = (Pip1g) = —m*(x—1) (1—cos 0) [(x—1) cos 0 —(x+1)],

(p:1p;8) = (P1P18) = m*(x—1) (1—cos 0) [(x—1) cos O+ (x+1)],

(p1p18) = (p1p1g) = m*(x—=1)*(1 —cos® §),

[Pi(py+p2)8'] = [pi(pi+P2)gl = m*(x—1) (L—cos 6) [(x—1) cos 0+ 3x—1],
[p2(p1+p2)g'] = [p2(Pi+p2)g]l = 2m*x(x—1) (3+cos 0),

[p(pi—pDE] = —[P2(p,—P)E] = 4m’x(x—1) cos 6,

[pi(p1+p2)g'] = [Pi(p)+p2)g] = m*(x—1) (1+cos 0) [(x—1) cos 6+3x—1],
[pu(pi—pEl = —[Piupi—pDE'T = —2m*(x—1) (1—cos 0) [(x—1) cos 6 —1],
[Pi(p1—PDEl = ~[pi(p1—PDEl = —2m*(x—1)(1+cos H)[(x—1) cos O +1],
[Py +p2)(pi~p1)El = =[Py +P2)(P1—PDg] = 2m*(x—D(x~1) cos® §+3x cos +1],
(P =P D(P1—PDEl = [(P1—P)(P1—PDE] = 4m*(x—D(x—1) cos® O +1],
(P18 (p18) = (P1P12),

(218 - (P12) = (P1g) - (P1)) = (P1P12),

(r18) " (P18) = (p18) " (p18) = (P1P18)s

(p:8) - (P48) = —m?(x—1)(1 +cos 0) [(x— 1)(2x+1) cos B+2x% —x+1],
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(p18) " (P1g) = m*(x—1)(1=cos 0) [(x—1)(2x+1) cos 6 —2x>+ x—1],
(218) - (p1g) = —mP*(x—1)2(2x+1)(1—cos? 0),

(P18) " [(p1~p)gl = —2m*(x~1)(1—cos 0) [(x—1) cos H—1],

(»18) - [(pr—pDgl = —2m*(x—1)(1 +cos 0) [(x—1) cos O +1],

(P18) - [(p1—PDEl = 2m*(x = 1)(1 +cos H) [(x—1)(2x +1) cos 6 +1].
(P1g) - [(pr—p1)gl = 2m*(x—1)(1 —cos 0) [(x—1)(2x+1) cos § 1],

(pi—pDel - [(p1—PDE] = dmP(x—1) [(x— 1)2x+]1) cos® 0 +1],
[(pi—pDel - [P —p)gl = 4m*(x—1) [(x—1) cos® O +1],

(P28) - (prg) = —4n’x(x—1)(2x-1),

(P28) " (P12) = (p22)  (P18)) = —2m°x(x—1)(2x—1)(1 —cos 0),
(p28) - (P18) = (P28)  (p1g) = —2mx(x—1)(2x~ 1)(1 +cos 0),
(P28) - (P12) = (p28) - (p18)) = 2m*x(x—1)(1+cos 0),

(p28)) " (Pig) = (Prg) - (p18) = 2m*x(x—1)(1 —cos 0),

(p28) " (P18) = (p28)) " (P18) = (p1P22),

(p28) [(pr—pDEl = —(P28) - (p1—PV)E] = 4m*x(x—1)(2x—1) cos 0,
(P28 " [(pr—PDET = —(p28) - [(P1—P1)E] = 4mx(x—1) cos 6,
Up+p2)8] Upi—p)gl = 2m*(x—1) [(x~1)(2x+1) cos? 04 3x(2x—1) cos O +1],

(P28)  [(pr +p2)g] = (p28) - (1 +p2)g] = —2m*x(x—1)(2x—1)(3 +cos 6).
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