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It is shown that on every null hypersurface a linear connection exists which is both
metric and integrable, but not symmetric in general. Using this connection the Gauss-Codazzi
equations are derived in the case when the null hypersurface admits this connection to be
symmetric. Then these equations are very simple and are used to prove that the Einstein
constraint equations impose no restrictions on the inner geometry of those particular null
hypersurfaces.

1. Introduction

In recent years, the use of null hypersurfaces in general relativity has become an
increasingly powerful tool in the study of gravitational radiation and of initial value
problems for field equations. The investigation of general null hypersurfaces is still in
its initial stages, however, and the differential geometry of those manifolds is not a well
developed theory. For any Riemannian hypersurface imbedded in a Riemannian space
the fundamental Gauss-Codazzi equations hold. Regarding the space-time ¥, as an 4,

and the null surface 1*13 as a three-dimensional space imbedded in the A4, Lemmer [1]
has obtained “the generalized Gauss-Codazzi equations for a rigged 4,_, in 4,” (4, is
a space with a symmetric linear connection defined on it). These equations contain the
two second fundamental tensors of the surface. Moreover, the connection on the surface
is not metrical, therefore this appioach seems to us to be unsatisfactory.

In this paper the Gauss-Codazzi equations are presented in the case when a null
hypersurface is “totally reducible” (see below). Our connection is metrical and we use
only one second fundamental tensor of the surface.
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2. Teleparallelism — a new linear connection on a null hypersurface

Consider a null hypersurface ¥, in a Riemannian space V, with the line element

ds* = gu(u)du'du*, i,k =1,2,3,

The metric is degenerate and rank (%;,) = 2.

Because of the degeneracy of the metrics the Christoffel symbols of second kind do
not exist and a linear connection can be introduced in many ways.

1t seems natural that the proper connection of the surface ought to be metrical and
ought to be defined in a purely geometrical manner. There is a connection satisfying
these conditions —- it is teleparallelism, introduced by Weitzenbdck [2] and studied by
Einstein in his unified field theory [3].

We shall build teleparallelism with the aid of the metric. Every symmetric and degen-
erate tensor in a three-dimensional space can be presented in the form

3
0 AA
gk = — 2 Ui 1
A=2 .
where #,, 4 = 2,3 are a pair of linearly independent covariant vectors.
For given metrics we solve Eqs (1) for unknown vectors #,. These two vectors are
determined up to rotations in the plane spanned on the vectors #;, We take as a solution

any pair satisfying (1). Then we define a contravariant vector Xv" as a null vector of the
metrics

*
k
gik’;" =0,

which is fixed up to an arbitrary scalar factor.
The vector 114"‘ is orthogonal to 7,

iA
wy; = 0.
1
A . . i »
When the vectors 7; are chosen, we define a pair of contravariant vectors w' by relations
A
A

¥ ok
gl = — s

It follows from the linear independence of vectors 7; that

. . 1 . .
At last we introduce a covariant vector v, as a solution of equations
! 4o 61
vw' =6,, a=123,
a

In this manner we have built up, on the null surface, a covariant triad {#;} and
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a contravariant triad {w'} satisfying relations
a

et = &8 )

b
and hence

vk =685 a,b=1,23 (2a)

. - . . 3* . .
Having determined orthonormal triads in V; we may introduce a quantity

-

ri, = wioz, 3)
a

(summation convention over index a is assumed). In fact, this quantity transforms like
an affine connection and is called the teleparallelism. This connection has several useful
properties.

First it can be easily shown that the vectors w; and #; are absolutely parallel with
respect to it ‘

& & — ok k . n ¥ a
Viw' = ow' +I'yw”" =V, = 0. (4a)
a a a

. . » * -
As a result of it, the connection is metrical: V;g,, = 0. Then it may be proved that the
connection is integrable — its curvature tensor vanishes identically

*
Ry" = 20u0y + 2 Gy Lk = 0. (4b)

Hence, any space equippped with teleparallelism is an affine-flat space. It is obvious
from Eq. (3) that this connection is not symmetric in general.

3. Differentiation within the null surface

The method presented here is based upon [4]. The hypersurface 1*/3 is described in ¥,
by equations

x* = x*(u', u?, ud).
The connecting quantities
. Ox"
B = , %)
au'

are mixed tensors — the covariant vectors in V¥, and contravariant vectors in ¥,. As
k3
contravariant vectors the Bf constitute a set of 3 vectors tangent to V5. Another set of
tangent fo ‘V3 vectors is obtained by projecting of the vectors w' into imbedding space
a

o = Biw'. (6)
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« * . . a ‘0
The metric g;, of V; is related to the metric g,; of ¥, by means of the connecting quantities

* x 8
g = LusBiBY. (7
Then the vectors o* satisfy the equations

B

gaﬂal)aal) = gzﬂ(‘?a(}:B = 0’ gasﬁ(ga(gﬂ = —5AB5 (8)

where 4, B = 2, 3. The two sets of the vectors tangent to 1’53 are interrelated by (6) and by
B = 10" 9)

The null vector (lu“' can be always chosen as a gradient-field of the isotropic hyper-
surface ¥*/3. Then the fourth vector is added to the triad {®"} to form a linearly independent
tetrad at points of I*/s, it is determined by relations

ggm'm? =0, (10)
gpm e’ = 5. (11)
Since the null vector m* is not orthogonal to (f)a and is not tangent to the hypersurface,

then it is directed off the I*/3. This vector defines the rigging of any isotropic hypersurface.
For the vectors Bf and m® one has

g, B! = v, (12)

+ . . * - . . . .
For any mixed tensor given at points of the ¥, the covariant derivative within the

null hypersurface with respect to #' (denoted by 6,) involves both {Z A} and Il For

instance
* i a ai x vi pi v ai pi i rras S poi
ViTg = P Toe+ v TgBi — up TiBy + [Ty, — Ty Tgs. (13)
From (13) one gets immediately
VBl —V,BY = 2I", B = 25,"B". (14)

For a pure vector in the ¥, the formula (13) yields
VT = BV, T, (15)

where V,, denotes the covariant differentiation in the ¥, with respect to {Z l}' If the process

of covariant differentiation is applied twice in succession we get, after alternation over
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the indices of differentiation, an expression containing the S;' and the Riemann tensor
R,p,; of the V4. For instance ([5])
* * X al (rllu al Rinpy n ol
(V,‘Vk*VkV,')Fm = \a/lurlﬂm B I\ﬂl[lT B B 2Slk V Tm (16)

* N
Here we have used the fact that the curvature tensor R;,;” of the connection I}, given
by (4b), is zero everywhere.

4. Derivatives of the vectors of the fundamental tetrad

We want to express the covariant derivatives of the tetrad {m® "} in terms of these
a

vectors. For general isotropic hypersurfaces the teleparallelism cannot be symmetric.
In this paper we shall consider these particular hypersurfaces for which this connection
can be symmetric

-1 — i
I[ik] = Sik = 0

In this case 6[ka] = 0 and the vectors 4; are gradlent-ﬁelds and those hypersurfaces are

called totally reducible. First we calculate the derivative VBk By differentiation of (7)
one gets

Vlgtk = gaﬂBkvl i+ 8ap B3 VBk = 0,
. *
since V,g,; = Bi'V,8,4 = 0.

Cyclic permutation of indices &,/ 7, yields two subsequent similar equations. It
follows from these three equations that

%
gaﬂBai‘Vka = 0. a7

L .
Since the contravariant vector V;Bj is orthogonal to all vectors By, which are tangent

to the IZ, it is parallel to the only orthogonal to the surface vector ci)“
s
V.B; = Qikal’a' (18)

The Q,, is the second fundamental tensor field of the null hypersurface. For the symmetric
connection we have

V.B: = VB (19)
and hence @, = Q,;.
Transvecting (18) with w* and the use of (4a) and (6) gives

Vo' = w0 (20)
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From (11) one gets
£ 3 a X
Qi = m VB = np Ve, v3))

It is useful to study the properties of the Q,,. The vector m” is fixed by formulae (10)
and (11). Moreover, it can be shown following [6] that the relations for m* and «” hold
1

m* Vo, = m*V,0, = Aw,, 22)
1 "1 1~

where A is a scalar field. The property of the olf of being a gradient-field has been assumed
here. Using (21) and (22) we get

w'Q, = mﬁia)’ = m,B{V 0" = BfAw,,

1 1 1 1

ai

VY‘"Q,"' = { (23)

The tensor Q,; is hence symmetric and degenerate. Next we calculate %,-m“. We differen-
tiate covariantly (12) and make use of (18)

*
0= ga,,m”Qikoi)ﬂ + ga,,BﬁV,-m“,
then

;‘3*
Q, = —g,,B/V.n". 24)

At last differentiation of (10) gives
g,,,m“é,.m” = 0.

. * * . « - .
The vector m* is orthogonal to Vym® and hence the vector Vyn® is a linear combination
of m”* and "
A

E3
vin® = am®+ b’ + 0
2 3

This formula we put in the expression (24) for Q,, and using identities

z B 4
gaﬂBk(l) = — U,
A
we obtain
1 2 3
Qik = - aivk+ bivk + Cily.

It follows from (23) that a; = 0. Thus we have obtained the expressions for the
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covariant derivatives of the tetrad {m* ")} in terms of that tetrad itself
a
Vm® = QW™+ w o), (25)
! 22 33

- k o
Vicg =W Qikw . (26)

5. The Gauss-Codazzi equations

Taking the vectors m°, " as unknown functions we seek for integrability conditions

of Egs (25) and (26). After differentiating of (25) with respect to «' and after alternating
over indices / and / we have

x X % 2 ko« ks * *
(VV,~V,Vym®* = (‘;" (g +”3V ‘;’ (Vi€ ~ Vi) @7

The left-hand side of (27) equals Rj;, m"B}B}'. Contraction of (27) with m, gives identi-
cally zero, contraction with g, Bj yields

2 *
- Ramum“BfB?B;‘ = — (’kaéh + V;’kéh) (éiglk -Vi2y).

The use of the orthonormality condition (2a) and of (23) simplifies the right-hand side
of this equation to
3 s
— (Vi€ —Vi2,).

Thus we have derived the Codazzi equations

Ropa®BIBIB! = 2V, Q0 (28)
The same procedure is repeated for equation (26). We get
% % ok PR %
(VV, =V Vo' = w @ (Vi = Vi82;).
We transvect this equation with the vector &,g,,B’, as a result we obtain the Gauss

equations

R,s;,BiBiB!B. = 0. 29

6. The Einstein constraint equations

The Gauss-Codazzi equations (28) and (29) are so simple that we can use them in
the study of field equations. Let the hypersurface f@ be given by

i i

20, xxd
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In this case we have BY = &7, hence &, = g,. The coordinates ' on the surface can be
always chosen in such a way that the vector u:z" takes the form

wh 2 5';.
1

Then we have g,; %X 0, ci)“ x 8, w, 2 9,x° = 82,

1t is well known that the four field equations
G =R-}82R =0

do not contain any g,, o, derivatives and therefore they constitute the constraint equations
for the quantities g,, and g, ;. In the above system of coordinates these equations take
the form

—2Gg £ g*(2Rois + 8" Riikm) = 0, (30)

G) £ Ryyiy+ 8" "Ryym = 0. 3D

Now we take into account the Gauss-Codazzi equations, which are now very simple

*
Riklm £ O’ ROhik X 2V[igzk]h' (32)

By substitution of (32) into (31) we obtain

0 ik,
Go £ gV, =0, (33)
G? = 0. (34)

We have used here the property that )lv"Q,.k £ Q,, = 0. The inner geometry of the

null surface is described by its metrics and therefore by teleparallelism. On the other
side the tensor Q, gives the position of the surface in the imbedding space. Thus we
obtain the following theorem: If the Gauss-Codazzi equations are satisfied for a totally
reducible null hypersurface, then the field constraint equations do not impose any restric-
tions on the inner geometry of that surface.

I am very grateful to Dr. A. Staruszkicwicz for suggesting the possibility of using
teleparallelism in the study of null surfaces and for helpful comments.
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