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PARTIAL WAVE ANALYSIS OF THE THREE PARTICLE
PROTON DISSOCIATION
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Institute of Physics, Jagellonian University, Cracow*
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The 1llinois partial wave analysis program has been modified to study the dissociation
of the proton into proton and two mesons. The formalism used in this modification is de-
scribed in detail and a geometrical interpretation of all spin rotations and couplings is given.

1. Introduction

In recent years a considerable interest was taken in the lllinois partial wave analysis
(PWA) program designed by Ascoli (cf. Ascoli et al. 1970). This program was successfully
used for the study of meson dissociation in many reactions, for instance n-p — (n-n~n*)p
between 5 and 25 GeV/c (Ascoli et al. 1970, 1971, 1973a), the same reaction at 25 and
40 GeV/e (Antipov et al. 1973), Kp —» (K-atn)p at 10 and 16 GeV/c (Deutschmann
et al. 1974), ntp — (n¥ntn~)p at 13 GeV/e (Thompson et al. 1974) and at 8, 16 and 23 GeV/c
(Otter et al. 1974) and of np — (wn~)p at 4, 5, and 7.5 GeV/c (Chaloupka et al.
1974). Let us finally mention the paper by Ascoli et al. (1973b) where by analysing a Deck
type model for which the partial waves are known, the reliability of the Illinois program
results could be estimated.

The method used in the llinois PWA program has been described and discussed by
Brockway (1970), Bowler (1973) and by Hansen et al. (1974). The last of these papers is
the most detailed one and discusses the assumptions made in the program.

While the mesonic diffractive dissociation has been extensively studied, as can be seen
from the still incomplete above list of PWA papers, the properties of the nucleon diffractive
dissociation are, to a large extent, still a mystery. Although the effective mass and mo-
mentum transfer distributions, as well as the decay branching ratios, have already been in-
vestigated (cf. Boesebeck et al. 1971), there are still many questions left unanswered.
For instance, even the nature of the lowest mass enhancement at 1460 MeV is not yet
understood. In this situation, a reliable partial wave analysis of the three particle
nucleon dissociation would be very interesting.
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The present paper describes the formalism used in a modification of the Iilinois
PWA program made to study the proton dissociation into proton and two mesons. This
modification was actually implemented and the modified program has been used in pre-
liminary fits to the reaction n*p — n*(pntn~) at 16 and 23 GeV/c.

2. Partial wave expansion in the three-particle subsystem
The amplitude for the process

a+b - (1+2+3)+4 2.1)

can be written in the form

Jrars = <P1P2P3%33 PalUiPader Py- 2.2)

We assume that particles a and 3 are protons (or other spin 1/2 particles) and all other
particles are spinless mesons’. By 4, and A; we denote helicities of the protons. Because
eventually we sum over A, and A;, their exact definition is irrelevant.

In the following, an angular momentum expansion of amplitude (2.2) is used. As an
example, we write down the expansion, called the 1-3 coupling, where the angular momen-
tum of the (1, 3) subsystem is singled out

: 2J+1 z
flala = \/ {m(‘P, 3, p)* JJwLﬁ(s t, W, sy, Sz)owl; (51, S, W) (2.3)

IMv ILj
with

Gikzbin(1,3) = \/ G Y@L+ (2L2+1)Zd”2( )iy

vady
x C(l5, 05 %, v2l iz, "2)djl(75“lz)zzvzc(L2> 0; j2. 421, 12)d1(91 _n)vlz‘ (2.4)

Here J is the total angular momentum of particles (1, 2, 3), M is its projection on the
z-axis of an arbitrary reference frame (x, y, z) defined in the cms of particles (1, 2, 3)
(and usually taken to be the Gottfried-Jackson frame or the s-channel helicity frame of
the reaction a+b — (1, 2, 3)+4), v is the projection of J on p in the (1,2, 3) cms, [ = I,
is the relative orbital momentum of particles 1 and 3, j = j, is the total angular momen-
tum of particles (1, 3), and L = L, is the orbital angular momentum in the coupling of

! This formalism can be 2lso applied to proton-proton collisions with unpolarized target and beam.
In this case the index 4, should be everywhere replaced by the set of indices (4, A5, 44) and summation
over all of them performed in the density matrix formula. In fact, in both cases the summation over 4,
(or over 24, Ap, As) occurs only ia the formula for the reduced density matrices (4.7). As the IHinois program
fits just these density matrix elements rather than amplitudes, no changes in the program are necessary
to study the proten-proton collisions instead of the pion-proton collisions. Only some propertics of the
density matrices may change, for cxample, more non-zcro eigeavalucs in the proton-proton case could be
expected (cf. Ademcllo et al. 1965).
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j» and particle 2 giving J. Then s, and s, are squared effective masses of systems (2, 3)
and (1, 3), and W is the effective mass of particles (1, 2, 3). Further, angles ¢, 9, y de-
scribe the orientation of the (1, 2, 3) plane in the (1, 2, 3) cms in the (xyz) frame. Namely,
@, 9 are polar angles of ps in (xpz) (i. e. 9 is the angle beiween z and ps, and ¢ is the angle
between the (z, x) plane and the (z, p;) plane), and y is the angle between the planes
(P1, ps) and (z, p3).

In formula (2.4) summation runs over v, and 1, which are the projections of j, on
the momentum of particle 3 in the (1,3) cms and on the reversed momentum of particle
2 in the same frame. The angle o, is between —p,, and —_pfl in the particle 3 rest frame

2

Fig. 1. Kinematics of the three-particle system. The reference fiame in the (1, 2, 3) cms (centre of the figure)
is the (x'y’z") frame Cescrited in the (ext

and the angle x, is between — p, and p, in the (1, 3) cms. Finally, 9, is the angle between
p» and p; in the (1, 2, 3) cms. These angles and projections (except for ¢, 9, y) are shown
in the velocity diagram of particles 1, 2 and 3 in Fig. 1 (cf. Wick 1962).

Formulae (2.3) and (2.4) have a simple geometric interpretation. In fact, the D func-
tion in Eq. (2.3) is characteristic for angular momentum expansion of the three-particle
system (cf. e. g. Berman and Jacob 1965). It says that a rotation through the Euler angles
(¢, 9, 7) is needed to pass from the (xyz) frame to the (x'y'z") frame and that the projection
of the total angular momentum J on the z-axis is M and that its projection on the z’-axis
is v. Both these frames are defined in the (1, 2, 3) cms. The (xyz) frame is external to the
three particle system and usually chosen as cither the Gottfried-Jackson or the s-channel
helicity frame of the production reaction. The (x'y'z’) frame is attached to the three
particle system. In our case it is defined as follows: the z'-axis is along p; and the y'-axis
is parallel to the cross product p, x p,.

The second sum in Eq. (2.3) is the coefficient of the partial wave expansion J, M, v.
This coefficient is developed in turn in terms of the functions G, giving the new coefficients 4.
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The role of the first expansion was to convert the angles ¢, 3 and y into discrete variables
J, M, v. Similarly, the second expansion is done to convert the angles 3,, y, and «, into
L,,j, and [,.

The geometrical interpretation of G is the following. We begin in the particle 3 (pro-
ton) rest system where we know 2, i. e. the spin projection of particle 3 on the z'-axis,
or on —p,, = —p,—p,. We want to get eventually v, i. e. the projection of J on z'. To
do this, we rotate first 2, through angle —u«, (cf. Fig. 1) obtaining thus v,, the projection
of the proton spin on — p,. This rotation is done around the y-axis which is normal to
the (1, 2, 3) plane, and is expressed by the d''? function in Eq. (2.4). The next step is the
Lorentz transformation along p, to the (1, 3) cms. This transformation does not change
v, and therefore it is not visualized in Eq. (2.4). Then in the (1, 3) frame we perform the
L — S coupling of particles 1 and 3 to get their total angular momentum j, and relative orbit-
al momentum /,. The total spin of particles 1 and 3 must be 1/2 (because 1 is spinless and
3 has spin 1/2). The projection of /, on the relative momentum is always zero, so the projec-
tion of j, on the relative momentum must be equal to the projection of the total spin,
i. €. v,. This fact is expressed by the first Clebsch-Gordan coefficient in Eq. (2.4). The
next step, performed in the (1, 3) cms, is done to calculate the projection 4, of j, on —p,.
We know now the projection of j, on ps and the angle between ps and —p,, denoted
n—y, in Fig. 1. Therefore A, is calculated by performing a rotation through n—y,, as
shown by the second d-function in Eq. (2.4). Then we make a Lorentz transformation
along p, into the (1, 2, 3) cms which does not affect 4,. Once in (1. 2, 3) cms, we perform
the second L —.S coupling to get the total angular momentum J of (1, 2, 3) and the orbital
angular momentum L, by coupling j, and particle 2. This coupling is done with the second
Clebsch-Gordan coefficient in Eq. (2.4). Finally, the last d-function in Eq. (2.4) is used
to calculate v from the known projection 4, of J on —p,.

The 2—-3 coupling is performed in an analogous way. Formula (2.3) still holds (al-
though /, L and j have then a different meaning) and Eq. (2.4) is replaced by

. / 2 7 ‘ ;
G2, 3) = \/W VQIL+1) Q2L +1) Z d" (),

Vidy
x C(11,0; 3, viijys "1)dj](_Xx)A,v[C(L1= 0571 A1id, Al)dl(”_‘gz)wu- (2.5)

This formula can be interpreted similarly as Eq. (2.4), step by step. Note that, similarly
as in Eq. (24), J, j;, v, A3, v,, 4, are half-integers and L, and [/, are integers.

The 1-2 coupling is slightly different from the preceding two, so we discuss it in de-
tail. The formula reads

. 2 ‘ b
Gi%(1,2) = \/ VQ2j3+1) @Ly+1) E 1= 2330
v3

(4n)®

X C(J3. v35 &> 43183, A3 +v3)C(L;, 05 S5, A3+ v51d, v). (2.6)
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Here we begin by coupling particles 1 and 2 in the (1, 2) cms to get the total angular mo-
mentum j; of the system (1, 2). The coefficient of this coupling is equal to unity, as the
coupled particles are spinless (then there is only one spin amplitude, equal to unity by
normalization). The second step is done to obtain v;, the projection of j; on p;. We know
already the projection of j; on p, which is zero (because the total spin is zero and the
projection of the orbital angular momentum is zero, too), so we rotate it through the
angle 7 — x5, the angle between p, and p;. This is the first d-function in Eq. (2.6). The next
step is the Lorentz transformation into the (1, 2, 3) cms and then the L —S§ coupling of
(1, 2) with particle 3 to give J. The system (1, 2) has total angular momentum j; with
projection v; on p; and couples with particle 3 (proton with spin projection 1) to give
the total spin .S; and the orbital angular momentum L;. The coupling is performed with
two Clebsch-Gordan coefficients in Eq. (2.6).

Note that the set L,, I,, j; or L, I, j, has been replaced now by L, S,, j; and that
Eq. (2.3) still holds after this substitution is made. Now L, j; and v, are integers and all
other discrete variables in Eq. (2.6) are half-integers.

To summarize, Eq. (2.3) represents a general three-particle partial-wave expansion
of amplitude (2.2) and the subsequent expansion in a two-particle subsystem. The former
expansion is made in terms of the D-functions and the latter in terms of functions in Eqgs
(2.4-2.6).

3. Basis with positive angular momentum projections

Instead of the ordinary spin basis |/, M) with M = —J, ..., J it is more convenient
to use here an equivalent basis

1
—=(J, MY +ne(—=DMJ, —MD) 3.1

V2
where M > 0, and n = +1 is the eigenvalue of the reflection operator in the x—z plane
(see Appendix B). Further

My =

e = P(—1+1? 3.2)

and (—1)™ is a shorthand for exp(iMn) as M is here half-integer. The reason for adopt-
ing the new basis (3.1) is a simplification of the density matrix ¢ which in the ordinary
basis J, M has many interdependent elements. In the |J, M, n > basis the g matrix splits
into two parts, corresponding to n = +1

OV = Ovbvan HE2(—= 1) M0 2 0, (3.3)

with M,, M, >0 and &, = P, (—1)’2
Note that in the case of spinless meson dissociation it is possible to prove that # is relat-
ed to the exchanged naturality. In the proton dissociation, however, there is no relation
between # and the exchanged naturality. For instance, in the reaction np — n(pnm) only

the natural parity may be exchanged and in the process pp — p(pnn) it is impossibie to
separate exchanged naturalities unless either the beam or the target is polarized.
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Expansion (2.3) may be easily written in the basis (3.1) if at the same time we trans-
form the coefficients h as follows

1

J2

Byt (hie "t HETH (3.4)

and

h_oy= JIE (~1D)MmS T =TT for M > 0. 3.5)

Before we rewrite expansion (2.3) let us remark that the amplitude (2.3) will always

enter the cross section formula. This means that we are not interested in the amplitude

itself, but rather in its bilinear combination summed over 4; = +1/2 and 4, = +1/2.

Therefore nothing essential changes if we perform a unitary transformation on the index 4.
Thus we may replace cverywhere G,;, by

1
Gizs1 = __(Gv13=%iin13=-%)$ (3.6)

2

introducing, for convenience, an integer index A. It is easy to check directly from Egs
(2.4-2.6) that

G, = e(~ "G, _,, (3.7)
which after transformation (3.6) becomes
G_v)' = l&(—l)val. (3.8)

Now, using the above equations we can rewrite Eq. (2.3) in the form

frn= Y 22741 [(cos Mg cos vydii(9)—sin Me sin vydinA(9))

J,v>0,M>0

jn= JLLj
x Z hJMLi{i" l(s’ ta W’ sl, SZ)GM J(Sl’ sZ’ W)
Lij

—i(sin Mg cos vydag(9) +cos M sin vypda, (9)

x Y hpInT TR s, 1, W sy, 5)G (s 550 W), (3.9)

Lij
where we have introduced
dIFN8) = (@ (9)+e(—1)dl_(8) for v > 0. (3.10)

Note that the functions defined by Eq. (3.10) are complex as (—1)* = exp (inv) with half-
integer v.-Formula (3.9), although longer than Eq. (2.3), is much more convenient for
practical calculations.
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4. Density matrices and likelihood function

We discuss now the structure of the partial waves hyf (s, t, W, s,, 5,) defined in
Eq. (2.3). In the Illinois partial wave program (for m-son dissociation) one assumss
that the function 4 can be factorized (cf. Hansen et al. 1974). A similar assumption can
be also made for the baryon dissociation, namely

M (s, t, W, s,) = CTM%(s, 1, W)Tyi (s, t, W)B'(W, s,) 4.1

for any coupling: 1-3 (n=2), 2-3 (n=1) or 1-2 (n = 3).

The first factor C in Eq. (4.1) is assumed not to depend on 1,, M or 5 and is deter-
mined by fitting the data. Its modulus squared |C|? can be interpreted as the branching
ratio in the decay of the three particle system of definite spin J and parity P = (—1)F*!
into the states of different L, I, j or n. The bilinear combination of T forms the reduced
density matrix (the full density matrix is the bilinear combination of entire h)

O (s, . W) =Y Tt BGs, 1, WYT252(s, t, W)* 4.2)
)-u

which is fitted by the PWA program?. This is the density matrix of the state J*, describing
its possible interferences with other J” states.

The last factor B in Eq. (4.1) represents a parametrisation of the dependence of the
amplitude on the Dalitz plot variables s,, based on the two-step decay picture. Thus B
is usually taken as the Breit-Wigner function centred at a mass m,, with appropriate
centrifugal barrier factors

PV, 5,)4'(sy)

B, = 4.3
(W, 50) s,—ma—imyI'(s,) (43)

or a phase-shift parametrisation of the two-particle subsystem
. 1 .
B'(W, s,) = Y PH(W, 5,) (n(s,)e* ™ = 1). 4.4
i

An important assumption made in the parametrisation (4.1) is that the whole depen-
dence of the amplitude 4 on the Dalitz-plot variables s, s, is carried by B. In other words,
neither the coefficients C nor the reduced density matrix ¢ depend on s,, s,. This assump-
tion could be verified by modifying the Illinois PWA program to get coefficients C and
density matrices p separately for various regions of the Dalitz plot. Such a check, however,
seems to be difficult at typical statistics.

The remarkable fact is that & does not depend on 13, the helicity of the final proton.
In fact, from Egs (2.3-2.4) we see that the function G “converts™ 4, into v which in turn
is “converted” by the D-function in Eq. (2.3) into M. Therefore the coefficients # in the
partial wave expansion (2.3) depend only on M.

We have reached the point where all the symbols in Eq. (2.3) (or better, in Eq. (3.9))
have been explained. Now all the functions are known, except for C in Eq. (4.1) and ¢

2 Actually the Illinois program fits the complex conjugate of g.
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in Eq. (4.2) which are fitted by the program. The fitting is done by maximizing the rele-
vant part of the likelihood function (cf. Hansen et al. 1974)

Nevts

L = _Z In U(Ti) _Nevts I O'(T)A(‘L')dl', (45)

where the summation runs over N,,,, available experimental events, 1 is the 7-dimensional

phase space (¢, W, 5, 52, @, 9, 7), A(1) is the acceptance function for the experiment and
finally

(1) = zz,t: xifza)dlz (4.6)

is the cross section calculated from the amplitude (3.9) or (2.3).
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tality. I would like to thank Drs V. Chaloupka, J. D. Hansen, G. T. Jones, R. Klanner,
G. Otter, G. Rudolph, P. Schmid, D. Sotiriou, and K. Zalewski for helpful discussions.
I am also indebted to Professor A. Biatas, Professor N. Schmitz, Dr A. Eskreys and Dr H.
Franz from Max-Planck Institute in Munich and to Professor R. Van der Walle from
Nijmegen for their interest and encouragement,

APPENDIX A

We present here formulae for momenta and angles in the three particle system, as
shown in Fig. 1. In the following (i, j, k) is any cyclic permutation of the numbers (1, 2, 3).
All the quantites are expressed by the squared effective masses of two-particle subsystems

5 = (Pj+Pk)2~ (A1)

First of all, the effective mass W of all three particles is
W2 = s, +5,+5;—m>—m%—m2. (A2)
The momenta of particles in the (1, 2, 3) cms p; are
pi = MW2, s, m3)IQW) {A3)
with
Aa, b, ¢) = (a+b~c)*—4ab. (A
The momentum ¢; of particle j in the (j, k) cms is
i = s, mj, mp)i2 {/s). (A3)

Now all the angles drawn in Fig. 1 can be expressed in terms of quantities (Al — A5).
We begin with the angles 3 and y. These angles are by definition positive and not greater
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than n. Therefore to determine them it is enough to use the formulae for cosines

cos 9; = (pf — pi — pDI2p;p), (A6}
‘/5_: 2 2 2 2
Cos x; = m(sk—sj"(mj_mk)(w —m;)/sy). (A7)

The most complicated are formulae for cos o; and cos «,. The sines of these angles are
also positive. The formula for cos «; is

m3

cosay = — —= [(W2=s;—m3) (s, —m3—m3)mi = 2(s; + mi—m?)],  (A8)
4Wpiq, ‘/31

and the formula for cos a, is obtained from Eq. (A8) by interchanging everywhere indices
1 and 2.

APPENDIX B

We quote here the properties of the eigenstates of the reflection operator Y in the
x—z plane (cf. Bohr 1959)

Y = e ™1, (B
where J, is the generator of the rotations around the y-axis and I is the parity operator.
When acting on helicity states |J, M ) the ¥ operator gives (cf. Jacob and Wick 1959)

YIJ, My = P(=1)""™J, — M, (B2)

where P is the eigenvalue of the parity operator I1. We define the eigenstates of Y as

1

AY
with ¢ = P(—1)"** which may be interpreted as the naturality of the produced state,
and 7 = +1. Because in our case both J and M are half-integer, note that (—1)™ is a short-
hand for exp (inM) and should be carefully distinguished from (— 1™ = —(—1)". Then
it is easy to check that

Y|J,M,n) = inlJ, M, ). (B4)

The density matrix is diagonal in 7, i. ¢. it decomposes into two disjoint matrices.
This reduces the number of relations between nonzero elements of the matrix and is,
in fact, the main reason of our using the eigenstates of Y. The density matrix with definite
n may be expressed in terms of ordinary helicity density matrix elements

JiJ JJ —My JiJ 5
Q.";)lezvf = QA;X;42+7,82(—1) ZQA'IX;EMZ (BD)

where &, = P,(—1)"2** and M,, M, > 0.



406

We give here two examples of relation (B5).

a. J,=J,=12,P, =P

The ordinary helicity matrix is

. N\
11 101-1
; B6
("@1—1 @11 ) (B6)
and is the Y-representation it decomposes into two 1x 1 matrices
011~ 01—y for nP =1 (B7)
and
011+01-y for nP = —1. (B8)

b. J1=,J2=3/2, P2=P

The helicity density matrix is usually written in the form (cf. Gottfried and Jackson
1964)

@33 031 03-1 i@s-—s\

9*:1 011 i01-1 @;—*1

03-1 —i01-1 @11 —031 (B9)
—ig3-3 Q3-1 —031 033

and may be rewritten as the following two 2 x 2 matrices (for P = +1 and for P = —1)
033 +nPo3_3, 931+i'IP93—1)

. . B10

<Q;1_”IP9:—1, @11—1Pey-1 ( )
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