Vol. B6 (1975) ACTA PHYSICA POLONICA No 4
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An approach to non-linear electrodynamics by means of the spin-coefficient formalism of
Newman and Penrose is presented. The field equations are rewritten in the Newman-Penrose
form, and their spherically symmetric solutions are discussed. An approximation procedure,
suitable for treating radiation problems in non-linear electrodynamics, is then suggested
on the basis of an analysis of the Maxwell electrodynamics with sources. Since the field
equations are non-linear, wave tails will in general develop. This is illustrated in detail on an
example of the approximate solution, representing a radiating dipole in the zero approxima-
tion. Conserved quantities, analogous to those discovered by Newman and Penrose in Max-
well’s and Einstein’s theories are found for a large class of non-linear theories of electro-
dynamics. Their number depends on the choice of a particular theory — it is greater than,
or equal to 16 for theories satisfying the correspondence principle with Maxwell’s theory.

1. Introduction

It has been suggested by Dirac in 1964 [1] that in regions near to charges one may
have to modify Maxwell’s theory so as to make it into a non-linear electrodynamics.
One now expects that very strong electromagnetic fields also occur in the vicinity of neu-
tron stars or, possibly, black holes, so that it may be interesting to study non-linear effects
also with an astrophysical motive.!
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** This paper is based partly on the Diploma thesis submitted by this author to the Faculty of
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i Z. Bialynicka-Birula and 1. Bialynicki-Birula [2] were led by this motive, for example.
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It is well-known that, in many respects, non-linear electrodynamics offers the best
classical solution to the self-energy problem of charged particles. From a more practical
point of view, however, it is important that a phenomenological theory of electrodynam-
ics, which describes vacuum polarizational effects, must be non-linear in any case. As
demonstrated by Stehle and De Baryshe [3], theories with Lagrangians similar to the
Heisenberg-Euler effective Lagrangian (the weak-field expansion of the Lagrangian of the
Born-Infeld theory is of this form, for example) are more accurate classical approxima-
tions of quantum electrodynamics than Maxwell’s theory in the case of fields with high
intensities at a fixed frequency. Moreover, it is not clear whether even a low-frequency
limit leads to Maxwell’s theory for arbitrary intensities.

In this paper we shall study some problems of non-linear electrodynamics in the
framework of the Newman-Penrose (NP) formalism [4] in flat spacetime. We are led by
successful applications of the NP formalism in general relativity, in particular in the anal-
yses of gravitational radiation, of the radiative properties of test fields on given curved
background spacetimes, etc. For example, it has been demonstrated [5] that electromagnetic
radiation {(described by Maxwell’s theory) propagating on the curved background space-
time surrounding a collapsing star, backscatters, and wave tails develop. Radiation scat-
tering also occurs in the approximate solutions of the Einstein-Maxwell theory [6].
It will be shown explicitly in the following how wave tails arise even in flat spacetime,
provided that the electrodynamics is non-linear.

The NP formalism also led to the discovery of new conservation laws in the Einstein
theory [7, 8] and in the Einstein-Maxwell theory [9], the physical content of which is still
not well understood. We shall find the analogues of the Newman-Penrose conserved
quantities for a large class of non-linear theories of electrodynamics. This will enable
us to see how the number of conserved quantities is influenced by the non-linearity of
a particular theory.

The best known non-linear electrodynamics was developed by Born and Infeld [10].
The Lagrangian of the Born-Infeld theory has the form

L = b*[(1+2b7*F+b7*GH"*~1],

where the constant b with the dimension of the electromagnetic field may be called the
“absolute field”, F and G are the invariants of the field. (In Born’s original theory the
Lagrangian L = b2[(1+2b-2 F)*—1] was used.) Although in comparison with other
non-linear theories the Born-Infeld electrodynamics has some attractive features (see, for
example [11]), there are situations in which other theories are preferable (cf. the extensive
text on non-linear electrodynamics by Plebanski [12]). Furthermore, the expansion of the
phenomenological Lagrangian of quantum electrodynamics does not exactly coincide
with the expansion of the Born-Infeld Lagrangian. Therefore, following Plebanski, we
shall not restrict ourselves to a particular form of the Lagrangian, but rather, all Lagran-
gians depending on the two invariants of the electromagnetic field, and satisfying the
correspondence principle with Maxwell’s theory will be considered.

Some questions studied in this paper have been investigated in the NP formalism by
Chellone [13, 14] and in the Debever self-dual formalism, by Porter [15]. However, these
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authors restrict themselves to a particular type of Lagrangian; the NP formalism has
actually only been applied to Born’s theory. (Moreover, as we shall indicate in the follow-
ing, the approximation procedure, developed by Chellone, is not entirely consistent and
some of the conserved quantities are not given.)

In Section 2 the relevant relations of the NP formalism are briefly summarized. The
NP form of the field equations of non-linear electrodynamics and their spherically sym-
metric solutions are given in Section 3. Before the discussion of the NP conservation laws
(Section 5) and of the approximation method for treating radiation problems in non-
linear electrodynamics (Section 6), it is helpful to describe the procedure of solving the
equations of Maxwell electrodynamics with sources in the NP formalism (Section 4).
In Section 7 the approximation method, developed in Section 6, is applied to the problem
of the radiating dipole and, finally, some open problems are indicated in Section 8.

2. The Newman-Penrose formalism

At any point in curved spacetime we introduce a complex null tetrad %, n*, m*, m*
(m" being the complex conjugate of m") such that the only non-vanishing scalar products
are

=1 mm = -1

Instead of using six real components of the Maxwell field tensor F,,, we will describe the
electromagnetic field by three independent complex quantities

¢0 = Fuvlumv,
@, = } F,(I"'n"+ m*m"),
®, = F,m"n". 2.1)

In order to be able to rewrite the field equations into the NP form, we define the invariant
differential operators by

0 0 - o, 0 0

—_ = mf — S — gH = n*
D—Iax“’ é méx“"' d=m pare a4 n”x“’

2.2

<

and introduce twelve spin coefficients as follows:

k= L m"l, v = —n,m'n’

o = I, m"m"] = —n,m'm’,

o= l,mm, A= —n, m'm"

T = 1,,m'n", n= —n,ml,

B =1 n'm —m, m'm"), o= —}(n, Pm' —m, m"m"),

e = } (L, 'l —m,, m"D), 7 = —} (0" —m,, m"n"). 2.3
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If spacétime is flat, it is convenient to introduce the null polar coordinates x° = » =
=t—r,x! =r, x> = 0, x> = ¢, and to choose the null tetrad adapted to the coordinate
system — [* as the outward pointing null vector tangent to the null cone, #* as the inward
null vector, and m", m" as vectors tangent to the sphere r = const, ¥ = const. Then the
line-element takes the form

ds* = du®+2dudr—r*(d0* +sin? 0dg?),
the components of the null tetrad become

=S, nt=oh—} Sk,

1
L I T SR 1. )
" \/2r[ ¥ Gn o 3] 24

and only four spin coefficients do not vanish:

i 1
= -, =—- -, a=——=coth, = =
e F # 2r ) \/ 2r b 2 \/
The null tetrad is not determined uniquely. Defining the spin weight s of a quantity »
by the requirement that n — 1’ = ¢**y under the transformation m" — m* = em*,
we introduce the differential operator & and the complex conjugate operator & (see [16]):

~cot 0. (2.5)

= —(sin §)* [ 0 ~——l—— -a—} (sin 8) " *n,

o0  sinf 0
_ J0 i 0 s ]
&= —(Ginlh)| — — prm a— (sin ) "*n. (2.6)

This angular operator enables us to form a complete set of the orthonormal functions
sYim (spin-s spherical harmonics) for quantities of the spin-weight s:

Y0, @) = [U=) I +9)1128°Y,(0, ), for 0 <5 <1,
= (= TA+)YI=)T2FT*Y,0, @), for —1<s<0; (2.7)

here Y, = Y, are ordinary spherical harmonics and s, /, m are integrals, / = 0, 1, 2, ...,
Im| < I, |s) < I; (the Y}, are not defined for |s| >/, or Im| > /). From the definition
of the spin-s spherical harmonics we deduce the useful relations

=(-D)""_ Y (2.8)

8 Y = {(1—s> (I+s+ D124 Vi 2.9
.Y = [+ (=s+1D]"%_  Yim, (2.10)
88 Y = —(1—5) (+5+1),Y. .11)

Note also that any quantity 5 with the spin weight s satisfies
(F8—88)n = 2. (2.12)
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Provided that £ and { have the spin weight —/—1 and /41 respectively, one can derive
j‘SYlma'l—s-PlédQ =0 = fs?lmgl—s+ié’dg2, (213)

dQ = sin 0d0 dg, integrations being carried over a sphere, r = const. Further, regarding
(2.11) it follows that

§ Y8 0ndQ = —(I=s) (I+s5+1) | Timd@, (2.14)

with # having the spin weight 5. The last relation we will need in the following, is the
expansion of the product of two spin spherical harmonics [17],

51 Yum(0s @), Vi (0, @)

Q1 +1) (21, +1)

1/2
= z [m—] Ym0, @) <Iys 15 my, mall, m) Iy, 1y —sq, —s,]l, =5,
1

where <[y, I,; m;, my|l, m) is the Clebsch-Gordan coefficient, m = m; +m,, s = s, +s,,
\li=L| <1< I +1,. The preceding relation will in fact only be used for m, = m, = 0;
it is convenient to write it in the form

1 .
51 Y105, Y0 = Z (=)' Jin [l +1) 2l +1) 21+ 1)]'2
]

ll 12 l 11 12 I
% (0 O 0)(_51 —S, Sl+52 Sx+szYIO: (215)

where the Clebsch-Gordan coefficients are replaced by the Wigner 3-j symbols, defined by

(11 lz 13) — (__1)11"12""13(213+1)“1/2<ll’ l2; ml’ n12”3, —ln3>-

my m, my

3. The field equations of non-linear electrodynamics in the Newman-Penrose form and their
spherically symmetric solutions

For the time being we describe the electromagnetic field by the Maxwell tensor F,,,

formed from a potential, F,, = 4,,—A4,, = 4,,—A,,. Equivalently, we assume the
equations

F* =0, 3.1

i
where F:; =5 £,,°°F 4, t0 be satisfied. In a general case Lagrangian L of non-linear electro-

dynamics is supposed to be the scalar function of the invariants F = }F, F* and
G = }F, F**. The field equations derived in a standard way from the variational principle
take the form

P™., =0, (3.2)
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where P* = LoF*+LgF™; henceforth, we use the abbreviations L, = OL/oF,
Lg = 0L[0G, Ly = 0*L|0F?, etc. Since only F** are considered as fundamental variables,
both (3.2) and (3.1) must be taken into account. In general we will not restrict the form
of L except for the requirements which guarantee that there exists a correspondence
with the Maxwell theory (where L = F). For weak fields, when F and G are small, we re-
quire that L = F+O(F?,G?), i. e. Ly(0,0) = 1, L;(0, 0) = 0. If we wish our theory to
be invariant under reflections, we must assume L = L(F, G?), because G is a pseudo-
-invariant.

Now we want to rewrite the equations (3.2) and (3.1) in terms of the &’s given by
(2.1), the differential operators D, 6,4 by (2.2), and the spin coefficients by (2.3). This
can be accomplished conveniently by translating the tensor equations first into the spinor
form, and, thereafter, with the help of basic spinors (a “dyad”) corresponding to the null
tetrad *, n*, m*, m", by going over into the NP-form. This procedure, similar to that de-
scribed in detail by Newman and Penrose [4] for the Einstein equations, yields the following
system:

2L[DP, — 5P, —(n—20)Py—20P, + KD, ]
= Ly[®odA — & Dot |+ Ly[ D0 — &, DA ]

+Ly[®,6 —® DA+ Ly [Pod4 — D, DA ], 3.3)
2L[D®, P, +idy—2nd, —(0—26)®,] = Ly[P,64 —D,Dsf]
+Ly[® 6 ~ ®,D ]+ Ly[PoAst — 54+ Ly[Pod A — B, 554 ], 3.4
2L[6®, ~ APy — (1 —27)Po— 21D, + 6P, = Ly[P,4 —D,64]
+Ly[Pod st — &5 ]+ Ly[® 64 —B,DA ]+ Lyy[ 6,0 —B,DsA ], (3.5)
2L [P, — AP, +vPy—2ud, —(1—28)P,] = Ly[®, 4 — B, ]+
+ L[ P14 — D65 |+ Ly[ 0,4 — 8,84 )+ Lig[®, 45 — D04 ]; (3.6)

here
o =3(F+G) = &b, — b2,

L= Ly, Ly = Lgg—Lgg,
Ly = Lgp+2Lpg+ Lgg,
Ly = Lgp—2Lgpg+ Lgg. 3.7

The system (3.3)-(3.6) represents the NP form of the free-field equations of non-linear
electrodynamics in a curved spacetime. (Thus, it also describes how the electromagnetic
field is influenced by — possibly its own — gravitational field.) For L = F the NP form
of the Maxwell equations in general relativity is retrieved (cf. Eqs (Al) in [4]).
Hereafter, however, we shall confine ourselves to the study of the electromagnetic
field in flat spacetime. Then, as mentioned in Section 2, it is convenient to introduce null
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polar coordinates and the null tetrad (2.4), so that the only non-vanishing spin coefficients
are given by (2.5). The field equations (3.3)—(3.6) simplify into the following form:

- 5 1 .
2L | 8,0, + =~ + — 30
1[ L 1+ \/Zr OJ
1 — - - 1 —
= —L" '-»~_¢05M+¢Iard —LI" ?¢05d+¢18rd
\/27‘ Jar
1 - _ B R
_LH \E‘¢oa’%+¢10rd —Llll \/“§~;¢05"d+¢10rd ’ (38)
2| 66,4+ L0y ——Fo
1] 6:92 .2 \/ir 1

1 — - 1 —
"‘L“ I:E¢15ﬂ+¢zarﬂ] _LI" |:\—/-2_—rd’15'.ﬂ+¢25,&{:!

—_ 1 | [ - = 1 1
+L" [¢0 <6u— g a,.) d"' '_,"—éla'ﬂ +L"l |:¢0 (614_ .y a > M"‘ — ¢15vﬂ]
2 V2T 2 \/

(3.9)
2L [ ¢ ! 0,— 1 &+
1 u 2 r O \/2
1 1 - 1 1
= L" "Qo 0,,— 55, JZ{‘!" y’i—""¢la’d +Llll ¢0 au"‘ 50,. -52("‘ :/2—-';¢15d
| Q- — |
’—L" :/i—r¢15ﬂ+¢25,&¢ _Llll :/*i—r¢15d+@zarﬂ 3 (310)

2L _ 0 1 0 L D+ ! L
1 u 2 r r 1 \/i r 2
Ly| @ (00— 20\t 0,0 | +Lug| 0, (60= L 0) ot 0,0
= &~ 1 u 2’r \/zr 2 11k 1 u 2r \/zr 2
— 1 1 - _ 1 - 1 -

+Lll djl 6“"‘ 50,. d'i‘ \/i '.4525.% +LlII Ql au— 55, JJ'*' \_/?;Qzad .
3.11)
Although our equations look rather cumbersome even in flat spacetime, there exist simple

cases, in which the solutions can easily be found.

Let us first observe that null-field solutions, characterized by F = G = 0 (i.e. & = 0),
are common to all theories of the electromagnetic field, based on Lagrangians depending
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of F and G. (Any non-linear electrodynamics thus admits the plane wave of the Maxwell

theory, for example.) Going back to (3.3)-(3.6) we see that the same is also true on a curved
background.

Now we turn to spherically symmetric solutions in flat spacetime. The stationarity
of the field will not be assumed — we will be able to prove it in all physically plausible
theories, as a consequence of the field equations (cf. the Birkhoff theorem in general
relativity).

Writing the @’s in terms of the field strengths E and B, it can easily be seen that the
assumption of spherical symmetry implies the vanishing of &, and &,. Therefore, the
equations (3.8)—(3.11) reduce to two equations for @, = &, (u, r):

2 ~ — -
2L| (5,451 + - (p1> = —L"(Dlar&f—Lm(ﬁ]5,.&2/-—L"¢,(7,&f—Lm(plarﬂ, (3.12)
I

2L0,8, = Ly®,0,4 + Liy®,0,4 +Ly®,0, +Lyy®,0,4. (3.13)

(To get the last equation, we multiplied (3.11) by %, and subtracted it from (3.8).) Taking
these equations complex conjugated and comparing them with the unconjugated form,
we obtain

. — 2 —
ar(¢l—¢1)+ ;(¢1_¢1) =0,

and
au(¢1_51) = 05
so that

. 0
P, = — 3.14
1 (p+12r2 ( )

where ¢ is a real function of # and r, and Q is a real constant.
It is now convenient to go over from F and G to the real variables & and & given by?

F=3(#-6%,G= —ié®; (3.15)
from here, conversely,
& = (F+G|—F)'Y%, & = sgn(iG) ((F+G|+F)'/2

By straightforward calculations, we can express @, in terms of ¢ and %,

D, = 4 (6+iB), (3.16)
and, thereafter, also the form of Egs. (3.12) and (3.13):
2 2%
Léﬂévar(g‘i'Ltg’ - _Lérﬂ—— = 0, (3.17)
r r
Lgg0,6 = 0. (3.18)

2 The introduction of & and # proved to be convenient also in other circumstances investigated by
Plebanski [12]. In the spherically symmetric case @y = (64 i#) = $(E+iB) C, where E-and B are the
usual field strengths, C is a unit radial vector.
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Since, by (3.14) and (3.16), # = Qr-2, (3.17) yields 8,(r>L,) = 0, from which

Lg= ngu), (3.19)

g(u) being an arbitrary real function of w.
We may now distinguish three cases:

1. Purely electric solutions (# = 0)

a) Lgg(€,# = 0) # 0. (3.18) and (3.19) imply g = const. The solution is given implic-
itly by Lg(&,0) = ¢gr~2. From this it can be easily observed that only non-polynomial
Lagrangians can lead to well-behaved fields in the origin. In particular, in the
Born-Infeld theory & = q(r*+rg)~", where ro, = (lq|b1)%.

b) Lg4(&,0) = 0 identically. Then L(£,0) = K, +K, &, K, and K, being constant.
If K, = 0, then the field equations do not impose any condition on &. However, the
respective Lagrangians do not satisfy the correspondence principle. If K, # 0, no solu-
tion exists.

2. Purely magnetic solutions (6 = 0)

(3.18) holds identically and (3.17) reduces to Lps(F, 0) = 0. Every Lagrangian in-
variant with respect to reflections may contain only even powers of G, thus leading to
purely magnetic solutions.

3. “Mixed” solutions (& # 0, & # 0)

a) Lyg # 0. (3.18) and (3.19) yield Ly(&, #) = gr2, q being a constant. In the Born-
Infeld theory, the spherically symmetric solution representing both electric and magnetic
monopoles has the form

=1 EN (1o LY (1= EN LT
r2 b2r4 2r4 b2r4 b2r4 4

b) Lgp = 0 identically. Eq. (3.17) leads to pathological Lagrangians of the form
L(&,B) = A (BY+ A ,(B) &, where A and A", are arbitrary functions. If £, () = K, 4B,
with K, = const., & can be an arbitrary function of # and r. For other choices of A’ 2(B),
no solution for & exists.

Summarizing, we see that non-linear electrodynamics does not imply the static charac-
ter of spherically symmetric solutions in general (cf. 1b and 3b) but in physically rea-
sonable cases, in which the correspondence principle with the Maxwell theory is satisfied,
the spherical symmetric solutions have to be static modulo the field equations.

In order to be able to study other solutions of the equations (3.8)-(3.11) we have to
turn to approximation methods. Before analyzing the approximation technique used
in this paper, it will be useful to discuss briefly the Maxwell electrodynamics with sources
in the framework of the NP formalism.
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4. The Maxwell electrodynamics with sources

In a manner similar to going over from the tensor equations (3.1), (3.2) to the NP
form (3.8)—(3.11) in the case of vacuum non-linear electrodynamics, we can find the NP
form of the equations of the inhomogeneous Maxwell electrodynamics in flat space.
Applying Heaviside’s units, we obtain the system

2 1 —

0P, + -, = — —FPy—J,, (4.
e \/Zr 0~ Jo 4.1)
"<I>+1<D ! P, —J 4.2

(7] - = — — —Jq, .
P2 =P \/2r 1 1 (4.2)
0,~ L, ! &, = L 0P, +J 4.3
u 20 27‘ o - \/27‘ 1 1s ()
0 16 ! (] _‘—1 b, +J 4.4

g, — — —_— = - — . .
" 2 r ¥ 1 \/27‘ 2 2 ( )

where J, = 3J,0I*, J, = ¥/ m*, and J, = 1J, 1" are (up to }) the null-tetrad components
of the four-current J*. In this section we assume these source terms to be given.
(Note that these terms have opposite signs than used conventionally, so that the charge
of the electron is positive.)

If we assume the usual asymptotical conditions @, ~ O(r=3), 6, ~ O(r-3), 8P,
~ O(r3) (cf. [18]), which correspond to imposing the outgoing radiation condition,
Egs (4.1) and (4.2) may be integrated to yield

r

1 0 1 12
&, = — O%u, 0, g)— e ) Fdodr — — | Figdr, (4.5)

o

1 —
d, =~ d)g(u, 0, )— J' dr'— - Jr Jdr', (4.6)
r

where @9, @9 are functions of integration. For the solutions to be well-behaved we have
to require that

0o~ O™, FIy~00™%, J~O003; 4.7

this is, of course, fulfilled for insular sources. From (4.5) and (4.6), it is immediately seen
that &, ~ O(r?) and @, ~ O(r') — the statement of the “peeling-off” theorem well-
known from the vacuum linear theory [18]. (Owing to the conditions (4.7) its proof does
not require the insular character of the source.)
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As a consequence of (4.5) and (4.6) we may write (4.3) and (4.4) in terms of ®,, ®°
and @9 only. After some rearrangements (using (2.12) for s = 0) we obtain

r

1 1 v 0,
io,,d>0-5;d>0~5;355er5odr

¥

1 o 1 o, ,
= - ;/‘-;‘—‘ g¢,+ ?“3 gJ r Jod!“ +Jl9 (4.8)

8

and

] 2 0 1 12 " ’ ’
+\-/§—}725§01—Tr,25 PiJodr =1 I L dr
Y

o

r
©

1 i +2 1 12 ’ 1 ’ 7 T ’
- 3 r G“Jo— = 6,,(1' JO) dr' — =31\ [5J1+5J1]dr —J, = 0. (49)
2 J2r
Regarding (4.8) multiplied by r, the last equation reduces to

1 1
o~ (o,,ds? + -5¢2>

7
1 ’2 1 ’2 ' 1 AT I ’
- ';2' r 6uJ0— i@,(r JO) dr' — \75? r [3J1+5J1]dr —J2 = 0. (410)

This equation can be simplified further if we realize that the continuity equation in the NP
formalism reads

1 1 1 - 2
(6,;— - 0,— -~> Jo+ ~~,:—(5J1+5J1)+<0,+ -) J, =0, (4.11)
2 r V2r r

so that (after integration)

r

1 1 1 1
Jy == J%u, 0, p)— = J‘r'z (0,,— = 0, — —7> Jodr’
r r 2 r

0

r

f r'(3J,+ 8T )dr, (4.12)

w0

1
V27t
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where JJ is an integration function. As a result, (4.10) yields
~ (o] 1 o] W] .
0,01+ —= 0P, = J3. (4.13)
V2

Now, instead of the original system (4.1)-(4.4), we adopt the equivalent system of Egs.
4.5), (4.6), (4.8), and (4.13).

The integro-differential Eq. (4.8) can be solved by the expansions in spin-s spherical
harmonics (cf. [19] for weak gravitational fields). At first we assume

Py = Z Zoim 1 Yim> ¢(1) = Z 8(1)1m 0 Yim,
Jo = Z hotm 0 Yimy J1 = Z Bytm 1 Yims (4.14)
and introduce new quantities x,, by the Couch substitution [20]
o d-ipi+t [ Xim _ 5.
Zotm = T D 7 3 D= Ops (4.15)

(the substitution is suitable owing to our asymptotic conditions). Then, with the help of
.15) and of the relation Di{r Ny =r proof by induction), Eq. (4.8) can

4 d of the relation D{r'*'D'(Fjr) ‘DHIF f by inducti Eq. (4.8)

be adjusted to read

a“xlm"‘% Dx,m = rlj ee jH,m(dr)l+1,
N e’

I+1
where H,, is given by
1[1 1z 111 2
P H,, =~ r—3[5 (l+1)—J gt = l}i I+ 1)] Jr’zhg,mdr'+h1,m. (4.16)
Changing the variables u and r into v and v = —u —2r, we arrive at
X = [ [P oo [ Hipd?) "1 ]du’ + x5,(0). 4.17)
uo

S
1+1

(While integrating we put all functions of integration equal to zero, because they do not
contribute to go,.) Now it is simple to solve the remaining Eqgs. (4.5), (4.6), and (4.13).
Knowing ®3(u, 6, ) —i. €. the “news function” (cf. [18]) —and ®Y(u = uo, 6, ¢),
Eq. (4.13) determines &9 at all times ¥ > u,. From Eq. (4.8) and (4.17), the function &,
can be found at all times ¥ > u, provided that &,(u = u,, r, 6, ¢) is given. Filially, Egs. (4.5)
and (4.6) yield @, and &,.

In particular, the solution representing the incoming 2'-pole can be found by taking
&) = &Y(u = uy) = 0, so that, by (4.13), &} = 0 and, therefore, H,, = 0. The resulting
field has the form

1-4 1/2
== [(+4-1)! - —a| Xm(®)
2 I~1pl+1-4
O, =2 [.———(l il T D —rx (14w A=0,1,2. (418)
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By performing the inversion of time we can obtain the outgoing 2-pole field:

1A 1/2 "
ZAT(I—A+1)! e Xy t)
Pa=2” [EI+A—1)! SR r’[”“‘ t=a¥im (19)

where d = —20,+0,. Both (4.18) and (4.19) will be needed in § 7.

5. The Newman-Penrose conservation laws

In this section we wish to discuss the analogues of the conserved quantities discov-
ered by Newman and Penrose [7], [8] for linear zero rest-mass fields and for the gravita-
tional field in asymptotically flat spacetimes. In order to see how many conservation laws
of this type a particular non-linear theory of electromagnetic field yields, we will keep
the form of the Lagrangian as general as possible.

At first let us cast the non-linear field equations (3.8)-(3.11) into ““linear” form (4.1)~
-(4.4), in which, of course, the “‘source terms” J,, J, Jy, J, will now involve the field
itself. To simplify Egs (3.8)-(3.11), we multiply them by the factor 3 A. In some cases,
this factor can be chosen in such a way that the terms AL;, AL, and ALy are polynomial
in F and G so that the resuiting form of the field equations is polynomial in the &’s, al-
though the Lagrangian L may be non-polynomial. For example, this can be done for Lagran-
gians like L = (P/P,)", L = exp (P;/P,)’, or L = log (P,/P,), in which P, and P, are
polynomials in F and G, and « is an arbitrary real number. (In particular, A = [1 +(2/6®)F
+(1/b*) G*1¥'2 in the Born-Infeld theory.) Hereafter, we shall restrict ourselves to Lagran-
gians of this kind and, moreover, to all Lagrangians which lead to power series (in F
and G) for AL, ALy, and ALy,. These Lagrangians will then be determined by the ex-
pansion coefficients in these series.

Now we formally write (4/2) 2L, = AL,—1+1 and transfer the terms with (AL,—1)
in (3.8)—(3.11) to the right-hand sides. Realizing that for any Lagrangian of our type,
satisfying the correspondence principle (Lg(0, 0) = 1), there exists such a 4 that the term
AL;—1 starts, at least, with linear terms in F and G, we convert (3.8)-(3.11) into the form
of (4.1)-(4.4), where the J’s contain, at least, terms cubic in the @’s.

To find NP conserved quantities we need explicit expressions for J, and J; only.
These read as follows:

2 j -
o = (AL, )[r 1+r 1t Jir o:l

1 - 1 = = 1 —
+ ij. {L" [dsla,ad'{" —‘¢05d] +Ln] [Qlard'{_ _—¢ogdi|

2 o

— 1 S I |
+L" [:¢_‘ard+ \/_2- r¢05’di] +Ll!! [4)16,.%‘*‘ “"'-qiogqﬂj]} Py (5‘1)

J2r



) i 1. 1 1 _
Jl = —(/.Ll—l)[(/'"(po— EU,(DO— 2—r¢0+ ;*‘2:‘;3¢1:|
1 1) - L , 1. 1
—2l L“ (po au—"i(]r nﬂ"‘ \"/72‘-—'.¢15/«4Q{ +L[“ ¢0 (7"— 50, Jf"’ ﬁ’:¢la’tﬂ
— | B I - | R
~Ly| @0, + =&, 8t | —Ly | 6,0, + —~®,8 |} . (5.2)
Var V2

(J, and J, may be found analogously. Note, however, that J, is not identically equal to
the complex conjugate of J,; the equality holds for the solutions of the field equations.)
Assuming now @, ~ O(r-3), 8,8, ~ O(r), d®y~ O(r—3), 8P, ~ O(r—>) (outgoing
radiation condition) and the expansions of @, and &, in the inverse powers® of r, the
inspection of Egs. (4.1) and (4.2) (with the J’s found as indicated) reveals that @, ~ O(r-2?),
@, ~ O(r~1). Consequently, for the asymptotic behaviour of the J’s we get J, ~ O(7),
Ji~ O0@F®), J, ~ O@®) and J, ~ O(r~7). We may thus write

e o

~ ®(u, 0, ) @, 0, ¢) 7 @u, 0, ¢)
@y = EE Y ) oy = ™ s P, = % >
/ J r F r

n=0 n=0 . n=0
olu, 0, ¢) “Ji(u, 0, @)
Jo = E S, = s
] F
n=0 n=0
- z Ji(u, 0, ¢) Jou, 0, ¢)
J, = t 2 U, = - (5.3)
r r
n=0 n=0
Since the coefficient with r—2 in the expansion of J, vanishes, Eq. (4.13) takes the form
. i
P = — = 3PY, (5.4)
V2

with the dot denoting d,. Multiplying this equation by oY, and integrating over the
sphere, we obtain (using (2.13) for [ = 0)

d { o i - o
— OYooq)ldQ = — “71 OYOOg(pZ({Q = O.
du Ny

Thus, in any non-linear theory under consideration, the conservation law for the total
charge, | ¢Yoo®7dQ = const., holds in the same form as in the Maxwell theory. (The
charge is complex: (electric)+/(*‘magnetic’).)

3 It is actually sufficient to assume the expansions only up to r ™%, with N being a suitable integer.
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In order to derive the NP conservation laws, we turn to Eq. (4.8) in which J, and J,
are given by (5.1) and (5.2), respectively. The substitution of expansions (5.3) into (4.8)

yields
e [—
(n+2)q>0 1 30 +1 do P}
3+n 4+n ’i r3 2 (n+1)r4+n
=0

1 N n
- \/2 (n+4)r7+" rn+6 '

After rearranging the terms and using (2.12) we arrive at

. 1
g = — 7 L8 (5.5)

and

. 1 - , 1 _ -

(n+1)op*t = — 5[55(D3+n(n+3)¢'5]—:/-§— FIy  +(n+1)Jy 3, (5.6)
where 7 > 0 with formal definitions J5* = Jg? = Jg' = J7? = J;! = 0. Eq. (5.5) does
not lead to any conservation law. Multiplying (5.6) by Y}, and integrating over the
sphere (using (2.14)), we obtain the relation

d - 1 _
d——f(n+1)1Y1m<P8“dQ = - [U=1) (+2)=n(n+3)] flﬁm¢3d9
u

1
+(n+1) J Y, Ji2dQ— 5 '[ Y, 85 3dQ. (5.7
v

Provided that / = n+1, the term in the square bracket vanishes and, furthermore, if
n =0, 1, the remaining terms on the right-hand side vanish, too. Therefore, any non-
linear electrodynamics satisfying our requirements on the Lagrangian yields eight conser-
vation laws

d [ _
d—JlYlmqbng =0, m=-1,0,1,
u

and
d RY, 2 -
o 1Y0,90dQ2 =0, m=-2,-1,0,1,2.

Since our restrictions on the form of the Lagrangian seem to be rather weak, we conjec-
ture that any physically reasonable (satisfying the correspondence principle) non-linear
electrodynamics possesses at least 16 real conserved quantities, in addition to the total
charge. Owing to the “source terms” in (5.7), it is rather improbable that we get any
further conservation law of this type in a general case. For example, we have 16 conserved
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quantities in the Born theory, and the same number in the Born-Infeld theory. (This is in
agreement with the results of Porter [15] who, in a somewhat different way, derived 16
conserved quantities in the Born-Infeld theory, whereas Chellone [14] only gives the first
6 quantities in the Born theory without mentioning the other 10 quantities.)

However, there are non-linear theories, satisfying the correspondence principle,
in which ‘“‘source terms” vanish up to a greater order in r~!, so that more conservation
laws exist. To learn this more specifically, we expand AL;—1, ALy, and AL, in powers of F
and G and denote the degree of the lowest powers by p, ¢, and s, respectively. It can then
be easily proved that there exist at least 2(N—2) (N—4) real conserved quantities where
N = min (3+4p, 6+44, 6+4s); N > 6 because p > 1 due to the correspondence principle.

>3]
For example, Lagrangians of the form L = F+ Y a,;F'G’ with a;; = 0 for i+ < k lead

i j=1
to 16k (2k—1) conserved quantities.

Unfortunately, concerning -a physical interpretation of the conserved quantities
we cannot say more than for the gravitational field in general relativity. The quantities
seem to characterize both incoming radiation (wave tails considered in § 7) and the mul-
tipole moments of source. For (linear) test fields on the Schwarzschild background Bar-
deen and Press [21] argued that the NP quantities may have a lesser physical meaning
than originally expected. However, the problem appears far from being settled. In non-
linear electrodynamics a smaller number of exact solutions is available than in general
relativity. For example, we are not aware of any exact static solution for which the quan-
tities would not vanish.

6. Approximation method

In this section we describe an iterative procedure of constructing both stationary and
radiative approximative solutions of the field equations of non-linear electrodynamics
satisfying the correspondence principle. This procedure suggests itself immediately when
the field equations are written in the form of Eqs (4.1)-(4.4), with J, and J; given by (5.1)
and (5.2), respectively, J,, J, being expressed analogously.

Assume D3(u, 0, @), ®U(u = uy, 0, ¢), and So(u = uy, r, 0, @) to be given (P ~ O(r3)
at large values of r). As shown in Section 4, these data uniquely determine the exact solu-
tion of the Maxwell equations — our zero approximation. Inserting this solution into
the J’s in (4.1)-(4.4), we obtain the equations in the form of the Maxwell equations with
the sources. Now it may happen that the J’s found in this manner will not satisfy the
continuity equation, so that the solution of (4.1)-(4.4) will not exist. This will in fact
be true whenever the factor A (introduced in the preceding section) is a non-constant
function of F and G. To investigate it, let us turn back to the field equations in the original
tensor form (3.2). In accordance with (4.1)-(4.4) (cf. also (3.8)-(3.11)), Eq. (3.2) can be
writtenas F4’ = —J#* = —[AP% —ALsF ;*” — F"]. From hereitis seen that only if A = const.,
J, = 0 for arbitrary F*”s (i. e. ®’s) satisfying the potential condition (3.1). (P% does not
vanish for approximate solutions.) However, we easily avoid this shortcoming by solving
the system (4.5), (4.6), (4.8) and (4.13), instead of (4.1)-(4.4), or (4.5), (4.6), (4.8), and
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(4.10). (Note that JJ = 0 in (4.13) owing to (5.3).) In Section 4 we have seen that
Egs. (4.5), (4.6), (4.8) and (4.13) determine unique solution for given initial data — this
will be the first-order approximation. Higher-order approximations can be obtained by
repeating the procedure. Of course, the solution found in this way will also satisfy the
system (4.5), (4.6), (4.8) and (4.13) with 4 = 1, in which case the continuity equation
holds identically. Therefore, independently of A, both the continuity equation and Eq.
(4.10) (i. e. also (4.4)) will be satisfied.

Multiplication by a non-constant 4 is not necessary for Lagrangians given as power
series in F and G. Moreover, A will often be of the form A = 1+ (small terms quadratic
in the @’s)+..., so that J% = 0 with sufficient accuracy in every step of iteration.

An iterative method for constructing solutions in the Born theory was suggested
and applied by Chellone [13]. However, the problem of the choice of a consistent system
of equations, supplemented by initial data, was not examined and, in fact, some of Chel-
lone’s results representing the first-order approximation do not satisfy all field equations
considered*.

7. Wave tails and transients®

The approximation method, described in the last section, was first applied to static
spherically symmetric solutions because, in this case, a comparison with the exact form
of solutions was possible. Assuming the Lagrangians to be power series in F and G,
L =Y a;;F'G’, the second-order approximation yields

3 5
q9 4 q 1
&, =5+ <A+ ——B+0 |3,

T T 64r'° (r“)

where ¢ is the charge, and the constants 4, B are determined by the coefficients a;;. These
solutions deviate from the exact ones by the terms O(r—14).

In order to exhibit the physical effects of non-linearities on the propagation of waves
we investigated the first-order solutions which, in the zero order, represented an axially
symmetric radiating dipole. (Lagrangians were assumed to satisfy our requirements as
described in § 5). The null approximation for the ¢’s reads as follows:

D6 = fo 1Y10s ?; = f10Y10 D, =f, -1 Y10 (1.1)
where

fo=2ar"3 fi = —=2ar"?*=2ar"3 f,=2ar"'+2ar  4+}ar

a(u) being a dipole moment and the dot denoting d,. Using (2.15) for the product of the
Y’s, we obtain J, and J, in the form

Jo = ho1 oY10+ho3 0Ys0+hos o Yso+ -,
Jy=hy 1 Yigthys (Yaot+hys (Ysot...

4 This can be observed if the solution (6.19) given by Chellone is substituted into his Eq. (6.2).
5 The detailed calculations the results of which are summarized in this section are given in J. Slavik
Diploma thesis, Department of Theoretical Physics, Charles University 1972 (unpublished).
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The functions 4 depending on # and r, and on the type of non-linear theory under considera-
tion, are rather involved and will not be given here. The terms with oY 5,4 1y0 and 1 Y574 150

for [ > 3 are omitted, so that 2*'* V-poles (with / >> 3) are neglected. Denoting (cf. (4.16)
and (4.17))

Fi(u,r)=r{f [r2 | #2hg,dr' +hy (] (dr)?,

w

Fayu, ) = r* [§J][y6 777 § r'2hosdr’ +hy3r™ 2] (dr)*,

Fo(u,ry = r* J§§T IVT5 777 [ 2 hosdr’ +hysr™*] (dr)°,
and
xy = | Fyu',o)du’, x5 =6 [ Fyu',v)du,
xs =15 | Fs(u',0)du', (v= —u-2r),

we get the first approximation in the following final form:

2
3. -~ r - .
Py = fo 1 Yio+D*(x,7 ™)1 Yo+ "/ED4(X3" *)1 3o
v
4
4 6y =5
+ \/-—1_5_1) (x5 7)1 Ys0, (1.2)

® =f; 0Y10+D(x1r_2)0Y]0+r2D3(x3r_4)0Y30

r
+7r4D%(x5r ™), Yoo =172 | r'?hoydr'yYio
o0

r r
- - - 2 .
—Fr 2 j "/2h03d",0 )30—7' 2 5 r/ hosdrloyso,

o el

?, =/, -1Y1o+x1r_3—1ylo+\/6 2D (x3r"%)- Yoo

+ /15 P D*xsr ™) Yso 1™t [ [F72 1/ 2hoydr]dr _ Yy

F /67 [T [ 1 2 hosdr)dr _ Yaq+ IS 071 § [1772 [ ¥ P hosdr ]dr _ Yo

r r r
7 [P Rdr Yo+ P hyadr C Yag Tt § 'k sdr s
o aoc o)
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Although we did not give the explicit structure of the 4’s, we may now interpret
the individual terms appearing in the @’s. Supposing that the dipole moment a(x) is non-
-vanishing only in a small range of u; ue (—e, +¢), then from the field equations we see
that the J’s and thus also the A’s are non-zero only for we (—¢, +¢); the same is also
true of F,, F and Fs. However, the quantities x,, x;, and x5 vanishing only for v < —¢
become complicated functions of u and v for ¥ e (—¢, +¢), and are the functions of v
only for v > +¢. The first terms on the right-hand sides of (7.2} are the zero-order solu-
tions (cf. (7.1)). The next three terms represent incoming radiation (dipole, octupole,
25-pole), which may be considered to be caused by the scattering of the outgoing pulse
by itself due to the non-linearity of the field equations. These are the wave tails. The re-
maining terms, with a structure resembling the outgoing dipole, octupole, and 23-pole,
are non-vanishing only during the ‘“‘broadcasting period” when we (—¢, +¢). These are
the transients.®

8. Discussion

Although one may expect the existence of a tail of electromagnetic radiation in generic
cases of non-linear electrodynamics, situations might arise in which (at least) the first-
-order correction would contain no tail. A surprising result of this type was obtained by
Couch and Torrence [22] for a quadrupole gravitational wave imploding from infinity
towards the origin, and then re-exploding back to infinity. In order to investigate an analo-
gous problem in non-linear electrodynamics one may use the approximation method of
Section 6, starting with an imploding and re-exploding dipole wave as the zero approxi-
mation. In particular, one may ask whether, in the first-order approximation, the self-
interaction of the wave would not lead to a tail only for a special choice of Lagrangian.

Concerning the Newman-Penrose conserved quantities, it is well known that they
are essentially trivial in linear theories. In order to see their physical meaning in a full
non-linear theory, it might be helpful to analyze them in a suitable example of non-linear
electrodynamics.

The NP formalism should also be useful in studying the interaction of a non-linear
electromagnetic field with a gravitational field, in particular, when treating radiation prob-
lems (cf., for example, the study of radiation scattering in the Einstein-Maxwell theory
[6]). Not even spherically symmetric solutions, however, have been analyzed in detail,
though some results were obtained by means of the standard tensor formalism [23, 24].

Thanks are due to Professor J. Kvasnica and Dr. J. Niederle for providing us with
useful literature on angular momentum in quantum mechanics.
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