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QUANTIZATION OF THE ELECTROMAGNETIC FIELD
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The canonical quantization procedure for the free electromagnetic field is generalized
on arbitrary space-times. The metric is considered as classical background field which influ-
ences the quantized Maxwell field. Using the Heisenberg picture we get a system of first-order
linear ordinary differential equations describing the time dependence of the operators. In
order to compute the coefficients of this system one has to solve a 3-dimensional eigenvalue
problem. It is not necessary to choose a special gauge of the potentials.

1. Introduction

In simple cosmological models free matter fields were canonically quantized by sev-
eral authors [1-7]. Space-time symmetries and the corresponding conservation laws,
generators of unitary transformations in the Hilbert space, and, especially, static gravita-
tional background fields have been treated earlier [8]. In the present paper we consider
the quantized electromagnetic field in an arbitrary unquantized gravitational background.
To this end we give a 3-covariant formulation of Maxwell’s theory [9]. Space-like hyper-
surfaces .S are chosen and a 3-covariant (invariant) time derivative is defined. The interior
metric of S and suitable boundary conditions determine the eigenfunctions (modes) of the
electromagnetic field.

Comparing the quantized system with respect to distinct hypersurfaces one has to
take into account essentially two effects induced by the generally time-dependent external
metric field: the modification of the modes and the possible quantum transitions from
one mode to the other.

The expansion of the field operators in terms of an oithonormal system which is
assumed to fulfil the completeness relation leads to a quantum mechanical problem with
a quadratic Hamiltonian {2]. We postulate commutation rules consistent with the equa-
tions of motion and try to define creation and annihilation operators.
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2. Decomposition formalism

We select a family of non-intersecting space-like hypersurfaces § which have the
normal unit vector n;,. With the aid of »; and the projection tensor defined by

h; = gy+nn;, nn' = -1,
we decompose tensors in a generally covariant fashion, e. g.,
i i j
V=nV, Vi=h'V,

The transformation properties of a geometrical object are to be retained under an in-
variant derivative. For this reason we take the Lie derivative (with respect to »n,),

W, = £V,

for it is well known that W; transforms like 7., We adapt the coordinate system to the
hypersurfaces,

S:x*=const. n,=né, n=

. 2.1
== @1

Then it is still allowed to change the spatial coordinates x* (¢ = 1-3) separately on each
hypersurface as well as the parametrization of the hypersurfaces. The admissible coordinate
transformations are

X = xT(xb, x%), X = x¥(xh. (2.2)

All equations should be covariant under this restricted transformation group (3-covar-
iance). We consider global space-like hypersurfaces. Therefore, the group (2.2) should
not be confused with the transformations which leave the frame of reference fixed and
give rise to a local decomposition [10].

In the coordinate system (2.1) the metric tensor may be split as follows

Bab I\Ta
8ij = (Nb -—n2+NaN") ’ 8ap = hab"
Obviously, the following statements are valid:

1. Covariant spatial tensor components transform like 3-tensors under (2.2),

ox*° N

The components N, = g,, are no 3-tensors, of course.
2. Contravariant 4-components of a tensor, multiplied by n for each index, transform
like invariants under (2.2),

V=V, V=nV4

3. The Lie derivative applied to 3-tensors generates again 3-tensors of the same rank.
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Invariant time derivatives are denoted by!
0V = —£V = n"'(V=V,N%,
04V, = £V, = n”'(V,— Vo) NP = V,N%).

It can be easily verified that

4
Kab =h {ab} = %a4gab

is a 3-tensor of the second rank under (2.2).

Using these rules and their evident generalization on tensors and tensor densities of
arbitrary rank one obtains the elements with the aid of which physical laws can be for-
mulated by 3-covariant equations. We emphasize the convention that in all 3-covariant
equations the metric operations (covariant derivatives denoted by semicolon, moving
of indices) are understood with respect to the spatial part of the metric tensor, g,,, and
its inverse.

We use the notations

g =det(gy,), ‘g=det () = -n’g,

1
_ - abc _..
Eabe = \,/g 5ahc’ & = = 5abc

(9,5 — Levi-Civita permutation symbol). For later calculations the relation
1 -
0V = -9, V=gV (2.3)
n
will be important.

3. Maxwell equations

We apply the decomposition method to the electromagnetic field and write down the
Maxwell equations and the local energy-momentum balance in a totally 3-covariant
form. According to the rules mentioned above we get 3-tensors

A, A = nA*,
Bab’ Ea = nB:,
:I:xb’ 7:: = ”7}4, T = n2T44’

from the potential 4,, the clectromagnetic field tensor B,;, and the energy-momentum
tensor T;;, respectively, With the abbreviations for the magnetic and electric fields (tensor
densities)

%a — “%‘\,/E sachbc’ (gza — \/E Ea

! Point denotes partial time derivative, ¥ = aV]ox*,
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we obtain as a result of the reduction the 3-covariant Maxwell equations

o
‘d) 646@" = \r’lg ’Sabc - (nBc),bs C) E‘;'a = 09
n

b) 6,%"

o1
-z s""‘;(nEc),,,, d) B, = 0. 3.1)

The equations not containing time derivatives are the constraints which are to be ful-
filled on S. The relation T,/ = 0 is decomposed into equations representing the gene-
ralized energy and momentum balance, respectively,

1
04T + e (W2T %)+ % T 048, = 0,

1 1
64T o+ ~(nT N+ T —n, =0, (3.2)
h n

where the components of the energy-momentum tensor are given by
T = E,E,+ BB, —} gu(E.E®+ B.B),
T, = —ewE'B",
T = —} (EE'+B,B),
Taw=vegTy T.=vgl, T =.gT.
The vector potential 4, can be uniquely written as the sum of two parts,
A, = Cota,.

The transverse part is assumed to satisfy the condition

Cﬂ
(—) = (), (3.3)
nJa
and the function a is determined by

a=4"" -A—a ,
nj/,

where 4-1 is inverse to the differential operator 4 acting on some function f according to

. O
4f = [-— (nj_),“] .
n
Under the gauge transformations of potentials, the expression

G =A+0,4a

is an invariant. Consequently, the gauge invariant G is completely determined by C,.
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From the equation

1
Ea = —&4Ca_ ; (nG),a (34)

we get in view of (2.3), (3.3), and (3.1¢)
1
4G = —
T
The definition of C, has been chosen so that the right-hand member of (3.5) and hence G
itself do not involve any time derivative of C,. Thus, because of (3.4) we have

[C.o4(y/E g1~ C*04 ('-'n—) . (3.5)

OBy _ s
8(04C,) ”

We take over the usual definition of the canonical momentum,

oL _
a __ = Ea,
"= ey T Ve
& =3 \/E (EaEa_BaBa)’ (36)

which corresponds to the transverse vector potential C, representing the independent
dynamical degrees of freedom. Quantizing the electromagnetic field in the Minkowski
space one may eliminate the scalar and longitudinal modes by using the so called Cou-
lomb gauge, 4 = 0, a = 0. This particular gauge is also attainable in static gravitational
fields with hypersurfaces S orthogonal to the Killing vector. In this case, after fixing 4 = 0
one has still a gauge function available whose time derivative vanishes. Because of

1 728N _
(g’a=——&¢a’ - =0’ daE\/gAaa
n nJ/,

this is sufficient to achieve also @ = 0. As equation. (3.5) shows, it is impossible in general
to take the Coulomb gauge. We stress the gauge independence of our considerations;
never a special gauge is necessary.

4. Complete orthonormal system

We start this section with the eigenvalue equation

Dyu,, = {n[(nuka),b"(”ukb),a]};a = ml%ukb' 4.1)

The index & is no tensor index, it labels the various eigenfunctions (discrete or continuous
spectrum). In general the eigenvalues m, as well as the associated eigenvectors %, depend
on time; on each hypersurface S we find other solutions of (4.1). This eigenvalue equa-
tion has the following remarkable properties and consequences:

1. Provided that the eigenvalues m, transform like n under the restricted transfor-
mation (2.2), the 3-covariance of (4.1) is evident.
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2. The eigenvalue equation (4.1) follows immediately from
nlkvka = Eabc(nukc);b,

myu” = 8abc(nvkc);b' (4.2)

In virtue of the symmetry between u,, and v,, the eigenvectors v, defined by (4.2) solve (4.1)
in the same way as the eigenvectors u,,: At least two eigenvectors belong to each eigen-
value. To interpret this degeneracy we refer to the well-known fact tHat in flat space-time
two polarization states belong to the same momentum.

3. From the eigenvalue equation (4.1) it follows

U =0, 4, = 0. 4.3)

4. The differential operator D} in (4.1) is self-adjoint. Therefore we have real eigen-
values

*
M‘lk = nl_k. - mk

(+ denotes complex conjugation), and the eigenvectors corresponding to distinct eigen-
values are orthogonal to each other. In the degenerate case the usual orthogonalization
procedures are to be applied. We appropriately normalize the eigenvectors,

Uy Upy

a%
J"’" n \/Ig dsx = 5“". (4,4)

m

Then, the same relation holds also for v, in place of u,,.
5. The eigenvalue equation (4.1) is invariant under the substitution

8 = 8wy &° = 28 = In,

1. 1.
Uy = N Upgr . Upg = 7 Vg My = my 4.5)

which is a manifestation of the conformal invariance of the Maxwell equations.
Postulating some of these properties we derived the form of the eigenvalue equation.
We assume the completeness of the system of eigenvectors u,, in the sense that all
3-tensors of the first rank with vanishing divergence can be uniquely constructed by super-
position of the eigenvectors ,,. This assumption allows one to have a generalized Fourier
expansion of the field tensors n* C,, E,, and B, which are divergence-free vectors,

n
Ca = Gy —— Upys (46)
: ;o

E,=— z PiMias B, = Z JxUrq- 4.7

In these expansions the summation (or integration) includes all real values of & which
label the independent solutions of eigenvalue equation (4.1). For complex eigenvectors
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we use the notation
* *
Upg = Ugy, Vg = Ungge (48)

The coefficients p, and ¢, are only functions of time coordinate x*. This is an invariant
statement with respect to the admissible coordinate transformations (2.2)

5. Commutation rules

Up to this point we have dealt with the classical theory. In the quantum field theory
the time-dependent coefficients p, and g, are operators satisfying the canonical commu-
tation rules

h
(pe> 9] = T S [Po Pl = 0 = [qs, qi]- (5.1)
The electromagnetic fields E, and B, are observables, but the operators p, and g, are no
Hermitian operators. For complex eigenvectors a convention similar to (4.8) is useful,
P =P 4k =4k

(+denotes Hermitian conjugation). For the functions w,, defined by

— |n
Wra = \/g\/mkuka’
we postulate the completeness relation
Z WZ*(X)ka(x’) = 6g(xy xl)a (5.2)

where the two-point function on the right-hand side of this equation has on each hyper-
surfaces S the property

wi(x) = [ 850x, xIwi(x")d’x’ (5.3)

for all objects of the same type as w,,, i. e., with

().~
NENC/EE
The relations (5.2) and (5.3) are compatible if we take into consideration the normaliza-

tion condition (4.4). Expressed by the transverse vector potential C, and the associated
canonical momentum (3.6), the commutation rules (5.1) are completely equivalent to

h
[7°(x), Cx(x")] = " S(x, x7),  [=°(x), n"(x')]" = 0 = [C(x), Cy(x"].

This shows us that §,°(x, x") is the direct generalization of the transverse delta function
which is important in the conventional quantum theory of the electromagnetic field.
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6. Equations of motion

Let us insert the expansions of the electromagnetic fields into the Maxwell equations.
The constraints are automatically satisfied because of (4.3), and the other set of the Maxwell
equations yields the equations of motion. By means of the completeness postulate (in the
restricted sense) and the relation (2.3) the expansions

nda(u’ \/g) = ; e’ V8 5
ndy (v’ \/g) = ; dirty” \/ g

are possible, From the normalization condition (4.4) we obtain for the coefficients

1

2 % /=313

Cppr = — J\n uka54(uk,“vg)d X,
my

1 . a —
du = — | nP05,04(0,° /) x. (6.1)

my,

It might be remarked that the relation
&
dye = —Cpy

holds. To prove it we make use of the normalization condition (4.4), the definitions (6.1),
and the formulae (4.2). In addition, we assume that the boundary of the spatial integrals
is not a time function, and that the 3-space is either compact or that the asymptotic be-
haviour of the eigenfunctions enables us to omit certain integrals over 3-dimensional
divergencies.

The structure of the Maxwell equations guided us when we defined the eigenvectors
u,, and v,,. The definitions given above are very advantageous for the following reason:
The expansion (4.7) of the magnetic field B, follows from the expansion (4.6) of the trans-
verse vector potential C, by replacing essentially u,, by v,,. Moreover, after the insertion
of the¢’expansions of B, and E, into (3.1) the Maxwell equations (3.1a) and (3.1b) contain
only eigenvectors u,, .and u,,, respectively. Thus, we get the equations of motion for
the operators p, and ¢, in a simple manner by utilizing the completeness and the normal-
ization. The result is an infinite system of first-order ordinary differential equations,

I;k = —hMyq— ;ckk’pk"
ék = mp+ ;C:’k‘?k" (6.2)

By means of these equations of motion one verifies that the commutators in (5.1) do not
depend on time. We conclude: If the operators p, and g, obey the canonical commuta-
tion rules (5.1) on one initial hypersurface S, the same statement proves right on all other
hypersurfaces. The equations of motion can be written in the alternative form

. i . i
Pr = _f’: [H’ pk]’ qx = }l— {Ha qk]’
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where the quantum Hamiltonian H is given by the Hermitian operator
H =13 m(p{ p+di a9+ Y, Cudi P (6.3)
kK’

The infinite-dimensional matrix ¢, is traceless and depends, in general, on time.
As a special case we consider a stationary metric with the time-like Killing vector k',
We choose a coordinate system with

K =g, (6.4)

and identify the 3-spaces S with the hypersurfaces x* = constant in this preferred co-
ordinate system. The existence of the Killing vector gives rise to an integral of motion —
the energy

E = Jkinjdfﬁ

which we compare with the Hamiltonian (6.3). In a coordinate system with (6.4) both
expressions are identical,

E= [ T /gnd’x=H.

x4=constant
For stationary metrics the coefficients ¢, are
Cue = | eqcti ugN® /g d’x,
they vanish for static gravitational fields (N, = 0). Under the transformation group
¥ = x"(x%), x* = x*

leaving unchanged the form of the Killing vector (6.4), N, is a 3-vector and, hence, the
quantities c,,. are invariant coefficients.

7. Creation and annihilation operators

We make the linear ansatz
pk = ;Pkg'akr'f‘ Z Ptk,‘.a:,
; g

9 = ;Qkk'ak‘+ ; Qtwal a.1n

where the creation and annihilation operators, a, and a,, respectively, satisfy the usual
commutation relations

[ab al::] = 5kk‘9 [ak’ ak’] =0= [ak+’ ak+’] (72‘)

on each hypersurface S. Now we try to determine the coefficients P,,. and Q,,.. For this
purpose we form the expectation values of the components of the energy-momentum
tensor,

= TwD, tL.=CTD, =T (7.3)
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The symbol : : denotes the normal product with respect to g, and a;'. For these
expectation values the energy-momentum balance (3.3) should be fulfilled. We consider
two simple realizations:

I. The operators g, (and a;) are constant operators,

dy = 0. (7.4)

In order to prove that the energy-momentum balance (3.2) holds for the expectation
values (7.3) in place of the classical components of T;;, we use the relations

Z’ 8abct'2u;* = 0~
d * *
Y (U= titeg) = 0. (1.5

(The sums include all values of k& which belong fo the same eigenvalue m,). Obviously,
particle production from the vacuum state induced. by nonstationary gravitational fields
does not occur, if g, is independent of time. Therefore, this mathematically possible
choice seems to be unsatisfactory.

2. We take over, from the usual quantum field theory, the structure of the linear
ansatz (7.1),

oo :
P = — 5 (ake xfmkdt_aikecjmkdt),

h . .
q = \/—2- (e ™ty gl et medty, (1.6)

The normalization condition of the eigenvectors still admits the freedom

idx(x4)
9

Uy = Upy® A, real,

which can be used to gauge the matrix ¢, so that the imaginary parts of the diagonal
elements vanish.
The definition (7.6) of the creation and annihilation operators coincides with the above
definition (7.4), if the coefficients ¢, are equal to zero. Examples are the static gravi-
tational fields and the Friedman Universe. Under conformal transformations (4.5) the
coefficients c,., are invariant. Hence, they vanish in a conformally flat metric. Massless
particles (photons) can not be produced from the vacuum state in the Friedman isotropic
model. This conclusion is generally accepted.

The definition (7.6) guarantees the validity of the energy momentum balance (3.3)
for the expectation values (7.3) only, if the condition

kzk' Ckk'(“z“:'a' vivif'a) =0 1.7

is fulfilled. This restriction is satisfied only in special fields with hypersurfaces S chosen
in a particular way.
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8. An example

Zeldovich and Starobinsky [1] investigated the quantization of the Klein-Gordon
field in a metric due to Kasner,

ds? = —dt?* +a*dx* + B¥dy* +c%dz?, a = a(t), b = b(1), ¢ = c(2). 8.1

We consider the Maxwell field in this space-time. The hypersurfaces S (f = constant)
are flat 3-spaces. A complete set of eigenvectors is given by

ikgx?®

_ 1 ,
Uka = uka(t) W'e » X :'(xa Vs Z),

my
s
abe

—%k— q

- 2
Uty = kut =0, Kk =m.

The same relations hold for the dual set of eigenvectors v, with
mvs = e kyuy,.
We split the index k into the vector k, and the polarization index s,
ki(k,s), s=12
and obtain
Cooskas = 0,k F kg,

y O Y

ky=1(00,0,k): cpg = ( ), y = %(log —). {8.2)
0 —y a

With the aid of (8.2) an (7.5) it can be easily shown that the condition (7.7) is fulfilled

in the case under consideration. Thus, in this special model we are able to construct regular

expectation values of the energy-momentum tensor satisfying the balance equation (3.2).

9. Summary

We have admitted an arbitrary Riemannian space and selected a family of 3-dimen-
sional space-like hypersurfaces. We have studied the influence of the classical gravitational
field on the quantized electromagnetic field. The key points are the eigenvalue equation
{(4.1), the equations of motion (6.2) with the associated Hamiltonian (6.3), and the commu-
tation rules (5.1). All the equations are 3-covariant. Their explicit form depends, of course,
on the choice of the hypersurfaces. Our next task is a covariant formulation of the quantized
theory in the sense that all physical statements are obviously independent of the particular
choice of the intermediate 3-spaces. The attempt to define creation and annihilation
operators and to construct a regular expectation value of the energy-momentum tensor
(source term in the Finstein-Maxwell equations) does not give satisfactory and unique
results for arbitrary gravitational fields. The method of “adiabatic regularization” of the
energy-momentum tensor proposed in a recent paper by Parker and Fulling [11] is also
restricted to a special class of gravitational fields.
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