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SPHERICAL SYMMETRY IN RAINICH’S THEORY
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University of Sydney*
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A time-dependent, spherically symmetric solution of Rainich’s field equations is derived
when the field is null. It is concluded that in this case the Already Unified Field Theory and
the Einstein-Maxwell theory are not equivalent.

1. Introduction

Some time ago, Lynch and the present author (Ref. [1]) criticised Rainich’s Already
Unified Field Theory (Refs [2, 3]) by showing explicitly the strong relation it implies
between electric field and inertial/gravitational mass. The question arises whether this
criticism applies necessarily also to the Einstein-Maxwell theory. This is the case, of
course, if there exists a one to one correspondence between the two theories but such
correspondence has been established only for non-null Rainich fields (e. g. Ref. [3]).
One way of investigating this problem is to consider whether Birkhoff’s Theorem is valid
for Rainich’s field equations. Birkhoff’s Theorem has been discussed by numerous authors,
notably by Bonnor (Ref. [4]) and, for an Einstein-Maxwell field, by Hoffman (Ref. [5]).

As a matter of fact, a time-dependent solution was found by Bonnor and was rejected
because of curious geometrical situation it seemed to portray. However, Bonnor’s solution
requires a non-zero cosmological constant which plays no part in Rainich’s theory.

We shall consider as field equations, Rainich’s algebraic relations

R =0,
RuaRav = % guvRaﬂRaﬁa (1)
Ruy >0,

which follow directly from the structure of Maxwell’s energy-stress-momentum tensor

Epv = fluaylav-i-% gpvguﬁgap' (2)
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Throughout this work Greek indices are assumed to go from 1 to 4, R,, is the Ricci
tensor, R = R*, = ¢"'R,,, g,, is the metric tensor and f,,, the skew symmetric, electro-
magnetic intensity tensor. We shall not require Misner-Wheeler differential relations which
guarantee that f,, should represent a Maxwell field, because the case we shall find particu-
larly interesting is the null case when

R4R¥ = 0. 3
We shall solve Eqgs (1) in a spherically symmetric Riemann space which is formally time-
~-dependent.
2. Spherical symmetry

Bonnor proves (Ref. [4]) that a spherically symmetric metric necessarily has the
form

ds? = e'dt* — e’ dr* —r?(d6® +sin? 8d¢?), C))

where v and 1 are at least twice continuously differentiable function of r and of ¢ only.
His proof is independent of the field equations so that we can assume (4) to be the appro-
priate form also of a Rainich space. We write down, for the sake of completeness, expres-

sions for the Christoffel brackets {;jv} and the corresponding components of the Ricci

K = = {:v},ﬁ’ {:a},f {:9} {Gev} B {:v} {099}'

0 d
Ay vy = 5; A, v), Zgvy = fi_t (4, v) etc.

tensor

Let

Then the non-zero brackets are

1 1 1 1 -
{11} 3 AL, {14} 3 24 {22} {33} cosec re ”,
Ll _y o v-a 20 30 _ -1 20 _
{44} - % Vi€ > {12} = {13} =r -, {33} = sin 8 cos 0,
3 4 4 4 i-
= =1 - ] = 1 v
{23} cot 0, { I} 3 va {14} $vy, {11} A0 (4a)

Similarly, the non-vanishing components of the Ricci tensor are
Rip = =3 (A a+dvi+1 226" —F Agvae* 7" =1 44 Q/r +3 v,
Ry, = Ryjcosec” 0 = (re”*), +3 re (A +v)—1,
Ryg = =3 (e N+ daa+i A2 +3v e = A~ vi(R 4 +2/n)e"™,
Ryy = —24fr. (4b)
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If 1 is independent of #(4, = 0, so that R,, = 0) we revert to the general relativistic case
of the Birkhoff-Hoffman theorem. Hence, we assume in the sequel that

Rys # 0. (5)

3. Rainich’s field equations
It can be shown easily that the first and second of the Egs (1) imply that
R4 (8" Ry +8* Ryy) = 0.
Hence, because of the assumption (5),
g R +8* Rss = 0, (6)
while the two remaining equations become
Ry, =0, ©)
and
Ry, = i‘\-"/:é;x_gﬂ Ry (3
We have also the nullity condition (3). Written out in full the above equations become
e s+t il =3y —e v +EvE =4 Ay =4 —v)ir = 0,
2, —vy = 2(1—=eY/r,
e Y (Aaat+i A2 =L Av)—e vy v 2= Ay =2A,fr) = £20,e” G2y,
It is by no means certain that these equations are compatible. If they are then
(A +v)ed ™2 = 124,64 9)

so that Eqgs (7) and (9) form a system of first order differential equations. Differentiating
them with respect to ¢ and r and eliminating 4,4 and v, (as well as 4,,) we recover Eq. (6).
It follows that Eqgs (6), (7) and (8) are compatible and all we have to do is to solve (7)
and (9) simultaneously.

4. A similarity solution
Let
e =u/v and e = uw
Eqs (7) and (9) become
#; = +(ufv), and u = (rv),.
Eliminating u between them we get

(r)1, = 2(rvyfv)s. (10)
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Suppose that v is a function of

z = """

where m and n are constants only. Eq. (10) then becomes
(m+1D)v' +mzv” = +@fv?) (1) (' +z (0" —0'?), (11

dashes denoting differentiation with respect to z. A “‘similarity” solution thergfore is
possible providing we choose

m+n = 0. 12)
The simplest case results if we take
m=—1, n=+1, z=tfr (13)
Then
2,11 —_ d ’
z%y" = F — (zv'[v). (i4)
dz

Let us further choose the upper sign. The equation we wish to solve is
2. 11 d ’
z%"+ — (zv'[z) = 0. (15)
dz

If this equation possesses a continuous solution, z can be regarded as a function of .
Let us then write

d
v=exp(y), zv=exp(x), and d_y = Y/(1+7).
X

An elementary calculation shows that

1+Y dY_ exp (x)

Y(I-Y) dx 1+exp(x)’ e

whence

d R
2 razVbibr2), a7
dx

where

b = k/(1 +exp (¥)),

and k is a constant.
If, finally, we write

143k = K2,

the complete solution (through which v can be expressed in terms of z) becomes

y = B+3(1—vV1—K?) xFIn (1 ++/1+KZ exp (1)), (18)
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B being a constant of integration. We should observe that K cannot vanish since the case
K = 0 corresponds to z = const. Substituting back in terms of v and z, we have

o' 7P = CzP(1 +V 1+ K?z0)!,
where
31K? = p(1—-p).

Another way of writing the complete similarity solutions is to put

dy ,
E = D'/L’ =f:
say, then
ro'fo = fI(f=1),
and

exp () = (2= D/(f=1), exp (v) = (f—D/(f~2)) v*.

In the next two sections we shall investigate the nature of the solution obtained above.

5. Killing equations

We consider first the problem of hidden symmetries of the space characterised by
Eq. (18). Fortunately, it is not necessary to exhibit the explicit solution. The Killing equa-
tions are

Eii—d A~ AT, =0, (19a)
$rat8a1— 481 —vi8a =0, (19b)
aa—v1€ M=y = 0, (19¢)

Ci2+ 80— ;fz =0, (19d)
$13+851— %fs =0, (19¢)
Eatre T =0, (19f)
Eaa+E3,—285c0t0 =0, (19g)
&33+re”*sin? ¢, +sin 0 cos 0, = 0, (19h)
C2at842 =0, (19i)

$34+843 =0, (19j)

£, being the components of a Killing vector.
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Because of their form, Egs (19) imply that the ¢ dependence of every &, is the same,
separable, and at most exponential.
e, (20)
where k is a constant. Thus, writing
(&, =1ty & =1y, & =1y, times &,

Eq. (19d) to (19h) become

re*y 2 +y21 =0, (21a)

kre*y, +ys, =0, (21b)
V22+y1 =0, (21¢)
ky,+ys,—2y;cot0 =0, (21d)
ky;+sin? 0y, +sin 0 cos 0y, = 0. (2te)

Eq. (21b) gives
kre*y, 2 +ys3,12 = 0,
so that from (21a)

~kys1+Y3,12 =0.
Also, from (21d)

k.YZ,l +y3,21 _2y3,1 cot = 0.
Hence, assuming continuity,

(J’3,1),2_(.V3,1) cotd =0,

or
Y3 = f(r, t)sin 0+g(r, t)+h(0, 1), 22)
where, by (21c)
fre*+f, =0. 23)
With the help of (22) we readily find that the only possible solution of Egs (21) is given by
ky, =fcos0, ky, = +fsinf, y;=fsinf
with (from 2le)
(k*+1)fsin = 0. 24
Thus k = 4-i.
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The resulting real Killing vectors are
(ré*fsin 8 sin @, r*f cos 0 sin @, r’fsin 0 cos ¢, r’f , sin 0 sin ¢),
(ré*fsin 0 cos @, r*fcos 0 cos @, —r*fsin @ sin ¢, r’f, sin 0 cos @),

£, being determined from (19i) and (19j).
In considering Eqs (19a) to (19¢) it is clearly sufficient to take

& = "elf, ¢y = "2f,4-
With the help of (23) we can eliminate f to get
2e*—r?e* +2—vr) (L +4 ri —r?e?) = ri2e* ™, (25)

which is incompatible with the ficld Eqs (7) and (9) in the case of the similarity solution
(18). Hence £, cannot be ¢ dependent. If we eliminate ¢, , terms from Egs (19) we
readily find that

E = —r7YeM(r,)cos 0, &, =f(r,)sin0, ¢, =r?sin?0,
&4 = facos0,

where

fy = Q2=eMf. (26)
With (26), Eqs (19a) to (19c) give again a condition

2r2e* (2 =2e*—v)) = e —1—-1ri,, 7
incompatible with the solution (18). This time however we can put
f=0

to obtain a non-trivial Killing vector

(0, 0, r2sin? 6, 0), (28)

which is space-like. Consequently we have proved that solution (18) does not admit any
time-like Killing vectors.

6. The Maxwell condition

The Rainich field we have been considering is null (Eq. (3)) and this implies in turn
that f,, is partially null:

fupf* = 0. (29)
It follows that the field tensor is of the form
0..0
.00.
= 30
fuv . 0 0 . » ( )

0..0
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and that it is to be determined from

R;n' = fnafav' (3])

In fact f,, is not determined uniquely by Eq. (31) since Rainich’s algebraic equations are
satisfied by any f;,, f1; fulfilling the conditions

—Ry = gL +83 s
f224 = —g"g44f122, f:»24 = —g"g44f123,
Ry = 822812f24- (32)

For a null field the Misner-Wheeler criterion that f,, should satisfy Maxwell equations
breaks down and we must look elsewhere to ensure that there exists a four-vector ¢,
such. that

fuv = ¢\*,p — Fuvs
or

2 Juna =0 (33

eyclic
Apy

In the case of our field geometry (metric (4), Christoffel brackets (4a)) however, we
can prove a remarkable result. If the only nonzero components of f,, are f;, and f,4 (so
that f]3 =f34_ = 0) and

fra =N =g g4 f120 (34)

the condition that £, should satisfy the second set of Maxwell’s equations (33) is equivalent
to a Bianchi identity. To prove this we observe that under the above conditions only
one of Egs (33) survives and can be written as

J1z;a tfaa0 Hfa12 = 0,

or
. 2
SizzatSaa + {IZ}fu = 0.

Multiplying this by f;, and using (34), the equation can be written in the form

Yy 2 T e
f,22;4+\/—g44g1 ! f122;1 +2 {12} vV —gs8" S =0. (35)

The contracted Bianchi identities for a Rainich field are
RS, =0,

and in particular, when p = 1, and (4a) give the Christoffel brackets

1 1
g“Ru;l +g44R14;4—- [822 {22} +833 {33}] R,y =0. (36)
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It is now a simple matter to verify, using
Ry, = _gzzf 122

and Rainich’s algebraic Eqs (7), that Eqs (36) and (35) are in fact identical. Since the
Ricci tensor satisfies Bianchi identities the field f,, determined by (31) and the above
additional requirement is a Maxwell field.

7. Conclusions

The solution obtained above is of the form
ds* = g(z)dt* —f(2)dr* —r*(d0* +sin? 0d¢?). 17)

It can be seen easily that the transformation

g=1Int, p=z"",

maps the above metric into
ds* = e*(u(p)dt* +2v(p)dqdp — w(p)dq® — p*(d6* +sin® 0d¢?)).

After a further transformation

q 2
q =T~ [(v/uydgq, R = pexp(— {(v/u)dyg),
the metric takes the final form

ds®> = e*T(A(R)dT? — B(R)dR? — R*(d0* +sin? 8d ¢*)). (18)

It might have been possible to assume this form of the metric from the start except that
its feasibility depends strictly on the existence of a similarity solution of Rainich’s field
equations.

In view of the results obtained in Section 5, we conclude that the similarity solution
(18) cannot be transformed into a time independent solution of Rainich’s equations.
It follows that Birkhoff’s theorem does not hold in the case of a null, spherically symmet-
ric Rainich field. To this extent at any rate, Rainich’s Already Unified Field Theory and
the Einstein-Maxwell theory are not equivalent.

We may observe also that a spherically symmetric electromagnetic field should have
f1a and f>, as its only non-zero components (corresponding to parallel electric and magnetic
vectors in the r direction). According to Section 6, however, the electromagnetic field
corresponding to a non-trivial solution of Rainich’s equations such as our similarity
solution (18) consists of transverse and mutually orthogonal electric and magnetic vectors.
Thus our solution cannot correspond to a spherically symmetric electromagnetic field
which is the source of an Einstein-Maxwell geometry. Of course, the spherically symmetric
field is necessarily non-null and this is an invariant condition.

As a final remark, we may note that choice of the positive sign in Eq. (14) gives
e*/(e*—1) on the right hand side of (16) and, consequently, a singularity at x = 0 (or
v = z7'). Such a singular surface is difficult to understand from a physical point of view.



488

I should like to express my gratitude to Professor W. B. Bonnor of Queen Elizabeth
College, London. The above work is due to his comments during my visit there. Also
1 wish to thank the Referee, and Mr G. V. Bicknell of this department, for drawing my
attention to certain shortcomings in an earlier version of this paper.

REFERENCES

[1] A. H. Klotz, J. T. Lynch, Nuovo Cimento Lett. 4, 248 (1970).

[2] G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

[3] C. W. Misner, J. A. Wheeler, Ann. Phys. (USA) 2, 525 (1957).

[4] W. B. Bonnor, in Recent Developments in General Relativity, Pergamon Press (1962).
[5] B. Hoffman, Q. J. Math. 3, 226 (1932).



