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The purpose of this paper is to formulate the canonical formalism on null hyper-
surfaces for the Maxwell electrodynamics. The set of the Poisson brackets relations for null
variables of the Maxwell field is obtained. The asymptotic properties of the theory are
investigated. The Poisson bracket relations for the news-functions of the Maxwell field
are computed. The Hamiltonian form of the asymptotic Maxwell equations in terms of these
news-functions is obtained.

1. Introduction

Let us consider the traditional gauge invariant canonical formalism for classical
Maxwell electrodynamics. The action of the electromagnetic field has the form:

W = | d*x2(x),

where Z(x) is the Lagrangian density. The field equations, derived by varying the action
integral with respect to f,, in the non-relativistic notation, have the form (¢ = 1):

1

B . .
% +VxE =90, (1.1a)
VB =0, (1.1b)

oD . .
—— +VXH =0, (1.1¢)

ot
vD =0, (1.1d)
where
D =E = (for. for. fo3)y H=B=—(f5.f31, f12)-

This non-relativistic form is related to a particular choice of space-like hypersurfaces;
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¢ = const., and time-like directions in the space-time. The energy-momentum tensor of
the theory has the following form:

™ = )}~ g" 2.
Generators of the Poincaré transformations are obtained by integrating the energy-

-momentum tensor over the space-like hypersurface. The energy and momentum, for
example, are given by the following formulas:

P° = {d*HED - %), (1.2a)
P* = [d*(DxBf, k=123 (1.2b)

We now choose 5(?) and B(r) as the canonical variables for the electromagnetic field.
We assume the following Poisson bracket relations (P-BR) between these variables [1]:

{B{r, ). Dfr', 0} = 3V 0 DF—F),
{B(r, 1), B{r', 0} = {D(¥, 1), DA¥', 1)} = 0. (1.3)
It is easy to verify that by assuming this form for the P~-BR we obtain the time evolution
as given by equations (1.1) from the relation:
dF
di

— G 0
——{,Z/”,P},

where # is an arbitrary dynamical variable of the electromagnetic field. The choice of
the dynamical variables, and the form of the equal time P-BR is related to a particular
choice of space-like hypersurfaces, 1 = const. The relativistically invariant form of the
P-BR (1.3) is:

{fuv(x)ﬂflg(y)} = V[;Agv] [}.VQ]D(X—.}")’ (1‘4)
with
D(x) = i LT n (pp)é(p?) = L 8(x%)8(x?) (1.5)
mp ¢ BV =5 ’ '

Penrose investigated in the sixties the initial value problem in which the initial hyper-
surface is not space-like but null {2]. This approach has an advantage over the usual Cauchy
problem in that all constraints (initial data equations (1.1b, d)) are eliminated from the
theory for a large class of interacting fields which includes the Maxwell and Einstein
field. Penrose has pointed out that null hypersurfaces and null directions are in fact much
more convenient in calculations, and may perhaps also be regarded as more fundamental.
Null hypersurfaces were applied in various branches of physics, for example, in the light-
-cone approach to strong interactions {3], and also in quantization on null hypersurfaces
in the framework of field theory {4].

In the present work we formulate the canonical formalism on null hypersurfaces for
the Maxwell electrodynamics. We transform the conventional P-BR from the initial
space-like hypersurface to the desired null hypersurface, and thereby obtain an equivalent
set of the P-BR for the variables defined on the null hypersurface. This set of the null
P-BR for the Maxwell field has not been discussed so far.
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In order to give the formulation we first consider field equations on null hypersurfaces.
The Newman-Penrose tetrad formalism will be used [5]. The choice of suitable null
coordinates permits one to investigate the asymptotic behaviour of the P~-BR. From the
set of the null P-BR we obtain the asymptotic P-BR for the so-called news-functions,
introduced first by Bondi in General Relativity [6]. These P-BR for the news-functions
were obtained in the framework of a Lagrangian formalism by Komar and by heuristic
arguments by Sachs [7, 8]. It is possible to compute these P-BR for the news functions
using the Fourier transform technique {7, 9]. (See: Appendix A). Next we shall discuss
the asymptotic null canonical formalism where the news-functions are the fundamental
objects. Finally we investigate the asymptotic generators of canonical transformations
for the asymptotic Maxwell equations. We prove that it is possible to reconstruct, step
by step, the whole theory from the asymptotic equations. Such a method may be very
useful in a theory where the canonical formalism is unknown, but where we have some
information about the asymptotic behavior. This procedure applied to General Relativity
will be presented in the next work.

2. Null coordinates, Maxwell equations on null hypersurfaces

We introduce the following set of null coordinates in the Minkowski space-time;
u=t—r,r 0, ¢. Coordinates r, 8, ¢ are ordinary spherical coordinates in three-dimen-
sional space. The u coordinate measures the retarded time, the surfaces ¥ = const. are
just the light cones emanating from the origin r = 0. The line element ds? can be expressed
in terms of w, r, 0, @:

ds* = g, dx"dx’ = du®+2dudr—r*{(d0* +sin® 8d¢?),
with

0 1

X =uxt=rx2=0x= ¢

Let us choose four null vectors (/*, n*, m*, m*) at every point of the space-time in the
following manner: [* is the outward null vector tangent to the cone u = const., #* is the
inward null vector pointing towards r = 0, and m" and m" are the complex vectors tangent
to the two dimensional sphere defined by constant r and u. These vectors in the nuil
frame u, r, 8, ¢ have the form:

M —_ 3 —_ 3
" =246 n*=065—-%6f

1 i — 1 i
P —— 05+ —— 05 ), P — | 84— 3% ). 2.1
" \/2r( 2t o 3) " \/Zr( > sin0 3) 1)

We introduce as our field variables the tetrad components of f,,. These are given by the
following definitions [5]:

450 = fuvlu'nva
o, = L f,('n+m"m’),

®, = f,m"n". (2.2)
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The six real components of f,, are thus replaced by three complex functions &,, ¢,, and @,
related to the null hypersurface. Functions &,, ®,, and &, satisfy the tetrad Maxwell
equations, which read:

b, 20, Fi
— = — ——= P, 2.3
or r V2 ° (2.32)
o, &, Fi
QA + —_ = = e ¢1, (2.3b)
or r \/2
S il U LAY B 2.3
ou  ° or r J2 ! (2.30)
du or r J2 ¥ ’

Definitions of angular operators & and & are given in [10]. We have thus expressed the
Maxwell equations in terms of null coordinates and null field variables only. This tetrad
form of the Maxwell equations was introduced first by Newman and Penrose [5]. It has
ciegant properties, very useful in the investigation of the asymptotic behavior of the
Maxwell radiation field.

3. P-BR for electromagnetic field on null hypersurfaces

Projecting the relation (1.4) on the suitable tetrad (2.1) we shall find the equal-time
P-BR on the null hypersurface v = const. We get, after long and tedious calculations,
with the help of the expression for D function in polar coordinates (Appendix B), the
following relations:

{¢0(u: r, 'Q)’ ¢2(u, r,’ Q’)} - {¢0(u’ r: Q)’ @1(14, rla Q,)} = 05
{@(u, 1, Q), D(u, r', 2V} = {Dy(u, 1, Q), D,(u, ¥, )} =0,

8(r—v F—7
_80=r)  Ir=r|

{Qo(ua 7', Q)a ‘pz(“a ”’, Q’)} = ( _56) 6(2)(9—91),

2'.'.' 4r3r1
: o Fr=r)  er—r)= er—r)-
{(pl(u, " Q), ¢1(u, " e )} B (i- rr -t Srzr'z 58’_ 8}-3r1 6’6’

lr=r'|

8rr

+ ’55) 5Q-q),

{@o(u, 7, @), Bo(u, ¥, @)} = (5,('”_,?’) %= s(r;,r’)) 5P -0),

rr P2 ror

¥ ’ ’ (S(r— r’) s(r— f") g ’
{4)0(u9 r, 9)9 ¢1(u’ r,Q )} = (_ P2 + FEN )\—/5 5(2)(9—9 ),
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{@olu, 1, Q), &y(u, v, ¥)} = 8(: )?faaﬂm ),
r
— 6 _ _ .
{@:(u, 7, Q), &4(u, 7', )} _( o) sy s T gy
rr 8rir P

_%F‘(_r r)) 5@ -0,
r r

<§(r—r') N g(r—r") N Ir—#'i

{®{u,r, Q), By(u, ¥, Q) = —

2r?r 213 4r3r?

-\ &
78 | —= 6P (Q-Q),
\/2

Fr=r) 8r=r)  &r—r)
{@2(u, 7, Q), By(u, 1, @)} = ( e +3 rir + ar®y
. |2 : ,Iaﬁ) 5D(Q-0), (3.1

We can reconstruct the tetrad Maxwell equations (2.3) from the formula

0P,
ou

r: r= O, I'J 2

using the null P-BR (3.1), where P, is the generator of translation in “time” w. P, is
obtained by integrating the energy-momentum tensor over the null hypersurface with
I* as normal vector:

P, = [ 4T, 'r’drdQ = [ ($;®,+2%,8,)r’drdQ. (3.2)

The derivation of the tetrad Maxwell equations starting from the formula and all P-BR
(3.1) is an easy but tedious exercise. The structure of the P-BR given by equation (3.1)
is essential to the study of the asymptotic properties of the theory.

4. Asymptotic null canonical formalism

Among ‘all null hypersurfaces there is one which is distinguished by the following
parametrization: r = oo, 4, 8, ¢. This hypersurface will be called the null infinity and
will be denoted by S+, It follows from the well known ‘“peeling off”” theorem that the
asymptotic behavior of the tetrad fields are given by [2]:

du, O 1
Do(u, r, Q) = °(r3 )+o(;z),

®(u, Q)
¢I(“’ r, ‘Q) r +0 (;:3) s

(4
®,u, 1, Q) = 452(1:, D o (;1-2) : (4.1)
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To obtain the asymptotic Maxwell equations one integrates the ‘radial” equations
(2.3 a, b) to obtain the asymptotic r dependence of the solution on a given hypersurface
u = const. This solution will contain “‘constants” of integration, i.e. functions of 8 and
g on a given null hypersurface. The non-radial field equations (2.3 ¢, d) will determine
the propagation of the solution off the given hypersurface and relate the constant of
integration to the initial data [11]. Finally, we obtain a form for the asymptotic Maxwell
equations:

) RN

il ;’5 3, (4.2a)

by § .

—-= - \/_i 9, (4.2b)

P FEs
na_uo = — {_2—<15'5“1+(n+2)(n—1)¢’5"’} , h=1, (4.2¢)
where
(pn—l
Po(u, r, Q) = 2 ;5"—; :
n=1

The particular choice of @, corresponds to retarded multipole solutions [11]. It is a well
known statement that a solution of the Maxwell equations is uniquely determined by
assuming functions ®(r, Q), ®3(u, @) and ®YQ) to be arbitrary functions of their
arguments. ®3(u, Q) is called the news-function because its u dependence governs the u
dependence of @, and @9. The meaning and the physical interpretation of the news-
functions have been discussed in detail in the literature [6], [12].

Assuming the news-function 3 we can, with the help of the asymptotic Maxwell
equations, compute all the remaining functions which appear in the expansion of $,, @,
and @, in the form of a power series in 1/r. For example, we get:

o) D 1
¢0:;§‘+—1‘_4+0 )S 5

¢ +(5¢)+0
T2 J2rt )’

(545")
¢, = \/2 % +0 (r ) ) (4.3)

Following this procedure we can, with the help of equation (4.2), compute the functions
®,, Py, and @, i.e. reconstruct the whole solution of Maxwell’s equations. It follows
that the whole field dynamics is contained in the news-functions. It is enough to assume
only P-BR between the news-functions in order to reconstruct (not effectively, but step
by step) the full canonical structure of the theory.
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From the relations:
{¢2(“w r, {2)3 (pl(ula r', Q’)} = {52(11’ r, Q)’ 52(“’, r’) Q’)} = 07
{@,{u, r. Q), @', 1, Q) = iV YV, DurQ, u'r'Q’), (4.4)

and using formula (B3) derived in Appendix B, we get the following P-BR for the news
function @ = lim rd,

T 00
{03(u, Q), D3, 2)} = {®5(u, Q), PYw', )} =0,
{(DNu, Q), 3w, )} = 1 5'(u—u)?(Q-Q). (4.5

From the relations (4.5) and (4.2) one can also obtain the following asymptotic P-BR:

— . gu—u)—
(D%u, Q), %', Q) = LTL‘) FISH(Q-Q),
~ 1
(&%, Q), 3, Q)} = — i du—u)Fs'?(Q-Q),
(DY, Q), D3, )} = 1% e(u—u)FFI*(Q-Q)). (4.6)

It is obvious that these relations follow from the basic P-BR of the news functions (see
Eq. (4.5)). If we want to write the asymptotic Maxwell equations in Hamiltonian form,
then we have to know the asymptotic generators of the Poincaré transformations. The
action of the Poincaré group on the null infinity £~ is given by the following formula:

K+ A

¢ det K A ¢ . Oi(p
— — < == 1, = Cig - €7,
gl +v [T g2

and

U = K (u+e°~e® cos 0—¢' sin 0 cos ¢ —&? sin 0 sin ¢),
where the function K(£2) is completely defined by complex parameters k, 4, u, v. Six
independent real parameters of the matrix (Z i) and four parameters of the translation

£, &', ¢2, &3 characterize the action of the Poincaré group on the null infinity #* [7]. The
Poincaré transformations induce one parameter families of news-functions &9, given by:

-2

i A .
Y, = P+ 1 (A, D) + 3 (A, (A, D} +.... 4.7

The map ®3 — @9, is a canonical transformation whose generator is found from the
equation [1]:

0

d(DZi.

= { A, %% 4.8
a |, 2} (4.8)
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In this way we can compute generators of canonical transformations given by the four
parameter translation group:
Q =0,
' = u—a%,
where

a* = (—1, —cos 0, —sin 0 cos ¢, —sin 6 sin ¢).

Under these transformations:

| 0 1 0?
O 2 = 0 _ a (o] X, \2 0
Po(u—a’e, Q) = d;(u, Q) T a’s, P o5+ a7 (a%sy) P D5 +...

Hence from equation (4.8) and the P-BR of the news-functions one obtains the following
generators of translations:

Hleo] = 4 [ dudQd389,
A'le,] = 4| dudQd3®3 sin 6 cos ¢,
H[e,] = 4 [ dudQd3®3 sin 0 sin g,
A es] = 4 [ dudQd38) cos 0. (4.9)

Now, we can write the system of asymptotic Maxwell’s equations (4.2) in the Hamiltonian
form:

00° 4
== (00 ey = - 7 %,
6@0 - ’ 4 02¢0 6’5
7970 = {90, H[eo]} = 4 [ du'e(u—u')30 23 = ‘57[; =5 %
and
a(pg 5452
_ = ¢0, f =
6u { 2 [80]} au

5. Discussion

The use of suitable null coordinates permits one to formulate the traditional, i.e.
the space-like canonical formalism, in terms of null hypersurfaces and field variables
related to null directions in the Minkowski space-time. It is possible to obtain a null
asymptotic form for Maxwell’s equations from the structure of null Maxwell’s equations
and the P-BR relations. It follows from the asymptotic properties of the theory that
the whole theory may be described in terms of the news-functions. The asymptotic null
canonical formalism is based on these fundamental properties of the news-functions, and
we assume only the P-BR between them. In this work we have formulated the null canonical
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formalism, and we have shown how to obtain the null canonical formalism based on the
news-functions. In principle, if we know the asymptotical null canonical formalism,
then it is possible, using equations (4.2), to reconstruct the whole theory. The curious
feature of the null hypersurface approach is the fact that one-half of the amount of infor-
mation which is required in the usual Cauchy problem is apparently sufficient here. For
example the news-functions @9 for the free Maxwell field gives us two real numbers,
while for a space-like hypersurface we require four real numbers per point (six D, B minus
two for the constraints VB = 0 = fiﬁ). Hence the null canonical formalism is simpler
because it requires only the P-BR between the news-functions.

The author wishes to thank Professor L. Biatynicki-Birula for his interest and construc-
tive comments. The author is grateful to Jan Mostowski for his comments and the patient
reading of the manuscript.

APPENDIX A

Now, we will show that the Fourier transform. of the news-function is given by the
Fourier component of the full electromagnetic field f,,. Fourier transform of the electro-
magnetic field is given by the following formula [1]:

3

v k k, +1 —ikt+ikr *(k, —1 ikt — ikr ,
Sy 00 Lt + D™ 3, 1]

Fuy =3 tf) = f

where ]‘uv denote the dual tensor of the field.
We now expand the plane wave in a series of the spherical Bessel functions:

e = dn Y Bikn) YinR) Yi(P).

im

Inserting the asymptotic values for the Bessel functions we get on a future cone the following
formula:

F#" euv J‘dk[flm(k: ; 1)e_iku)lm fl:p(k, 1)eikquZ ’
r E
Im

where u = t—r. From the Goldberg-Kerr theorem [13] it follows that

N, il i
Fuv ~ r + r2 +0 ;3 ’

where the function N,, corresponds to the Newman-Penrose tetrad function ®,. Then we
have '

D3, D) ~ Y | dkl finlks +De™ " Yo+ finlle, — D™ Y],

Im

Thus f,, and &3 determine each other uniquely.



518

APPENDIX B
We can expand the function D (1.5) in a series of spherical harmonics

D('X_ ») = Z Z /II mm’ )lm(x))lm(y,)’ (Bl)

w mm’

where
i a A
fli'mm’ = é; J‘ dedQ}vé((x - }))Z)S(XO - yo) Y!:(x) }l’m'(y_)~

Using the rotation formula [14]:

YplX) = Z Dyui(gy» 0,5 0) Y (w),

where # are the angles between the x and y directions, and D!, is the usual Wigner rotation
function, we find

1
Timm = o [dQ dQ,0((t— — P2 =12 =2r cos 0, )e(t—t') E Df,,k((py, 0,,0)
i X

X Y1) Y ()

Using the orthonormality condition for Wigner functions:

4r
J dQD nh - —I—_i_'l 5jj‘0mm’§kk’
and the fact that [14]
4n
mO((p’g 0) zl—* lm( )’

we obtain

1
‘mm’ — 6 t— t 0 '(Smm’ P P —
Ju &( oy 2 ! ( —

where P, dre the Legendre polynomials.
If we now introduce retarded-time variables, then we obtain

{ Pt —(u—u' +r—r)?
\ 2rr’

1
D(urQ, ur'Q’) = E eu—u' +r—r)=— P,
2rr

im

) Yi(Q) Yim(2).

(B2)
From this formula we can find:

e(u—-u)

lim rDurQ, u'»' Q'

rr—‘oo

z QY (Q) = '5(1:2—'—'1,25”’(@-9'). (B3)

im
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