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The analysis of relativistic free-particle systems inclines us to define a set of non-equiv-
alent Hamiltonians which imply the factorization of all degrees of freedom into groups
corresponding to different “clustering” of the constituents of these systems. Within the
guantum description all these Hamiltonians lead to selfconsistent solutions, although only
one of them — call it A, — respects the full relativistic symmetry of the laws of motion.
In the classical framework the only consistent description of motion follows from H,, and
thus the relativistic covariance is here unavoidable.

1. Introduction

The relativistic symmetry excludes instantaneous action at a distance, and hence it
excludes the usual single-time canonical formalism of the classical, as well as quantum
mechanics. The adjustment of both, the relativistic (R) and the canonical symmetries
call for field theory, i. e. a theory of systems with infinite degrees of freedom. Within the
framework of the perturbation theory of quantum field theory one regains the possibility
of treating systems with a finite number of degrees of freedom, but difficulties connected
particularly with the R-bound state problem clearly show that the problem cannot be
regarded as completely solved, although the literature concerning it is immense.

In paper {1] it is shown that any mechanical system (with finite number of degrees
of freedom) which fulfils: 1° the canonical symmetry, 2° the R-symmetry, and 3°
respects the geometrical character of the classical trajectory must be a system of free
particles. On the other hand, if one replaces the R-symmetry by the non-relativistic (NR)
symmetry, one regains well-known freedom of dynamics resulting from arbitrary poten-
tials depending on the distances between the particles (action at a distance). Thus there
is a discontinuity between both symmetries reflecting the fundamental discontinuity in
the number of invariants of these theories. The unique invariant (4s)? of the R group
goes, when ¢ — 00, into two invariants, r and 4t ((45)* = r2—c?(41)?) of the Galilean (G)
group. We emphasize this discontinuity opposing it to the continuous transition of all
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kinematic relations; e. g. the kinetic energy of a particle of mass m, E5, = (m%c*+c2p?)'/?
—mc? — p*2m = E3,, if p/mc — 0. The point is that all kinematic relations are spanned
on the momentum space, where the c-number parameter p/mc exists a priori. In the
x-space the numerical values of momenta (or velocities) depend on the initial conditions
which, as such, do not enter the structure of equations of motion formulated in the x-space.
In consequence, these equations encounter the aforementioned discontinuity, being in-
herently connected with the space-time metric.

An exceptional situation takes place for one-body systems in an external field of
forces. The R-symmetry does not exclude the “action at a distance” of an infinitely heavy
centre which is the source of the external field. From the viewpoint of the relativity this
follows from the fact that an infinitely heavy source does not suffer from the velocity-recoil
(although it suffers from the momentum-recoil) due to the motion of the particle, and hence
it does not reveal the way of propagation of this field. However, the very concept of an
external field is limited, and when the mass m, of the source becomes finite — independently
how large! — and if one includes this source-particle into the corresponding two-body
system, then the situation changes discontinuously because of finite velocity-recoil of
the source. Then the R-symmetry eliminates the external field together with the instan-
taneous action at a distance. This discontinuity is also reflected in the Bethe-Salpeter
equation which in the limit m; — oo does not reproduce the one-body equation in the
external field [2]. This strange discontinuity inclines us to speculate in the following direc-
tion.

Let us suppose that the force binding two particles is an attribute of both particles,
not of each of them separately, as it must be within the relativity theory. Such a ““field”
could generate the interaction between remote particles, as it does not depend on their
motion. Of course, the realization of this hypothesis conflicts with the R-symmetry,
much like any static interaction, and thus it results in partial breaking of this symmetry.
The question arises, whether this is logically possible, and if it is, whether it does not
conflict with well-known facts confirming the R-symmetry. We try to show that a positive
answer is due to quantum physics, or more precisely, to the fact that not all quantities are
directly accessible to m asurcm nt. In particular, internal forces responsible for binding
of the particles belong to this class of quantities. The R-covariance is certainly required
in parametrizing directly measurable quantities, such as cross-sections, invariant masses,
etc., but these quantities can always be parametrized by directly measurable momentum
invariants [3].

2. Kinematics

Within the R-kinematics we deal with two expressions of the energy of two free-
particle system:

E=(mi+p)'*+(mi+pD)'"? ()

E = [(py+p2)*+(p,+p,)*]? = (M*+P*'?,  (b) (2.1)
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where M = [(p, +p>)*]¥? is the invariant mass of the system, and P = p,+p, is its
total momentum. According to this we introduce two Hamiltonians (operators) of the
system. The first Hamiltonian

H, = (mi+pD"> +(mi+p3)"? 2.2)

is the typical one, and p, , denote the momenta canonically conjugate to the Lorentz
coordinates X, ,, hence (h = 1)!

['%Aj, ISBIJ = i‘sABéjka [’2,4;, gBk] = [13,4;, I’;Bk] = 0,
G, k=1,2,3; A, B=12). (2.3)
The second Hamiltonian H, is equal to
Hy, = (R+P*»'2, b= mi+g)'"? +(mi+4H)"?, (2.4
and it defines a new set of variables, regarded henceforth as the canonical variables. The
total momentum i’ determines the canonically conjugate overall coordinate X of the
system, while the absolute, relative momentum ¢ determines the canonically conjugate
absolute, relative position y of the constituent particles. Of first importance is that the
absolute — i. e. independent of the reference frame — character of the y, ¢ coordinates
is given a priori on the level of equations of motion, that is apart from any boundary
condition. In consequence, y, ¢ provide the parameters which describe the internal (ab-

solute) laws of motion, and thus the internal (absolute) structure of the system. It is assumed
that

[5(_;, Xk] = [Xj: )A’k] = [5(_;, ‘}k] = [?’jo Pk} = [Pj’ {;k] = [Pjs ‘}k]
= [‘L, 6k] = [JA/ja j;k] =0, [st Pk] = [j;j’ i}k] = iéjk' (2.5)

Let us assume that both, H, and H, are the time translation generators, hence for H,
one gets the Schroedinger equation

P9 WX,y 0ot = HP(X, y, 1). (2.6)

Eq. (2.6) is separable in the external X, and the internal y variables, which fact reflects
naturally the independence of the internal from the external laws of motion. Note that
this is alien to the covariant parametrization. By putting ¥ = Y(X, ) ¢(y) one obtains
the relativistic Klein-Gordon equation in X, ¢

(@2 -Vi+MH¥(X, 1) =0, 2.7

where the separation constant M means the invariant mass of the system, being the eigen-
value of the internal Hamiltonian #

hy(y) = M yp(y). (2.8)

As we see, the price for this separation is the violation of the R-symmetry by Eq. (2.8)..
This equation is known in the literature as the “‘semi-relativistic” equation [4].

! By @ we denote the g-number, and by a its c-number eigenvalue.



3. Non-equivalent Hamiltonians

The commutation relations (2.3), (2.5) imply that between the variables X, ,, p; .,
and X, P, y, ¢ must stand a canonical transformation. The most general one is of the
form

P=pi+p:, q=I[ap,~(1-a)pJL7",

X =ax,+(1—-a)%,, »=L{x,—%), (.1
where g, and the three-dimensional matrix L must be independent of the dynamical varia-
bles (operators), but so far quite arbitrary. On the other hand, the structure of H, implies
that the eigenvalue ¢ of ¢ coincides with the eigenvalue p, of p, represented in the

c.m. system S*, i.e.: ¢ = p; = —pi. If M, , = (m{,+4¢*)"? and taking into account
that p, , = (E; ;, P12) are four-momenta we have

P12y = W Fay+oMys),  (Pr2)y =(Fa),  Ey . =9M,,Fvg), 3.2

where v is the velocity of an arbitrary reference frame S in S*, and ||, . denote the
directions parallel and perpendicular to v. If one takes the third axis parallel to v, then
from (3.2) and (3.1) one obtains

1,0, 0
L=Lv=|0,1,0{, a=M/M=3}[1+(mj—m}/M?],
0,0, 9
y=EM, M=M+M, E=(M*+PH"? 3.3)

As the parameters @ and L depend on quantum numbers of a definite state, there is no
canonical transformation which should transform the Hamiltonian H, into H,, and
vice-versa. We shall say that these Hamiltonians are non-equivalent,

H,(%,5, 01,2 £ H,(X, B, 3, 9). (3.4)

The transformation (3.1) with a, L as in (3.3) enables one only to change the parametriza-
tion of a state with given quantum numbers £, P. Thus it is given a posteriori, not a priori
which requires the equivalence (identity) of H, and H,.

An exceptional situation takes place in the NR limit (¢ — o). Then a — m, [(m; +m;),
and L — 1 (unit matrix), which a priori are c-numbers. It turns out that the corresponding
NR Hamiltonians HS, HS become identical (equivalent).

The second limiting case to the classical mechanics (h — 0) shows that H, = H,
leads to an inconsistent description of motion, and therefore it must be refuted. Indeed,
the Hamiltonian H, gives the following trajectory:

00 0 0 ] 0
X =(PIE+X, y=M/EYQ/M;+1/My)q-t+y, (3.5)
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where the quantities with the superscript “0” denote the initial values. The trajectory
(3.5) translated — with the help of (3.1) and (3.3) — into the x, ,, p, , variables should
result in the trajectory

o o 0
X2 = (P1,2/Es ) t+xy 5, 3.6)

which follows from the Hamiltonian H, = H,. One easily finds that this is not so. Since the
trajectories (3.6) behave correctly under the Lorentz transformations, H, cannot be
accepted as the Hamiltonian of the system. Thus within the framework of the classical
mechanics there is no place for other Hamiltonians than H, with its Lorentz-covariant
parametrization. In other words, the concept of an a priori absolute y-space is inconsis-
tent.

The situation is quite different in quantum description, and the above dilemma dis-
appears together with the classical trajectory itself. Let us consider the plane wave
solution of Eq. (2.6) which is quite general as it provides the complete basis for the general
solution of this equation. One finds that

(X, y, 1) = exp [i(PX+qy— Ep)], 37

0 0 o . . . .
where E = E,+E, is the total energy. The transformation (3.1) leaves invariant the fol-
lowing expression

PX+qy = pix,+pax;, 3.9)

even for arbitrary ¢ and L. Thus

0 0 o 0
¥ = exp [i(p1x, +p,x,—(E +E)B)] 3.9

which coincides with the equal-time two-body plane wave solution of the Schroedinger
equation (2.6) with H, — H,. We see then that both quantum “trajectories” coincide.

1t is remarkable that the expression (3.8), representing the space part of the classical
action, is identical in both parametrizations. The inconsistency comes with the determina-
tion of the classical trajectory from general solution of the Hamilton-Jacobi equation.
Then the identity (3.8) and the equality £ = E, +E, between the eigenvalues of 4, and H,
are not sufficient for the classical trajectories in both parametrizations to coincide. One
needs the equality of the Hamiltonians as functions of their dynamical variables which
does not take place — cf. (3.4).

4. Interaction and Lorentz-Poincaré group

The heretofore kinematical considerations can be extended onto interaction by modify-
ing the internal Hamiltonian . We can put

h = (m}+g)"*+(m}+g)"*+ 0, (4.1)
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where U is called the absolute potential, and as was stated in Section 1, it is regarded
as an attribute of both particles. Thus U does account for instantaneous action at a distance,
but only in the absolute space spanned on the y variable which variable a priori cannot be
identified with any Lorentz relative coordinate. We explain below this difference and the
compatibility of the “static’” action with the relativity theory. Note that the modification
of h introduced with U retains Eq. (2.6) separable in the X and y variables, and Eq. (2.8)
determines now the absolute masses M of interacting particles.

Let us consider the structure of the Lorentz-Poincaré (I-P) group of our system.
Let J,, K, denote six generators of the homogeneous, and H, P, four translation genera-
tors of the L-P group. Lct J, be of the dimension of an angular momentum, K, — of
(g. cm), P, — of the dimension of a momentum, and H — of energy. Then the ten genera-
tors fulfil the commutation relations

[J5, Tl = iheyd,, [K;, H] = ihP
[jj’ I%k] = ihejksks, [Pj, Pk} = 0,

[jp Pk] = ihejksiasz [i)j’ H] =0,

[J; H] =0, (4.22)
and
A A ih A A ih
[Kj, Kl= - ? €ipsd o0 [Kj, Pl= c_2 ouH. (4.2b)

In these units one easily performs the limiting procedure to the NR physics (¢ — o) and

the Galilean (G) group structure. The commutation relations (4.2a) remain unmodified,
while instead of (4.2b) we have

[K§, kg1 =0, [KS, PE] = ihs,m, (4.2b")

where m is the neutral element of the G group, of the dimension of mass. The lack of
energy-mass relation forces us to postulate the mass of the system.

Let us start with the NR case. For our two-body system the ten generators can be
made equal to:

jJG = ejks(Xsz+;kés)a iJ,G = Pj, k,G = ij,

HS = P2m+(g* 2+ U(p)), (4.3)

where m = m; +m, (neutral element), y = m,m,/m — the reduced mass, and X, P;
» q are determined by (3.1) with @ = m,/m, L = 1. Thus X is the NR centre of gravity,
and y the relative (absolute) coordinate between the constituents. As JC commute with
A, the absolute potential U must be rotation-invariant, i. e. U = U(»?). Beside this the
structure of the G group does not impose any other restriction on the NR dynamics,
which is well-known from mechanics.
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In the L-P group the situation becomes different. The time translation generator
H = H, implies the factorization of the internal — Eq. (2.8) — from the external —
Eq. (2.7) — laws of motion, but the latter deals already with the invariant mass M which
means that the internal state (eigenstate of h) must be already determined. The only in-
varlant group of Eq. (2.8) is the three-dimensional rotation group in the y-space, and
_]k = e,;,y;qs are three generators of this group. Since i must be rotation- 1nvar1ant
[A, }.] = 0, the absolute potential U, much like in the NR case, must depend on y?. For
the sake of simplicity, let us assume that the solution y(y) is the eigenstate not only of A,
but also of j2, i.e

hps®) = Myrg,  72oan = D211+ Dy (4.4)

Now, i.e. a posteriori, we introduce three (2/+1) - (2/+1)-dimensional matrices S’
which are the rotation generators of the (2/+1)-dimensional representation w,,. On
having this, ten generators of the L-P group can be taken in the following form

Jy = ek”X P +hSP, P, =P,

.1, . ih . SR
R ==X+ —8P, H=H, =R*+PH?, (4.5)
c

where
[S0, 597 = i, 9.

The Hamiltonian H = H,, as the only one generator retains the dependence on the internal
coordinates y, ¢, which exhibits the distinguished position of the time variable. Since the
boost generators K ; do not commute with themselves (Thomas precession), they and the
rotation generators J, must be independent of y, ¢, and so they must be determined
a posteriori. Here is the fundamental difference between the G and the L-P groups con-
sisting in the fact that for finite ¢ the y-space ceases to be isomorphic with the space spanned
on the relative (Lorentz) coordinates. In the NR limit (¢ —» c0) K§ commute and both
spaces become a priori isomorphic.

Within the proposed scheme one gets no constraints for the internal dynamics; only
the potential U(p?) must vanish for y2 — oo. Indeed, the mass M of the system, as the
cigenvalues of A, normalizes U, unlike in the NR case.

5. Relativization

The eigenvalue of any scalar operator in the phase-space of y, ¢ is a priori an absolute
quantity. This absolute c-number can be a posteriori identified with an invariant of the
Lorentz geometry. Thus the relativization should work a posteriori. Of course, this con-
flicts with full covariance which requires all quantities to be covariant a priori. In this
sense the Lorentz contraction effect is also an a posteriori effect. In the first stage the
internal laws of motion — such as Eq. (2.8) — determine from point particles an absolute
structure described by w(y), and in the second stage (a posteriori) this ¢-number shape
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can be projected onto the Lorentz space-time. As y = L(x, —x,), the same shape in the
Lorentz parametrization takes the form y[L{(x,—x,)] and it exhibits the Lorentz contrac-
tion effect.

The Hamiltonian H = H, results also in the relativistic time dilatation effect. Let
us consider the meta-stable state

¥ = Y(X)p(y) exp(—i Ef) (5.1
with E = (P?+ M?)'2, where
M= M,—idM (UMM, <1). (5.2)
This means that the internal structure is unstable and its life-time is given by squaring;
(W] = PIX)p(»)i* exp (—24M/y1),

where y = Eo/M,, E; = (P?4 M2)V/?. Thus the life-times, A¢in S, and 47* in S* are con-
nected through the relation

At = yAt*. (5.3)

This expresses the time dilatation of any internal process in a moving reference frame S.
By comparing (5.3) with the Lorentz transformation

A4t = y(At* —vdAx*),

we see that in the proposed picture the internal motion (in the y-space) does not affect
the time flow. This again exhibits the difference between the p and the relative Lorentz
coordinate Ax*.

The question arises whether the proposed partial breaking of the R-symmetry does
not conflict with the experiment. We know already that quantum ‘‘trajectory” remains
consistent. Moreover, the whole kinematics based on H, (momentum space relations)
remains ex-definitione unmodified. On the other hand, any internal structure in the y-space,
connected already with dynamics — e. g. the potential U — is measurable only indirectly,
namely through its Fourier transform in the momentum space. The measurement of U(y)
has nothing to do with the determination of the space-time coincidences determining
directly the x-shape of U, as it takes place in the classical measurement of a force. One
always determines momenta, while an exact detcrmination of a momentum eliminates
the space-time localization. Here is the fundamental difference between the quantum and
classical frameworks which — in principle — opens the possibility of partial breaking
of the R-symmetry. Since the absolute momentum transfer (44)* can be translated into
the Lorentz momentum invariants, they provide us with the unique variables which para-
metrize the directly measurable structures. Therefore the momentum-invariant language
of the S-matrix theory does not imply that this theory follows from fully covariant laws
of motion formulated in space-time.

Let us now consider two limiting cases of Eq. (2.6), a) the NR, and b) the infinitely
heavy centre limit. a) In the NR limit — as we know — both Hamiltonians H$ and HS
become equivalent and the y-space becomes isomorphic with the (absolute) space of the
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relative Galilean coordinates. b) Let now the mass m; of the system go to infinity. If
W = M—-—m,, Eq. (2.8), in the limit m, — oo takes the following form

[(m3+g)'"*+ 0]y = Wy. (5.4)

If g —» —id/dy, and W — i8]t one obtains from (5.4) the Klein-Gordon equation which
regains the L-P group of covariance. We see then that the subtraction of infinitely heavy
constituent m;, results in the relativistic one-body problem in the external field U(y) accept-
able by the R-symmetry. The coordinates (7, y) can be then identified with the Lorentz
coordinates of the particle m, in the rest-frame of infinitely heavy particle m,.

These two limits show us that the proposed scheme rules out the aforementioned
discontinuity between the R and NR symmetries, as they both are the particular (limiting)
symmetries of the same symmetry.

Note finally that for many-body systems one can define many different non-equivalent
Hamiltonians according to different groupings of the constituents of this system. Only
one of them — called H, — which does not perform any grouping, is admissible within
the framework of the classical mechanics, and only this one remains consistent with full
R-covariance of the corresponding equations of motion. One easily shows that all these
Hamiltonians lead to the same kinematics, while modifications come with the interaction.
Then the choice of the suitable Hamiltonian depends on the initial asymptotic state in
which some of the constituents can already be ‘“‘clustered” in bund states.
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