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By J. DABROWSKI
Institute for Nuclear Research, Warsaw*
{ Received December 4, 1974)

The effect of 13 conversion on the binding energy, B4, of 1H and {He is calculated
in the “hyperon - rigid 3N core” model. For a /AN potential derived from }He, we obtain
1.6 MeV for the excitation energy of the J = 1 state, and a very small negative contribu-
tion to B4(jHe) - B4(iH) due to Coulomb interaction of X'+ and X,

1. Introduction

The threshold energy for AX conversion in the AN system, AN — XN, is only about
78 MeV. Consequently, one expects AX conversion to be of importance in hypernuclei,
as was suggested originally by Bodmer [1]. Although no detailed calculations of binding
energies of hypernuclei, which would include AZX conversion, have been performed so
far, all the existing approximate calculations and estimates show indeed that by taking
into account AZX conversion one may expect to resolve the difficulties encountered in
attempting to correlate the measured hypernuclear binding energies and the hyperon-
-nucleon scattering data (see, ¢. g., [2, 3] where further references are given).

in the present paper, we discuss the effects of AX conversion in the isodoublet pair
of hypernuclei $H —3He. From the qualitative discussion of [3], based on a perturbative
treatment of the A2 coupling, we expect the A2 coupling to increase the excitation energy
inthe J = 1 state compared to the J = 0 ground state. So far, the only quantitative discus-
sion of AX coupling in $H —*He is that by Gibson, Goldberg, and Weiss [4], who have
assumed both hypernuclei to consist of a rigid 4 = 3 nucleus plus the hyperon. The
simplicity of this “rigid nuclear core + hyperon™ model applied in [4] allows one to find
very easily the energies of the J = 0 and J = 1 states in H ~%He, and also the contribu-
tion to 48 = B (‘{He)— B ,({H) which results from AZX coupling. Both quantities are impor-
tant; the difference in the energies of the / = 0 and J = 1 states may be compared directly
with the energy of the observed hypernuciear y-transition [5], and the magnitude of the
positive difference 4B in the A binding encrgies in {He and %H is crucial in determining
the charge-symmetry-breaking (CSB) component of the AN interaction. Unfortunately,
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the spin-isospin average values of hyperon-nucleon interactions have been calculated
incorrectly in [4] (see [6, 7]), and consequently, we cannot draw any conclusions concern-
ing the effects of AX conversion in $H— %He from the results obtained in [4].

In the present paper, we calculate the cnergies of the J = 0 and J = | states in
4H—4He and the effect of AZ conversion on 4B in the frame of the “rigid nuclear core
-+ hyperon™ model of [4]. In Sect. 2, we present the Schroedinger equation for the motion
of the hyperon in the field of the rigid nuclear core. The expression for 4B, which follows
from the model applied, is presented in Sect. 3. The input parameters of our calculations
and the results are presented and discussed in Sect. 4. The spin-isospin functions of 4H —4He
and the spin-isospin average values of the hyperon-nucleon interaction are presented in
Appendix 1. Details of our numerical procedure are given in Appendix 2.

2. The rigid nuclear core model of $H—%He

According to the rigid nuclear core model described in [4], the “H hypernucleus
(with charge symmetric interactions and with Coulomb interaction being neglected, the
treatment of 4He is analogous) is assumed to consist of a A particle interacting with the
inert °H core. The AL coupling introduces into the 4H state a Z channel admixture which
again is assumed to consist of a Z° (Z-) particle interacting with an inert *H (3He) core.
Both core nuclei, >H and *He, are assumed to have the same structure (they differ only
by the third component of the isospin). These assumptions allow us to write the 4 and »
channel components of the 4H system in a state with total spin J (and total isospin T = 1/2),
and with the hyperon in the S state, in the form

Wi = (@4)An DRy, P = (U] /AR IR, (2.1)

where dif,m(r) describes the relative motion of the (Z) particle and the core nucleus;
R is the normalized intrinsic spatial function of the core nucleus, symmetric in the coordi-
ates of the three nucleons, and xf,m are spin-isospin functions of all four particles, which
nare chosen to yield a (J, T') values of (0, 1/2) and (1, 1/2).

Ansatz (2.1) leads to two coupled Schroedinger equations for @ and &1

— (0?20 )P B(r)jdi? + Vi (DL + Vi ()i = E'dl(n),
~ (W2 2u)d>BYr)jdr? + Vi(NDUr) + V(DY) = (ET— ) di(r), (2.2)

where 4 = M, —M,, py = 3MyM,/3My+ My) (Y stands for the hyperon which may
be A or X). The single particle elastic A(Z) potentials ¥’ ((V7y) and the AX coupling poten-
tials V3, = ¥y, are obtained from the two-body YN interaction potentials by folding
the two-body potentials into the nucleon density distribution o(r') of the core nucleus:

Vir) = [ de' o(r)Wipn(x), ¥ = r—+, (2.3)

Vien(x) = (i Ve n()ize s (2.4)
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where Vy.yy is the two-body ¥N — Y’N interaction (which is an operator in the nucleon
and hyperon spin and isospin space) between any one of the three core nucleons and
the hyperon, and ¢ is normalized according to f[dr’ o(r’) = 3.

The explicit form of the spin-isospin functions yy, and expressions for Vj.,y are
given in Appendix 1.

3. The difference between B,(“He) and B,(4H)

With charge symmetric YN interaction and without Coulomb forces, the energies £
are the same for both hypernuclei: $He and $H (here, for the sake of simplicity, we do not
indicate explicitly the value of J). However, the measured A binding energies in the two
hypernuclei (i. e., the separation energies B, in the J = 0 ground state) differ by the posi-
tive quantity

(4B}, = B,(:He)— B,(4H) = 0.3 MeV. (3.1)

As is well known [8-10], consideration of Coulomb effects in the one-channel approach
(i. e., consideration of differences in the rms radii of the nucleon distributions in the core
nuclei due to Coulomb repulsion in *He, and consideration of additional Coulomb energy
associated with compression of the nucleon core in $He) leads to a negative value of
{4B}cou = 4Bc. To account for the total difference {4B},,— 4B, one introduces a CSB
component into the AN interaction with the strength adjusted as to reproduce the observed
value of 4B, Eq. (3.1).

In this connection, it is important to estimate the contribution to 4B, which arises
from the presence of the Z component in the wave function of 4He and §H. Such an estimate
has been made in [4]. We shall briefly outline this estimate which simply consists of calcu-
lating 4B in the rigid nuclear core model. Namely, in this model, the whole effect of
Coulomb interaction on B, arises from the presence of the charged X hyperons.

Let us write Ansatz (2.1) in the form

1 2
GHe) = 14> Hed + N 2% Hey — \/~3~ 2T HD,
Nk

SHY = AYPH)— —}—3: 29 PHy + ﬁ 27 PHey,; (3.2)
hY

which shows explicitly the isospin structure of the yy functions (it is understood that the
hyperon and nuclear core states in (3.2) are coupled to the desired J value). The probabili-
ties of the A and X components arce

Py= KAAY? = [drd%(r) = 1 =Py,

Py = [(ZO2%)2 = ((EHEDP = [ dred(n), (3.3)



456

We treat Coulomb interaction as a perturbation whose effect may be calculated with
the wave functions (3.2). Coulomb interaction has two effects:
(i) It changes the energy of the 3He core nucleus by E.(*He) = 0.764 MeV.
(i) It introduces Coulomb energy of ¥~ hyperon present in §H,
, [drdr’

E(Z7) = =& | —5 ®3(oc(*He, 1')/[r—r, (34)
drr

and of the X+ hyperon present in %He,
, {drdr’ - ,
E(Z") = ¢ j‘% (ocCH, M)ir=r, (3.5)
4rr
where oc is the charge density of *He and *H, respectively, normalized according to
fdr' odr') = Z.

The total contributions of Coulomb interaction to the energies of $H and %He are
then:

Ec(3H) = § PyE(CHe)+3 E«(Z7),
E((§He) = (P, +} PYECHO) +5 E(Z™). (3.6)
Since
B,(iH) = —[EGH)—-ECH)], B,(He) = —[E({He)~ ECHe)], (3.7

we get for the Coulomb contribution to AB,

4 2 drdr’

ABc = _ P,E.CHe)- . & J-—'*z- ®3(r) LocCH, )+ ocCHe, 1)} ir =1 (3.8)
3 3 4nr

Notice that our expression for 48, differs in sign from the expression given in [4].

Because of this difference, we found it necessary to present herc the steps leading to
Eq. (3.8).

4. Results and discussion

In our calculations, we have used the simple, pure attractive, spin independent two-
-body AN potential of a Gaussian form, applied in [4]:

i) = Vi) = V(x) = = Vo exp [=(x/b)*], 4.1)

with b = 1.05 fm, V, = 38.2 MeV. The value of b corresponds to the exchange of two
pions between A and N. To get the above value of ¥, one proceeds in the following way.
One assumes for 3He the model in which A is bound to a rigid o particle core. This model
implies a complete suppression of X channel due to isospin conservation. Within this
model, one adjusts ¥, so as to reproduce the experimental A separation energy for jHe,
3.1 MeV. Details of this procedure are given in [4].
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The nucleon density distribution o(r’) of the 4 = 3 core nucleus in $H—%He is
assumed to be Gaussian,

o(r'y = (3[n*? %) exp [ ('IB)’], (4.2)
where 8, according to [4], is obtained by taking an average value of the mas radia of 3He
and 3H:

B* =3 G [GCHY -]+ 5 DaCH) -1 43)
with the values:
re(CHe) = 1.84fm, r,(CH) = 1.70fm, r, = 0.8 fm, 4.4

for the charge radia of *He, 3H, and proton, respectively.
With the Gaussian shape of ¥ and g, one gets for the single particle potential ¥, = V,,,
Eq. (2.3),
Vaa(r) = —vg exp [—(r/0)*], 4.5)

where
v = 3Vp(bj0)®, o® = b%+p2 (4.6)

We assume here that AX coupling takes place only in the spin triplet state, as is sug-
gested by analysis of the Z—p — An reaction [11-13]. According to Eq. (A 1.8), we have
then

—~Ugexp[—(x/b)?] for J =0,
Vi) = @7
-3 Ugexp[—(x/b,)*] for J =1,

where the two-body AX coupling potential is assumed to have Gaussian shape and the
depth U,, connected with U, by:

Uy =1U, 4.8y

Notice that the sign of U, is irrelevant for determining E’, because Eqs (2.2) are invariant.
under the transformation Vi, — -V}, &1 > — 7.
With p given by Eq. (4.2), one gets for the single particle coupling potential

V.«{Z(r) = "ug €Xp [—(r/ax)z]’ anc = bi'{"ﬁz’ (4'9)
where
3U(b,Ja)?  for J =0,

up = (4.10):
Ug(b,Jo)®  for J = 1.

For b,, we take the value b, = 2b = 2.1 fm which corresponds to one pion exchange.
For comparison, the value b, = b is also considered. Since the effect of AX coupling on
E’ turns out to be more sensitive to the strength of the coupling potential ¥}y than to
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the strength of the elastic ZN potential ¥y, in most of the considered cases we put
Vi = 0,and adjust U, (by solving Eqs (2.2)) so as to reproduce the experimental A separa-
tion energy for 4H, 2.03 MeV. For comparison, we consider also the case of a non-vanish-
ing spin and isospin independent ZN potential:

I’}rm(x) = V):JXN(X) = W(x) = —W, exp [_(x/b)z]’ 4.11)

with the same range as the AN potential (4.1). For the single particle potential V;; we
have then

Ves(r) = —wo exp [—(r/0)’],  wo = 3Wo(b/a)*. (4.12)

For a given value of U, the value of W, is adjusted (by solving Eqs (2.2)) so as to reproduce
the experimental A separation energy for $H.

In calculating 4B, Eq. (3.8), the charge densities of 3He and 3H are assumed to be
Gaussian,

ocCHe, r) = 2/**Bi.) exp [~ (r/Bue)’],

ecCH, 1) = (n>?B) exp [~ (r/B)*], (4.13)
where By, and f;; are determined by the charge radia of He and 3H given in (4.4),
Bre = V3raCHE), By = i raCH). (4.14)

The results of the present calculations are shown in Table I. They differ from the
results of [4] in two respects. First, our values of U, (and W) are much bigger than the
values obtained in [4], although in both calculations they have been adjusted to B,(H%)
= 2 MeV. To have a direct comparison with {4], we have used the values U; = 15 MeV,

TABLE I
Results of the present calculations for ¥, = 38.2 MeV and for the indicated values of U, and W, which
give EJ=0 = —203 MeV. E* is the excitation energy of the J = 1 state. All energies are in MeV
by Up Wo J P3(%%) E* Be By
0 2.3 — —0.01 0.13
2b 16.5 0 1 0.2 1.63 —0.00, 0.01
60.9 0 0 23 — —0.02 0.12
{ 1 0.1 1.64 —0.00, 0.01
b 50.0 82.7 0 33 — —0.03 0.18
1 0.2 1.64 —0.00, 0.01

W, =77 MeV, and U, = 25 MeV, W, = 48 MeV, and have obtained (with b, = b)
for B, the values 0.4 and 0.5 MeV, and not the value 2 MeV quoted in [4]. Also, without
AZ coupling, we get B, =~ 0.3 MeV, whereas in [4] no bound state was found for this
case. To help to clarify the matter, details of our numerical procedure are given in Appen-
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dix 2. The second difference is that our calculated values of 4B are negative whereas
those calculated in [4] are positive. We believe that this difference is connected with the
difference in sign between our expression (3.8) and the corresponding expression (4) of
Ref. [4]. (The remaining obvious differences, connected with taking the proper spin-
-isospin average values of YN interactions, have been mentioned already in Sect. 1.)

As is seen from Table I, the results are very similar for the two ranges b, of the coupling
potential, and are not sensitive to the values of Uy, W, as long as they are adjusted to
the same value of E’=° Within our simplified model, we find:

(i) The probability of the admixed X in the J = 0 ground state of 4H —%4He is about
2-3%, and in the J = | excited state is very small (0.1-0.2%).

(i) The excitation energy E* of the J = 1 state is 1.6 MeV. In contradistinction to
estimates made within the one-channel approach (see, e. g., [14]), our simplified treatment
of the X channel gives an excitation energy which is bigger than the experimentally ob-
served value of 1.09 MeV [S].

(iii) The contribution 4B of the Coulomb interaction to 4B = B,(5He)—B,(4H),
which arises from the admixture of X+ and X-, is negative (1. e., it increases the amount
of the CSB component in AN interaction, required to reproduce the observed positive
value of 4B). However, the whole effect is very small for the J = 0 ground state (4B,
< —0.03 MeV), and completely negligible for the J = 1 excited state.

Within the present model, one may easily estimate the effect of a part of the breaking
of charge-symmetry, which arises from the ¥ mass differences. As indicated in [4], by
taking into account the mass differences of the Z triplet, one finds that the appropriate
value of 4 in Eqs (2.2) is given by:

2A4*4+14° =748 MeV  for §He,
4= 4.15)
247 +34° =80.1 MeV for 4H,

where 4% and A° are the ¥ — A and X°— A mass differences. By solving Eqgs (2.2) with
the values of 4 given in (4.15), one obtains different values of E/ = — B} for $He and 4H.
The resulting differences 4B, = B,(iHe)—B,(GH) for J = 0, 1 are shown in the last column
of Table 1. For the J = 0 ground state our calculated, positive values of 4B, account
for about half of the experimental value of 4B, Eq. (3.1), which is in qualitative agree-
ment with the early estimate of Ref. [8]. For the J = 1 excited state the calculated values
of AB,_, are negligibly small.

The present estimate of the effects of AX coupling in 4H — He involves serious simpli-
fications. To obtain more reliable, quantitative results, one should improve the YN po-
tential matrix (by adjusting it to the known YN scattering data, as it has been done in
[15] for a separable interaction model), and one should improve the model of $H—%He
by considering the distortion of the nuclear core.

The author expresses his gratitude to Dr J. Dudek for his invaluable help and ad-
vise in solving numerical problems. He also thanks Dr B. F. Gibson for his comment
on the sign of 48
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APPENDIX 1

Expressions for yy and V3.yx

We start with the spin-isospin functions of *H and 3He. We use the following order
of coupling of spins and isospins of the three nucleons 1, 2, 3:

(61+02)+03, (1, +12)+ 13, (AlL.D)
and denote by

ilea MN>§’ |T12’ ﬂN)g, (A12)

the spin (isospin) states of the three nucleons with total spin 1/2 (isospin 1/2) and its third

component My (uy). The spins (isospins) of nucleons 1 and 2 are coupled to J,, (Ty,)-

The totally antisymmetric spin-isospin state of the three nucleons, with total spin

and isospin, and their third components equal (1/2, My), (1/2, uy) has the form [16]:
1

AMNN(123) = NG {IOMND311 N5 — 1M )510u 5} (AL1.3)

By coupling the total spin and isospin of the three nucleons with the spin and isospin
of the hyperon Y (particle 4), we get for the spin-isospin function of the 3N+ Y system,
with total spin J and its third component M, and with total isospin 1/2 and its third com-
ponent u:

X{'Mﬂ(1234) = Z {Mymyunpy} (3 3 Mymy|JM)

x (3 tympy |3 X" N3 (4), (A1.4)

where ty is the isospin of the hyperon (z, = 0, #; = 1), and ¥™"* is the spin-isospin function
of the hyperon with the third component of spin and isospin equal my and pu,, respec-
tively.

Most convenient for calculating V;.py is a form of Xy» in which spins and isospins
of the four particles are recoupled in the order ((1+2)+(3+4)). Let us introduce the
notation

Vi2d3a3 IM) = |J 45, J340° = Z {M M3}

X (J12J34M12M34IJM)WJ’ZMu(lz)’lJ“M“@‘l) (ALS)

for the spin state of the four particles, in which spins of particles 1, 2 and 3, 4 are first
coupled to J;, and J3,, respectively (the corresponding spin functions are #’'**2 and
n’3M34), and afterwards the spins J;, and Js, are coupled to the resulting spin J with
the third component M. To simplify our notation, we suppress the index J, and also M
which anyhow is irrelevant for calculating ¥y.,y. The analogical notation |T,, Ts.)%
for the isospin state with total isospin 1/2 is selfexplanatory (we add here the subscript ¥
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to distinguish between the case when the isospin of particle 4 is equal 0 (¥ = A) or 1
Y =2X).
With the known values of the Clebsch-Gordan coefficients, one obtains easily from
(A1.4) the following expressions for yy"#(1234) = yy:
1>r
09 ~ >
2/4

1“ 1|11>"

2/4 V2
13>‘ 1;11)"
2/s 2

N2

P

24’ = —=10,0)7

\/2

1‘!
2/

st lf 1>t iIll)"()lt-{-1110>"01r
X4 \/ 2A \/:—3 s ’2‘4 \/6 s 32 As
1\* 2 3\°
=1 = — 01"1— +—0,1°’1,~>
4> 3\/21 > 5 3| > 2’}:

Y AL6
2>. (A1.6)

1 1 § 1 105
\/ > NG i, 0> ,
Now, let us calculate the spin-isospin averages, Vy.yn(x), of the two-body interaction
Vyyn» EQ. (2.4). Vyyn(x) depends on spins and isospins of the two particles and on their
separation x. We denote by ¥"(x) and ¥*(x) (and similarly by U(x) and US(x)) the radial
dependence of V, ,n (and 7,;y) in the spin-triplet and singlet state of the hyperon-nucleon
system, respectively. Notice that the AN system has isospin 1/2, and both potentials
V,an and ¥V, g act only in the isospin-doublet state. The SN system may exist in isospin-
-doublet (Tyy = 1/2) and quartet (Tyy = 3/2) states, and we have here four different
spin-isospin states: spin-triplet-isospin-doublet (TD), spin-triplet-isospin-quartet (TQ),
spin-singlet-isospin-doublet (SD), and spin-singlet-isospin-quartet (SQ). Consequently,
we have four parts of Vyyn: WTP(x), WTx), W (x), WS¥x).
In applying expressions (A1.6) in calculating Vy.;x, one uses the two-body interaction
Vy.yn acting between particles 3 and 4, and obtains immediat:ly the following results:

, VI+3 V0, (7 =0),
Vi an(x) = (AL7)
h FVI0+3 V), (=1,

U - U, (J =0),
Vis(x) = (AL8)
sU0+3 U, (=1,

FWPx)+3 [ WP +EWAx)], (= 0),
Visn(x) = (A1.9)
3 [T WP+ W@+ W), = 1).
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APPENDIX 2

Numerical procedure

The system of two linear differential equations (2.2) for @y (r) (¥ = 4, X, the index
J is dropped here) has been solved in the following way. For a given negative value of
E = —B, we find two solutions of (2.2), @y, and ¢,,, which satisfy the initial conditions:

(pYi(O) == 03 (I),Y:(O) = d)’i’ i ls 2, (AZ.I)

where {d,,, ds,) and (d,,, ds,) are two pairs of arbitrary, lincarly independent constants.
These two solutions have been found by applying the Runge-Kutta method with the
step size 0.05 fm and with the upper bound R = 5 fm. For r > R the solutions have
already, to a very good approximation, their asymptotic forms,

Dy(r) = Ay; exp (—oyr)+ By exp (ayr), r > R, (A2.2)

where 4, = N i;—xzﬁ/h, oy = N 2ug(B+A4)/h. The constants A4y;, By, have been determined
from the equations:

AYi
} = 3 exp (£ayR) [Py R) F Py R)/ay ). (A2.3)
Bh

The general solution @y of (2.2) may be written as a linear combination of two solu-
tions,

¢Y = C1¢Y‘ +C2¢Y2’ (A2.4)
and has the asymptotic form:

Dy(r) = (Z C;Ay;) exp (——rz,,r)+(z C:By) exp (ayr), r > R. (A2.5)

The coefficients C; for a bound state are determined from the requirement:

YCBy=0, Y =45 (A2.6)

Equations (A2.6) for C; have nonvanishing solution if the determinant
D = B4By;—B,3By; =0, (A2.7)

which is the eigenvalue equation.

To find the bound state energy E, one has to solve Eqs (2.2) for a few values of E,
to determine for each of them B,,; from Eq. (A2.3), to calculate the corresponding value
of D, till one finds such a value of E = E for which D(E) = 0. For this value of E one has
from Eq. (A2.6)

C, = ‘“(BAz;”BA1)C2 == *(3:2/351)C2« (A2.8)
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and for the eigenfunctions &, one gets

Oy = Co{—(B42/B41)Py1 + Py2}, (A2.9)

where C, is to be determined from the normalization condition
R
[ dr(®}+ @} + P3(R)[20,+ PIHR) 205 = 1, (A2.10)
4]

in which, in the integration interval (R, c0), the asymptotic form

Py(r) = Py(R)exp [~ay(r—R)], r >R (A2.11)

has been used. The integration in the interval (0, R) has been performed by means of the
Simpson rule with step 0.05 fm.

The value of R has becn adjusted so that a further increase in R would not change
the results. The results should not depend on the particular choice of the constants d,;,
as actually has been tested in one of the cases considered. Otherwise the values d,; = 6,;,
dy; = 6,; have been used.

With p(*He, r), oc(*H, r) given by Eq. (4.13), we may reduce expression (3.8) for
A4B: to

4B; = % P;E.(*He)—% €’I, (A2.12)

where
I = [ drdi(r) {2 erf (r/Buc)+ert (r/By)}/r, (A2.13)
1]

where erf is the error function, defined as in [17]. The integral I has been computed numeri-
cally by means of the Simpson rule with step 0.05 fm in the interval (0, R), and with step
0.1 fm in the interval between R and the cutoff radius 8 fm, where form (A2.11) of ®,(r)
has been used.

Let us remark that erf (r/f)/r is a slowly varying function in the interval, where &3
has appreciable values, which implies that 7 ~ P;. A rough estimate of [ is thus possible,
and it leads t .egative values of AB. which approximately agree with our calculated
values.
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