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Assuming O(5) symmetry (pairing scheme of states for the system of protons and
neutrons), the formulas for the probability of Gamov-Teller transition, the magnetic moment,
and the probability of the (M) transition were obtained as well as the relations between
them. The comparison with the experimental data shows, except for few cases, quite good
agreement in the region of light and very light nuclei.

1. Introduction

The symmetry properties of the system of nucleons, if properly foreseen, may reveal
very hidden relations between quite different aspects of the system. The comparison of
these relations with the actual experimental data can prove or disprove the symmetries
assumed.

In what follows, we applied O(5) (orthogonal group) symmetry to the nucleons in
nuclei to search for the probabiliiies of the Gamov-Teller transitions, the magnetic mo-
ments, and the relation between them. Moreover, in the Appendix, a similar treatment
is given for the relation between the magnetic dipole and Gamov-Teller transitions.

2. Mathematical preliminaries

We take ten operators [1-4] as the generators of O(5) orthogonal group
ATMp) =} Y, G myEmyAMp) (=1 7"0,0] s

AMp) = [A"(MD)]",
7,‘}' = Za;'"l/zajm—}.]Z’ T_ = [T+]+,

1/2— +
TO = % Z (—1) / mlajmmlajmmp

mmy

Hy =3[ Y sjmm— 2+ 1] = F[N=(2j+1)], (1

minty
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where My = —1,0, +1 and m,, m, = } for protons and —4 for neutrons. T, T_, T,
are the ordinary isospin operators and N is the number of particles operator while H,
and T, are the weight operators. A+ is the pair creation operator with J =0, 7T = 1.
The state

T = t, Mp; M) (2

of v nucleons on the j level coupled to the total J and the total T = ¢, so called reduced
isotopic spin, is, by definition, the state of seniority v if it does not comprise the pairs of
nucleons coupled to J =0 and T = 1. The same is given by the condition

AM7T) |J'T = t, M3 IMY =0 3)

for M7 = —1,0, +1. The irreducible representation (IR) of O(5) consists of all the
states

[ATMENATMP) ... AT MDYz, 15T = 1, Mg IMD, 4

The states (4) are characterized by the same seniority » and the reduced isotopic spin ¢.
Instead of (vt), one takes usually the numbers {(w,w,) to mark the IR of O(5) with

w; =4Zj+1-v), ;=1 (5)

To factorize the states within (@, w,) one need four quantum numbers. Three of them
are of a precise physical meaning. They are H,;, T and T,. The fourth physical quantum
number is, so far, unkown [5-10]. Fortunately, the physically important representations
do not need the fourth number.

In general, the states of IR in O(5) scheme read

(@0)H fTMy), ©

where § is the fourth number. To fully factorize the states on the j-level one must add
Sp (2j+1) group numbers which comprise also the (JM). Then we get the states

{w,w)H  BTM oM, N

where o means the set of additional number needed for the classification within Sp (2j+1).
The irreducible tensor operator in O(5) scheme is denoted by

AT ()
where the quantum numbers (H,8TM;) take on all of the values allowed by the IR with

(0 w2).
It can be shown that the operators

U(UM; TM;) = 2 (jmyjmz|IM) (3 m; § m4iTMT)a;n,m3aj—mz-m4 )]

mymymamg
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used in the further part of the work have a simple tensor character in O(5). Namely
J2U(M; TMy) = Tt} for J — even,
~J2U(M; 1My = TS5, for J — odd,
V2 U(IM;00) = TGes, for J — odd, (10)

where the quantum number § is not needed for the simple representations.
The sum over particles of one-particle operator of rank k in the angular momentum
space and of rank T in the isospin space

IIM=

f(t)qMT (11)

F‘IM’I = ;

can also be expressed as

FqMT = Z <]I’)12 m4[qu—p|.]m1 2 nl3>a1m2m4a1m1M3 (12)
mymamams

After the transformations and with the help of the Wigner-Eckart theorem one can
obtain

Farr = {Qk+1D) QT+D} 2 3 1)) $>U(kq; TMy), (13)

where the reduced matrix element is twice reduced: in the angular momentum space and
in the isospin space.

On the other hand, the matrix element of the O(5) tensor operator can be expressed
as follows.

{w,wy)H BTM Iflmlﬁwrz)u T‘(wiwé)H;ﬁlT,M}>
= Z (0 yo)H BT M7; (wf0)HY B T"My (0,0,)H,BTM 1),
)
x (@) [T (@) 05) g (14)

where the index ¢ distinguishes the same representations (w;w,) which appear in the

rr 1

reduction of the Kronecker product (w]w3) ® (wiw5). The Wigner coefficients

(0j03)H B'T'My; (o) 0 )HY BT M7 (w0,0,)H BT M7) (15)
are defined in the usual way
i[(0)03) (0 0})] (w,0,)0; H BTM1)

= ) (@) H BT M7 ; (0 03)HY B T" My (w,0,)H fTMy),

H (B'T'M' TH §"T"'M"p

X [(@wy)H B T'Mz) (i 0y)HY BT M7). (16)



412

The Wigner coefficients can be also written as the product of the Clebsch-Gordan isospin
coefficients and the “‘reduced” Wigner coefficients:

(@ \0)H B T'MT; (0 w3)H; BT M7 (0,0,)H BTM7),
= (T'M;T"M7 | TMp) x (0 \0)H 1 B'T'; (0 y)HYB'T" |(w,0,)H , BT),. an
The reduced Wigner coefficients of O(5), which will be needed, were tabulated in the pa-
pers [6, 8, 12].

3. The Gamov-Teller transition

The probability of the Gamov-Teller # transition, for which 4J = +1, 0, is given
by [13]
B(J T'My = J'T'MY) =
=2g2r Y. |J'M'T'MYY o, (k)yre (k) I M T My 2, (18)
k

2
where

6:}:1 = i\/E (axio-y)9 O = Gz’ Ti = :F\//% (Txi:ty)
are the isospin one-particle tensor operators and the spin (Pauli) tensor operators of the
rank 1 in both spaces. The sum over k is the sum over particles of the system. 7,, operator
is responsible for f+ disintegration and 7_, — for B~ disintegration.
Following (13) we get
BUJ'T'MY — J'T"M7) = 5 gorlK} It $>*Kj ol DI
x Y KJ'M'T"M7UQu; W) M T Mp)|?
uM
= 4 g&r20" + D7l T "My [UQL; ) |0 T M )i, (19)

where v = +1.
Now, assuming that the nuclear states are of O(5) states (7) we get

BL(@\w)H, ' T' My S — (o 0)H, BT My
=4 85121 + )7 ol
X [{(@y @)H B T"Mya"J" jU(L; 1) (0 0)H S T My J'y % (20)
We can make, in a standard method for O(5), the reduction from the state with n-particles

(H, = n/2—(j+1)) to the state of p-particles (¢-seniority number) making use of the tensor
character of U(l; 1v) (see (10)). We get

(@} OH,B T "M J"|U(1; 1) (@0 H B T M3y
(@1@)H,BT'; (10001 (@] w;)H B T")

= QT"+1)” V¥ (T'My1v|T" MY - o
G D M M) T (1001 i 0T

x (@) @)HT o' J" U1 (@) 0)H;T'a "D, (21)
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where H; = $[2—(j+1%), ¢ = max (v/,v"”), and U(1; 1) is reduced in O; (3)®QO0,(3).
From the equations (20) and (21) we get the final general form for the transition proba-
bility
B{(w}0)H,f T'M7ad' ~ (@ 0))H BT "Mya"J"]
= 3 85121+ D)7T'QT" + D)7 ol iH(T' My T M7)?
y (0 1w)H,f'T’; (10)01 (0 w))H, ' T"')
(01 0)H;T’; (10)01 (0} 03)H;T"')?
x (@ o)HT"a"J" |U(L; 1) (0 @) H;T'o'J |2 (22)

The selecting rule, imposed on the transition (@} w3) — (wyw5), is given by the Kronecker
product
(@1, 02)Q(1, 0) = (0,0,)D (@, +1, 0)D(0; — 1, 0,)D(wy, @, + (@, 0, —1).
(23)
Taking the states with the senic;rity v < 2 only, we obtain, with the help of (5) and (23),

1 e

the following allowed transitions (w)w3) - (w{w5) on the j-level:.
U D=0 Div=1->1t=}-44= 0,
(GJ-340->((—-40:v=2-21r=0-047= 0,
(G-30-(+%0:0=2-0r=0-04J= -1,
(J-3L0->(—-4+Div=2-2t=0->14J= +1,
(G-3LD->((-4LDiv=2-221t=1->514J= 0. (24)

For v =1 we have J' = J" = j, T' = T" = }; the reduced matrix element in (22)
is equal to 3 and

(e (13)s)

Then from (22) we get

2 25+1
= . - x
JU+1)

[j(j+1)—l(l+1)+ 3] . (25)

B[(j, DH,T'Mzj - (j, HH,T"M7j]

3., Jj+2 3P
= - G+ D=1+ 1)+ = | (T'My1v|T"M2)?
> gGTj(j+1)2 X |:J(J+ )=+ 1D)+ 4:| ( r1v| )
x((j, DH,T'; (10)01](j, HH,T")?, (26)

in which we have used the value of the Wigner coefficient

'1>H '1'1001 'lH— ‘l_j_+—I 27
<Js£ IC_J)E’( ) ” J’E 1_—.]’5 = m ( )
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For the last four transitions with v = 2 in (24), the reduced matrix element is

CHST"J" | U(L; DIHT' IS

—6[Q2) +1) (2J"+1) QT +1) QT" +1)]"/* {

J/ JI/ 1 71‘-'/ Tl/ 1
L . 28
JjoJ JH% 3 %} (28)
Then we get

BL(@i@)H B T' M’ — (@ 0)H 8T My
, QG+DQ@IT+D) QT +1)
= 12gGT

3 2
— JU+H -+ D+ ~]
JG+1) [ 4
J/Julz T/T//lz
x(T'Myply|T"MP* " 7,
(T'Mz1v] T){JJJ}{%%é}
8 (0 0)H (B'T’; (10)01 (0 w;)H ' T")?
(wjw2)H,T; (10)01 (] w3

102 )HET”)Z ’ 29)
where © = 2 and H; = —j+3% (see (1)) for all the cases.

B[(w{ o

)Hlﬁ//TIIMT'!aIIJ!I - (wiwé)HlﬁlTlM}alJl]
2J’+1 ’ ’ 14 4 !
= 27 41 * B(wywy)H,f'T'My

By the symmetry relations of the Wigner and Clebsch-Gordan coefficients the formula
for the reversed transition is also obtained:

a/J, — (wlll wlzl)HlﬂflT/IMIT{allJll]' (30)
4. Log ft
In general, the probability of an allowed f transition is composed of the Gamov-

Teller and Fermi transitions. For the last one we have the simple formula

A[JTM; —» JTM+1] = g2lKUMTMy+1|T, |JMTM >}
= g [T(T+1)—- MM+ 1)]? (31)
as the transition operator is the tensor only in O.(3) space.
The non-relativistic theory of B transition gives the ft:

- 32
A+RB (32)
where I' is constant, R = g2,/g& and

B = Blgar; A= Algt

are given by (26), (29) and (31). The values I' and R are determined by the experimental
values for the f disintegration of the free neutron. They are (within 5% error):

I = (6.3+0.3) - 10-3; R = 1.39+0.04.

(33)
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TABLE 1

The theoretical values of log f7 assuming O(5) nuclear states, and experimental ones taken from [11} for
nuclei with 4 < 45

States log ft

nlj - Transitions
level initial final (0102) = (0] 0)) theor. experim

(JTMT) (JTMT) ’
1ps)2 SHe (0 1 1) °Li (1 0 0) (2,0) = (1,0) 3.13 2.95
1p3/2 Be 31-1 oG 3 % GP-GP 3.27 3.3
1ps/2 SLi 2 1 1) Be 2 0 0) a,1)-,1) 3.53 5.6
1ps/2 8Be (2 1 —1) Be 2 0 O) (1,1 3.53 5.6
1ps)2 5B (2 1-1) Be 2 1 0 41D ->a,1) 3.50 2.9
by | LG 3D | B GE H | GH-G3 4.00 55
1ps;2 °C 0 1-1) | B (1 0 0) (2,0) - (1,0) 3.13 3.0
iy | UC G3-D | MB G4 D | GhH-ogh | 33 36
iz | BN di-h | v Gt b | dhodh | e 365
1p1/2 Y0 $+-H | N &% 3 1H-3 H 3.64 3.65
Mga | VF Gi-b | V0 3 b | Gh-GH | 336
1ds)2 BEF (1 0 0 30 © 1 1) 2,0) - (3,0 3.68 3.62
s | PMEG3-D | "N G3-D | GHoGgH | 32 29
1ds/2 %A1 4 1 -1) | *Mg @ 1 0) @n-@n 3.48 3.4
e | *Na33 P | PMeGE D | GH-GPH | 53
1ds;, %8 (0 1—1) | Al (1 0 0) (3,0 - 2.0 3.20 3.35
dee | VSUGE-DH | TALGE D | GhH-GhH | 30 3.50
| PP GR-bh | PSiGE b | dbogdh | e 37
2ap | S Gi-b | P G3 D | Gh-odDh | 08 37
dsp | €L G- | S G3 D | @H-GD 3.53 37
1ds #¥CL B0 0 M 21 D (1,0 >, 1) 4.27 4.9
1ds;, BAr (0 1—1) | *Cl (1 0 0 2,0) - (1,0) 3.52 5.2
e | S GE P | VA GE D | GHoGH | s 50
sy | PAr G 3-d | PCA G % TG D 3.64 3.8
1ds/; K @2 1-1) %Ar 2 1 0) a,n -a,n 35 3.6
s | YAr G3 b | A 3% 3 3P-GD 445 50
s, | K G E-D | YAr G i % DG 3.64 36
s | YCa G3-H | UK G3-H | @h-gh | 4 50
1d3/2 BK (30 0) | ®FAr 21 1 (1,00 > 1,1 4.27 5.0
ldy | ®Ca G 3-D | K G5 D | §H-GDP 3.53 36
e | S Gi-D | “GGi b| Ghogh | 35
oy | ¥ G+ b |G 3 H| GH-GD 3.90 >1
1f7), T (3 1 -4 s (2 3 3 Ih-ZD 3.61 3.5
e | *Ti 21 D | *sc (2 3 2 1@ 4.63 4.5
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In Table I the experimental and theoretical values of log ft are given for 34 disintegra-
tions of light nuclei with 4 < 45. For more than half of the disintegrations the accuracy
of the theoretical values is quite satisfactory, for one fourth — fairly good, and for some
10 decays the agreement is rather poor. The comparison may be used as a check of how
good is O(5) symmetry, in real nuclei. Moreover, the discrepancies of the experimental
and theoretical results may be also used to determine the mixing configurations in O(5)
symmetry numbers.

5. The relation between the magnetic moments and the probabilities of the Gamov-Teller
transition

The dipole magnetic moment operator for the simple system of protons and neutrons
reads

= LA+ 10t (=101 [+ 0wy}
=130+ a Lol - RO +hel’), (34)

where a = p,+u,—%; b = p,—p,—3%, and 19,70, 10, 9 are the isospin, the spin

(Pauli), the orbital momentum, and the total angular momentum operators for the i-th

particle. In second quantization, using (9) operators, we can express j, as

- 1 o

i = [1 ta llellj>
ViG+D G+

1., ... -
} J.+ \/6 LTI+ llelii>]U(10; 10),  (35)

where

J, = Z mlal-':n:rmajmtmz (36)

mimz

is the z-component of the total angular momentum of a system.
To calculate the matrix element of /i, operator one only needs to calculate the matrix
element

(IM = JIU(1, 0; 10)|JM = J)
with the help of O(5) tensor character (1, 0). Performing the reduction in the whole O(5)

we get in (w;w,) basis

1
> = pl(w,0)HBTM M = J] = 5[1“ ’ \/(%‘”f;”é? +1)} 7
J J

J

VIU+1) (I +1)

x(TM10{TM 1) ((wyw,)H, BT ; (10)01 [i(0,0,)H BT (@, 0)0d [[U(13) (@ 0,)aT ).
37

— LI D<ol
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On the other hand, starting with (20) we can perform further reduction in O(¢5) and get
Bl(0,0,)H B T'MaJ - (0,0,)H BT MyoJ]
= 1 QI+ D)Ko l1A(T My T M7)?
x (@) H, B T'; (10)01 |((w,0,)H, B T")

X {(0,@,)ad [|U(13) (@ w,)0] Y. (38)

The elimination of the reduced matrix element of U operator in (37) and (38) is followed
by the final relation between B and u:

J+1 [20+Pu—(+31+a)}? (T'M7v|T" " My)?
2J A+D*A+3+DH)? (TM10|TM)?
(w,0)H BT’ ; (10)01 |[(,0,)H, B T")?
(w,0)H BT ; (10)01 [(w,w,)H  BT)*

where the signs +a are for j = I+4 couplings, and v = 1 is for f+ and p- transitions,
respectively. Substituting in (39):

T'=T'=T=4 §=p=p H=H

B =

(39

we get the Goeppert-Mayer and Jensen relation [14] for mirror nuclei

_J+1 [20+Pu—(+ita)]?
J I+ +3+b)°

Relation (39) is then the generalization of the Goeppert-Mayer and Jensen formulae (40).
1t connects the magnetic moment of nuclei in the state belonging to a given irreducible
representation (w; w,) of O(5) with the probabilities of the Gamov-Teller transition be-
tween the different states of the same representation (w; w,).

B

(40)

TABLE I1

The example of the relation between the probabilities of the Gamov-Teller transitions and magnetic mo-
ments. The similar values of log ft were obtained from quite different (column 2) magnetic moments.
The nuclear states were considered as the states (w, ;) = (—;’- %) of O(5) representation

o)=L 1=2j=3%J=3

log f2
Nucleus Magnetic Transitions loul £
(H\TM7) moments | (H,TMy) — (H,TMy) | calcul. from [39] exp.
with exp. u

3ClL (-1 1 1 0.8218 358 — 35Cl 5.20
" -33d | 10 |33 P-hid 465
Ar 3% 0.95 or 4.61 5.0
G 33 0.6841 37Ca - K 6.40
YK G111 0.3914 d2-H-4&1-DH 4.99
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The validity of O(5) symmetry can be then checked by (39). Several nuclei belonging
to a given (w, w,) supply different magnetic moments which can be put in (39) to reproduce
B transition probability between the two nuclei of the same (w; ;) (see Table II). It is
seen, for example, from Table II that the magnetic moments differing by the factor
2.5(3%S; 3°K) can reproduce within O(5) symmetry almost the same B as it ought to be.

APPENDIX

Magnetic dipole and the Gamov-Teller transitions

The probability of L-pole magnetic transition is given by [I15]:

svny = ()T Moy e
(ML) = e (I M, oMy | (V' Ypp):
P

MM, i

1 (i T ! pat L =o |l .
X {[E (:un+llp)a( )+ m l( ):| +2Tg) [5 (#n_#p)a( - E:i l( )]} EJIMTTIM’I‘1>!2-

(1A)

The transition operator in (1A) consists of two parts: isoscalar and isovector. The relative
contribution of the first part to the second is of the order:

(”n+1up_% z 0.38 2
Mn T2 _ (22} < 0.082.
(:un_y'p'i'% 2 4.20

In what follows we take only the isovector part of the (1A) and writing it for (M1) transi-
tion in second quantization form we get

eh
2m

1 2
B(M1) = §;< > Q7+ (o — ) llo 1>+ i}

o€

X KJ2 ToMp, |UQL; 10) 1, Ty M7, > (24)

U(1M; 10) operator is of the type (10): 7¢\3 in O(5). The Wigner-Eckart theorem for
O(5) gives then

1 h\?
BMI) = 8_n-( - ) 271+ 1) HTM 10 T Mr ) (1, — 1) <Jllo 17> + i1

2m_c

3
x ((wyw3)H B, T, ; (10)01 (0] 03)H B, Tz)z

x (@ w3)ayd ,[{U(L3) §§(w’lw;)a1J1)]2. (3A)
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Comparing it with (38) for B, for (0w, J;) and (@} w5, J,) states we get the relation

BM1) 3 eh \? , (T\M; 101T,M )
= —2——— : (;"p _#n) T
mpc

(T'MyiviT " MY)?
y {1 . 1 . ‘<}';1”11‘> }2 . (0jw3)H B, Ty; (10)01 H(‘U'xlwlzl)Hxﬁsz)z

ty—tn jlioli> ) (@j@DH BT (10)01 (wiwy)H /T )
Relation (4A), valid for O(5) symmetry, is taken for two pairs of transition nuclei for
which (@) w2, J,) quantum numbers are the same for initial states in both transitions
and (@] w3 x,J,) are common for final states. Relation (4A) is analogical to the generalized
Goeppert-Mayer and Jensen formula (39).

Substituting in (4A):
H, =H,, B=p, B=p"3 T,=T, T,=T"

we get the Kurath [16] relation:

B(M1) 3 eh 2( )_(T’MT,IOiT”MTz)Z

bl M TV T M)

B 8

(4A)

2m.c

P

B 8n

!
!t

S e Y 2
1 D } ‘ (54)

(#p_/'ln) . <J'!0-r.]>
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