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Homogeneous models of the Universe filled with a spinning fluid are studied in the
framework of the Einstein-Cartan theory of gravitation. It is assumed that the models-admit
a group of motions simply transitive on three-surfaces orthogonal to the world lines of the
substratum. For certain group types, the field equations are partially integrated. The models
of the Bianchi types I, VII,, V are shown to be non-singular, provided the influence of spin
exceeds that of shear, and an equation of state satisfies some physically reasonable condi-
tions.

1. Introduction

The Einstein-Cartan theory of gravitation accepts as a model of spacetime a non-
-Riemannian four dimensional differential manifold with a metric tensor g,, and a linear
connection w,, compatible with the metric. The torsion of spacetime is related to the
spin of matter in such a way that the field equations in a vacuum remain the same as in
the classical General Relativity. The history and the present state of the theory is presented
in Hehl’s article {1]. We use its recent formulation given by Trautman [2].

Kopczynski [3] found the first cosmological models with spin. They are non-singular
under some reasonable assumptions. Physical properties of the non-singular universes
were examined by Trautman [4] and later by Stewart and Haji¢ek [5]. Further solutions
with torsion were obtained by Tafel [6]. In this paper we investigate the non-rotating
cosmological models with spin for several Bianchi types. In particular the influence of
an equation of state on some properties of the models is considered.

Let us discuss the notation. For the units used, G = 1/8rn, ¢ = 1. Indices 4, b, ¢, d,
run from 0 to 3 and 4, j, k, / run from 1 to 3. ., is 2 completely antisymmetric pseudo-
tensor such that 75,3 = |det [g,;]|"/%. [M,] denotes matrix with the components M,
and [M*“] denotes one-column matrix with the components M“. The transposition of any
matrix M is denoted by MT. (6°) is a basis of 1-forms. The vector basis (e,) is dual with
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respect to (07). If £, is a tensor field, its ordinary and covariant derivative in direction e,
is 8,14, Vafu respectively. The relations w,, = I',,0°, d8° = —1y%,. 0°A0° define coef-
ficients I, and y%.

The curvature 2-form Q°, and the curvature tensor R%,; of the connection °, are
defined as follows

Q° =1 R 0° A 0% = do®y+ 0%, A 0. (1.1
The contraction of the curvature tensor gives the generalized Ricci tensor
Ryt = RS e = 0.1 = Oyl sc + T 4T sy =T aal oy = T 0" (1.2)
The torsion 2-form @° is covariant derivative of the basis (6°),
0" =1 Q%0° A 0 = dB*+ % A 0. (1.3)

Tensor Q. is called the torsion tensor.
The condition of metricity of the connection Dg,, = 0, and (1.3) imply that

rabc = % (6cgab - 6ag'bc + ahgca) - % '(Vabc +Vbea™ ycab) - }: (Qabc + cha - anb)' (14)

If we denote the canonical energy-momentum tensor and the spin tensor of matter by ¢,
and S, respectively, the field equations, derived from the variational principle analogous
to that used in the classical Einstein theory, can be written as

Rypy—% R 8y = top- (1.5)
Qe +28apQ 14 = Sape- (1.6)
In this article we consider the Weyssenhoff model of matter, for which
tp = Ughy—Pgupy U, = 1. 1.7
Sabe = UaSpes  Sipey = 0, u"Sy = 0, (1.8)

where  is the vector of four-velocity, p is the pressure, and 4, is the enthalpy vector
of the fluid. Moreover, we assume that

there exists a group of motions simply transitive on
three-surface orthogonal to the velocity. (1.9

Such models, in the framework of the classical Einstein theory, were investigated
recently in systematic way by Ellis and MacCallum [7].
The assumption (1.9) implies

ubVou® = 0,
V[au,,] == 0,

where V denotes covariant derivative with respect to the Riemannian connection given
by (1.4) without torsion components. From the Bianchi identities it results that 7,, reduces
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to the energy-momentum tensor for a perfect fluid,

Iy = (8+p)uaub—pgab’ (110)

where ¢ is the energy density in the local rest frame of matter.! The Bianchi identities
show further that the enthropy and the density of spin are conserved,

u’V,e+0(e+p) =0, (1.11)
V,(Su%) = 0. (1.12)

The expansion tensor 8, the expansion 8, and the shear o are defined in the
usual way [8], and the spin vector S* and the density of spin S by the relations

St = =4 NS, St = (5,59 (1.13)

2. The field equations

Following the approach of Ellis and MacCallum [7] we introduce an orthonormal
tetrad (e,) with the time-like vector e, chosen as the velocity vector u, i.e. such that

u' = 8. (2.1)

The basis of 1-forms is (%), where 6° = dr. The coefficients y*,. depend on time ¢ only
and are required to satisfy the Jacobi identities. y°,, can be decomposed in the following
way:

Vijo = 0i+1 Syj+einsd, 2.2
'}’ijk = nilgfjk—éijak'*‘éikaj, (2.3)

where €;;,: = No; s al) = 0. Q" is the local angular velocity of the triad (e;) with respect

I

to the Fermi-propagated rest frame of matter. Since the spin of light wave applied to

TABLE 1
Classification of three-parameter groups following Behr [9]

Group types a "y iy i
I 0 0 0 0
11 0 + 0 0
VIi, 0 + + 1]
Vi, 0 -+ - 0
IX 0 - + +
VII 0 - + -
\Y% + 0 0 0
v + 0 0 +
VI, -+ 0 -+ : -+
VI + 0 + E

! The metric tensor has the signature (+1, —1, —1, —1I).
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experimental description of the non-rotating orthonormal frame, is zero, then such frame
is defined by the equation §; = 0, where (; = ©,—1S; is the Riemannian angular velocity.
The coefficients 7' and g; behave as tensors under time-dependent rotations of the frame (e).
Using the Jacobi identities it can be shown that with respect to the frame (¢]), consisting
of the eigenvectors of n*/, the vector a; has only one non-zero component, say 4, = a,
a, = a3 = 0. The classification of models with respect to the value of a and signs of the
eigenvalues #; of matrix [n;;] is given in Table I. The non-trivial Jacobi identities are
written out in Appendix I with the tetrad (e]")."It follows from them that the group type
cannot change in a continuous way.

A direct calculation, using (1.2), (1.4), (1.6), leads to the following field equations
holding in the frame (e,)?:

102~ =L R¥+1 8% = tyo = ¢, X))
—307a;+0a;+&;n"07 +% Sla;+4 nfepSY = to, =0, (2.5

— 0,5~ 00,;+ 20" i, Q' — 21" & 00" — 2nyn;
+nfn+8,(—0-%0°—0"—3 R*~4a,a*+1 5%) = 1, = pdy;, (2.6)
Si;j+0S;;+25 8@ = =2t = 0. 2.7

R* is the curvature scalar of the hypersurfaces ¢ = const.,
R* = —Gaicti+nijnij—%(11ii)2 = 6a2+%(nf+n§+n§)—n1n2—-n1n3—nzn3. (2.8)

It may be negative only for the type 1X models.
For further considerations it is convenient to introduce a positive function R(¢) and
the function F(¢), defined by the equations

3R'R: =6, (2.9)
t

F:= [ R7%(dr. (2.10)
to

R(r) is determined up to a factor by a positive constant.

The field equations can be divided into two parts. The first of them represents the
maximum system of the equations without the energy density and the pressure; they are
written out in Appendix I. The second part consists of the generalized Friedmann equations

3R™’R*—06’—1 R*+1 5% = ¢, (2.11)
—2R7T'R~R*R*—6*+LR*+1 8% = p. (2.12)-

We use the notation y: = (35*—0¢?)R® if this quantity is constant.

In Sections 3 to 9 we try to integrate the equations without assuming any equation
of state, and to represent all quantities as explicit functions of R and F. In some cases
the equations written out in Appendix I constitute a complete system. Then the solution

2 The dot denotes the differentiation with respect to the time.
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depends on arbitrary constants, but does not depend on arbitrary functions. Therefore
the equation of state is determined up to a constant provided 0 # 0.?
Next we examine particular group types under the assumption S # 0.

3. Type I

Since 7, = #, = ns = 0 we have the freedom of the most general rotation of (e}),
which we use to obtain 0;; = 0 (i # j). Egs. (I.5) read (0;-—6,;)Q, = 0, where (jjk) is
a permutation of (123). Using (I.5) or the freedom of rotation in the ey /e;'f plane in
the case 0; = 0;;, we find that triad (e) is Fermi-propagated, i.e. Q, = 0 for any /.
Eqs (1.6)~(1.8) give 0; = —R'R—¢;R3, S; = 2b;R-* where b, c; are constants and
¢, +c¢,+c¢5 = 0. The spin and the exterior derivative of the basis forms may be written
in the matrix notation as

[S,;] =R M "—M), (3.1)
d[6*] = dt A (R"'R+R7>M) [6*], (3.2)
where
¢, —=bs b,
M= by ¢, —b, |,ci+ecates =0. 3.3)
—b, b, 3
The field equations reduce to the Friedmann equations
3R2R?+uR-S = ¢, (3.9
—2R'R—R2R*4+uR-% = p, (3.5)
where
p=—1TrM? (3.6)

If we assume an equation of state p = p(e), then (3.4), (3.5) constitute the complete
system of equations with respect to the functions R, e.

We are interested in the description of spacetime in local coordinates. For type I
there exist coordinates x’ such that [0*'] = RX(t)[dx'], where X is an unknown matrix.
With the frame (dx’)

[g;] = —R*’X"X, (3.7
[S;] = R'X"(M"-M)X. (3.8)

Eq. (3.2) is equivalent to
X = R3MX. (3.9)

3 In this case the Eq. (1.11) implies either ¢ # const., then ¢ = &(t), p = p(¢) is the parametric equation
of state, or ¢ = const. and p = —e.
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TABLE II
9 Transforma- | Tyumber
8 A E4 # tions H of param-
eters
A0 0 eF g o 40 0
@i{o—-3+.1 0 e~ ¥4F 1o eAF 0 35242 0 B o 5
0 —3A-4, C 0 e4F 0 0 C
A0 0 e AF ¢ 0 A 0 O
by {0 =i o e~ t4F .1 g cos(AF) sin (AFy | —222+4, B C 5
0 -4 —12 0 —sin (1F) cos(AF) 0 —-C B
L0 0 e3*F 0 0 A0 0
©[{o -1 1 e~ 14 .1 ¢ 1 F —-3 52 0 B C 4
0 0 —%A 0 0 1 0 0 B
010 | F LF? A B C
) 00 1 01 F 0 0 A B 3
000 0 0 1 0 0 A

According to the algebraic classification of M we obtain four types of solutions. The
matrix M can be represented in the form M = 4AA4-%; A is given in Table 11, and A4 is
a non-singular real matrix depending on M. Substituting E,: = 4'X in (3.9) we obtain

E, = R7°AE,. (3.10)

Tt is enough to find only one solution of (3.10) since different solutions can be transformed
one into another by change of the coordinates. From (3.7) and (3.8) it results that

[8:] = —R?ELBE,, (3.11)
[S;;] = RTEYA™B-BA)E, = R™([g,;]4—-A"[g;], (3.12)

where
B = A4, (3.13)

Now it is not difficult to show that the parameters occurring in A may take all values,
and the matrix B is only restricted by general assumptions concerning g;;.

The metric and spin given by (3.11), (3.12) and Table II, where R satisfies the Friedmann
Eqs (3.49), (3.5), and B is a positively defined, symmetric, constant matrix 3 x 3, are the general
type I solution written in coordinates.

Table II enumerates the affine transformations of coordinates H, which can
be compensated by the change B — H'BH. Using them it is possible to obtain
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R® = —det [g;;]. R corresponds then to the scale factor in the Robertson-Walker models.
The last column of Table II indicates the number of independent parameters of solution.

The case (a) contains all solutions without spin, they occur when B =1 and are
given by (3.15) with 5 = 0.

The relations between components of M on one hand and A, B on the other become
simple when the spin vector is a shear eigenvector, say, b, = b, b, = b3 = 0. Using the
notation 87 : = dx' and

A= —cy—cy, = Llea—cs), A= bP—a?} (3.14)

we can write the line element and the constant u as follows:

H= —-%’12—423

b| < o= { ds? = dt? — R? exp (AF)(0'")> (3.152)
— A R? exp(— AF)[o exp (2AF)(0'%)* + a exp (—24F)(0'3)* +2b6'26'3);
u= —312+42

. ds? = dt* — R? exp (2AF)(0'1)?
Bl < %=1 f-iR2exp (—AF))[1b]+a - sin QAF)(0°2) + [ib: —a sin @4F)@?) 17D
+2 (sgn b) o - cos (24F)0'?6'3};

u= ‘%’125

bl = o = { ds? = dt?— R? exp (2AF)(6'')> — R% exp (— AF)[(6'%)* (31.5cd)

+(1 +4b2F2)(0'3)2 — 4bF0'20"3].
In all these cases the components of spin are
Sy3 = 2bR Y exp (—AF), S|, = S;3 = 0. (3.16)

These solutions reduce to those recently found by Kopczynski [3] and the author [6] if
weput a = 0 or 4 = 0, respectively. (3.15b) and (3.16) with @ = A = 0 represent the general
solution of type I with the Robertson-Walker line element.

4. Type 11
Applying a certain rotation in the e3/e} plane one can obtain 8,5 = 0. Egs (I.4) imply
that 8,, = 0,5 = 0 and S; = 0. From Egs (I.5) and the Jacobi identities (1.3) it results
(0,1—0,,)S5 = (0,,--033)S, = 0,

which under the assumption S # 0 requires 0;; = 80,, or §,; = 033, but neither of these
equalities is admitted by Eqgs (1.6}, (1.7).
There are no type II solutions with non-vanishing spin.

5. Type VII,

Appendix II shows that the assumptions n; s n,, S # 0 are incompatible with each
other. In this section the case n; = n, = :n is considered. We choose the frame (6*)
such that @, = 0. From Eqs (I.3) and (1.4) it results that the triad (¢]") is Fermi propagated,

Q, =0, G.)
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and
0, =0, 0,3 = —1S,, 0,5 =15,. (5.2)
Using Egs (1.9) we find
S, = 2b,R73, (5.3)
where b, are constants. Eq. (1.7) and the Jacobi identities (I.2) yield the relations (written

with suitable recaling of R)

~1p, Cp-3
0'11=022=—R R+§R N

0,3 = —R"'R—cR7?, (5.4)
n = R™!exp (—cF), (5.5

where ¢ is a constant. Applying constant rotation in the e}/e; plane we can come at
S, = 0. From this it follows that we may assume b, = 0 without loss of generality.
Then the exterior derivative of the basis takes the form:

d[0*] = dt A (RT'R+M) [0¥]+n6%* A N[6*], (5.6)
where
—g —b3 2b2
0 10
M= b, —g ol|, N=[-100]. .7)
0 00
|- 0 0 c |

The field equations reduce to the Friedmann Egs (2.11), (2.12) with R* =0 and
it = b5—3c?. They are the same as for type I

If b, = 0 then the rotation about the axis ej by the angle ¢, satisfying dp = ~nf*?,
leads to the elimination of n without a change of other quantities. It is easy to show that
the type V11, solution with non-vanishing spin is the case of type I if, and only if, the spin
is an eigenvector of n', i.e. b, =0 in (5.7).

We are interested in the solution written in the basis (6’") invariant under the group
of type VII,. (6") may be chosen in such a way that

o't = 03 A 02,
d0r = —07 A 0, (5.8)
0™ = 0.

The structure constants do not change under the transformations described by the constant
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matrices of the form

A BC
—kB kA 0], k= +£1. 5.9

0 0 %
The basis (6*') may be connected with (6'") by unknown matrix X(¢) with components X]’:,
0% = RX',0". (5.10)

Using (5.6)~(5.9) the exterior differentiation of (5.10) leads to the equation
X = R3MX 5.11
with the constraints
X5 =exp(cF), X, =Xx%=0, X' =X?% X} =-X',. (5.12)

Depending on whether b3 +c? is zero or not, we obtain two classes of solutions. With
suitable choice of basis (6") the metric and the spin tensor may be written as follows

= b33,
ds® = di*—R? exp (—cF) [(0'")* +(0'%)*]—(1 +a*)R? exp (2cF) (0'%)*

b§+C2 # 0 34 c
+2aR? exp (5 F) [sin (b3F)0'* +cos (b5 F)0'?],

\[S;] = R°([g,;]A—~4"[g;]), A = M(b, =0); (5.132)
uw=0,
by = ¢ = 0= { ds* = dt>— R2[(0'))? + (022 + (1 + a*F2)(0'3)* — 2aF9'20'3). (5.13b)

Ss =aR!, S;;, =8,3=0.
The constant 4, depend on b; and ¢ in the following way
a = 2by(3 S +b3)" 12, (5.14a)
a = 2b,. (5.14b)

The metric and the spin given by (5.13), where 0" satisfy Eqs (5.8), R satisfies the
Friedmann Eqs (3.4), (3.5), and a, b, c are arbitrary constants, is the general type VII,
solution with non-vanishing spin.

8i;and S;; in Eq. (5.13a) are of the same kind as the transformed tensors for the case (b)
of type I, and for (5.13b) are of the same kind as for the case (¢) of type I. Puttinga = c =0
in (5.13a) we obtain the solution with the isotropic metric, which is also invariant under
the group of type L

To describe the solution in coordinates we may use the following representation
of (0'):

0'* = cos x3dx' + sin x*dx?,
2 = —sin x3dx'+ cos x3dx?, (5.15)
0’3 = dx3.
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6. Type VI,

There are two families of the type VI, spacetimes. Appendix II deals with solutions
for which n, +n, is not zero. It is shown that if the group is type VI, and (n, +n,)S # 0
then the equation of state is determined up to a constant.

In this section we consider the case n; = —n, = . Eqgs (I.3) and (I.4) imply
912 =0, 0,3 = ‘%Sza 623 = "‘%Sn (6-1)
Q3 = %Ss, 2, =8, 2, =95, (6.2)

Substituting these relations and the equality 8, = 0,, derived from (1.2), in (I1.6) and (12)
we obtain §; = S, = 0. From (1.8) it results in S5 = 2bR-3, where & is a constant. Eq. (1.7)
yields a differential link between the functions R and »

8o[R¥R-'R +n~'n)]+4nR? = 0. 6.3)

In the case ny, = —n, = :n of type VI, the field equations reduce to Eq. (6.3), the
Friedmann Eqs (2.11), (2.12), and the relations

oij =0 (i#])), 0,1=0,= _% R~1R“% n_lﬁa 035 = ”_I’i’ (6.4)
Ql = Q2 = 09 Q3 = bR‘3‘> (6‘5)

Sl = SZ = 0, S3 == ZbR_s. (66)

7. Types 1X, VIII

First we consider the case when some eigenvalues n; are equal. Under the assumption
S # 0 the equality n, = n, = n, is ruled out by Eq (I.4). This means that the expansion
tensor is anisotropic and the metric cannot be that of the Robertson-Walker.

If only two eigenvalues n; are the same, then we may assume n, = n, =:n # n,
without the loss of generality. Egs (I.4) and the Jacobi identities (I.3) imply

612 =0, 03 = —in(n—n3)"'S,, 0,3 = dn(n—n3)'Sy, (7.1)
Q2 = %”3(”3“3’1)("—"3)—251,2, S3 =0.

Substituting (7.1) and the equality 8,, = 8,,, resulting from (1.2), in Eqgs (1.6) and (12)
we find n; = 3n under the assumption S # 0. Then (1.2) shows that 8,; = 0,, = 83,
what is inconsistent with (1.7).

If all n; are different, Eqs (1.2)-(1.4) are equivalent to the following relations:
0i =3 n;'n;+3n; 'ny, (7.2)
;=3 (ni_nj)~lnkska (7.3)
Q =3 [1—nnj+n)(n;— n) %18, (1.4
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where (ijk) is any even permutation of (123). From (7.2) it follows that R-3 = const.n,n,n,.
The comparison of (I.5) with (1.8) by using(7.2)—(7.4) leads to the conditions of consistency

do(n. 'ny 'RMS —n. 'nj 'R¥ni+n;—n) (m—n)) (n—n) " "(n;—n)~'S;S; =0, (7.5)
S;S; =0if ny+n;—n, =0, (7.6)
Summing up Egs (7.5) multiplied by
nmn(ni—n;+n) (—ni+nj+n) (n—n) (n;—n) (n;—n;)S;S,,

and using the identity

”Zk) Eo(ni_lnj_IR*)rr,-r:j(rzi—r1j+r1k) (=ni+n;+m) =0, (7.7)
we obtain
R*[(q) (mi+n;—n)] - [3 (m—n)’SiS7] = 0. (7.8)
ij i

Below we consider all the cases, for which (7.8) is satisfied.
(a) R* =0
This is the case of type IX with n; = (v/nli \f’/nz)z. From (7.2) it results in

033—0,, = (1 +h)"(0,,-0,)), (7.9

where h: = + \/nln;‘. The comparison of (1.6) with (1.7) by using (7.9) leads to the in-
consistency

(1+m) 722+ 2+ h) 73S+ (1420 2S2+(1 = W) 282+ 4(h* + h+ Dn? =
Since we have not used the assumption S # 0 we see that there are no type 1X solutions
with R* = 0.
(b) m+n; = m, for fixed (ijk), and S7+S; # 0 for any different i, /.

We may assume n1; = n,+n; without the loss of generality. Considering the equality
S,8; = 0, resulting from (7.6), and Eqs (7.5), which take the form

Sy8o In [14+n3ny ' +2ny(n;—n3) 'S, S5 = 0,
S30 In |14 nny +2ny(n,—ny) 'S, S, = 0, (7.10)

we obtain ny = const - n, and §, = 0. The latter equality is inconsistent with (I.8)
for i = 1.

() §;iS, =85,5:=8,85;=0

This means that S' is an eigenvector of both the expansion tensor and the tensor n;.
Giving up the assumption concerning signs of n; when the group is of type VIII, we may
assume S; = S, =0, §; # 0 without the loss of generality. From (1.8) it results in

S; = bnyn,ny, b = const. (7.11)
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Egs (7.5) imply R* = const. nyn, which shows

ny = ny+ny+2cvingn,|, ¢ = const. (7.12)

All quantities 0;;, 2, S; can be represented as explicit functions of n,, n,, ny, n,. (1.6)
and (1.7) reduce to the complete first order system of differential equations with respect
to n,, n,, which is compatible under some assumptions concerning ¢. The Friedmann
equations yield the expressions for ¢ and p in terms of ny, n,.

We conclude that

Only the type IX and VIII solutions with non-vanishing spin are those described in the
case (c). If matter expands then the equation of state is determined up to a constant.

For these types there exist such solutions that ¢, p are constant. Neither of them
satisfies the condition —4e <p <.

8. Type V

We use the freedom of rotation in the e3/e} plane to make 6,; = 0. From the Jacobi
identities and Egs (I.4) it results

b2 = “‘%Ss, 013 = %Sz,
3 =3 S3’ 'Q2 =3 S2a (81)
a—ld == —91, —2011+022+033 = O, (8.2)

With these restrictions the sum of Eqgs (1.6) and (I.7) shows that S, = S; = 0; therefore S
is a shear eigenvector. Eq. (23) implies that Q, = 0, or, if 8,, = 033 we may choose such
Q, which does not violate this equation. From Egs (1.6) and (8.2) it follows that
0, = R'R+c;R>,a = R, where ¢, = 0, c; = —c,and c, is a constant. Considering the
equality S; = 2bR~3(b = const.) resulting from (I.8) we may write the exterior derivative
of the basis forms in the following way

d[6%] = dt A (R™'R+R™M) [0¥]—R™*6*" A [0%], ®3)
where
00 0
M={0c, —b |. (8.4)
0 b —62

The field equations reduce to the Friedmann equations
3R2R*-3R*+uRS = ¢, (8.5)
—2R'R—R2R*+R-2+uR-® = p,
where

p=—3TrM? = b*—cl.
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For type V there exists a frame (0')) invariant under the group and such that
dlo’]} = -0t A [07]. (8.6)

The structure constants do not change under the trnasformations represented by constant
matrices of the form

100
ABCY. 3.7
DEG

If we define the matrix X(¢) with components X*; by the relations 6*' = RX",0'/ then (8.3)
together with (8.6) give

X = R3MX, (8.8)
with the conditions
Xh=1, XL, =X5=0 (8.9)
Eq. (8.8) may be solved similarly as the corresponding equation for the case b, = by = 0
of type I. The constraints (8.9) imply that the constants of integration can be eliminated
by using a transformation of the form (8.7).
The metric and the spin given by (3.15), (3.16), where 0" satisfy (8.6), R satisfies
the Friedmann Eqs. (8.5), and ¢3 = —c,, is the general solution of type V.
This solution has already been found [6] but without the proof of generality. Puiting
b = 0 we obtain all solutions without spin. (3.15b) and (3.16) with ¢, = ¢; = 0 represent
the general solution of type V with the Robertson-Walker line element given in the frame
invariant under the group.
To express the solution in coordinates we may use the following representation of §":

0' = —dx', 07 =expx'dx®, 07 = expx'dx’. (8.10)

9. Types VI, VI, IV.

First let us discuss the special case of type VII, when n, = n; = :n. Then we may
assume Q, = 0 without the loss of generality. From Eqs (I.2) and (01) it follows that
0; = ~R'R, n =d- R (d = const.), and from the third Eq. of (1.3) 6,5 = 0. Subs-
tituting these relations in (23), (1.6) and (1.7) we obtain either Q, = Q, =0 or
0,, = 0,5 = 0. Egs (1.3), (02), (03) imply that all Q,, Q,, 6,,, 0,3, S,, S3 are required
to vanish. Eqgs (1.8) yield S, = 2bR~3 where b is a constant, and (I.1) yield « = R with
suitable rescaling of R. The exterior derivative of the basis (0*)) may be written in the
following way:

d[0¥] = dt A (RT*'R+R73M) [0%]+R™'0** A N[6*], 9.1)
where
00 0}, 000
M=[00-b |, N=[0 1 d}. (9.2)
0b 0 0 —d i
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The field equations reduce to the Friedmann equations (2.11), (2.12) with R* = 6R-2
and u = —b%

The coefficient n can be eliminated by means of rotation about the axis e} by an
angle ¢ satisfying the condition dg = —nf*' (existence of ¢ is secured by (9.1) and (9.2)).
The other quantities do not change under this transformation. We see that the type VII,
solutions with n, = n; constitute the subset of the type V solutions with the isotropic metric.

If the group is of type VI, with n, # nj, or type VI,, or IV then the conditions of
consistency of the field equations are very complex. One can show that solutions with
S, =S; = 0,8, # 0exist and are singular. In this case the equation of state is determined
up to a constant and satisfies the energy dominant conditions —1le <{ p </ ¢&. We are nct
able to state whether other soluticns of these types exist,

10. Some properties of the solutions of types I, VIig, V

In Sections 3 to 9 we have shown that for all types except type Il there exist solutions
with non-vanishing spin. For types [, VII,, V, we have found representations of solutions
in terms of R and F. Under the assumption S # 0 these types contain all solutions with
the Robertson-Walker line element,

Behaviour of type I, Vi, or V solutions is determined by function R. They are non-
-singular if, and only if, R(?) is regular and positive for any ¢. Let us assume the equation
of state of the form p = p(e) *. Development of R is determined by the Friedmann equa-
tions which read

3R2R?*=3kR2+uR° =¢ (10.1)
~2R'R—R2R+kR2+uR"® = p, (10.2)

where k = 0 for types I, Vily, and k = 1 for type V. If R # 0 then Eq. (10.2) may be
replaced by the conservation law of enthropy

E4+3R'R(e+p) = 0, (10.3)
which implies ¢ = &(R). (10.1) takes the form of the “energy integral”,
R+ V(R) =0, (10.4)
where
V(R) = uR*—LR*(R)—k. (10.5)

We look for physically reasonable conditions which secure the non-singularity of R.
Assuming that

p<ye y=const <l (10.6)

4 One can consider p = p(e, §), since from the conservation law of spin it results S = const. R3,
so further conclusions are the same as for p = p(e).
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one can show, by the integral form of (10.3), that ¢ < const. R*, « > —6 for R - 0,
therefore V 5" ® if the density of spin exceeds the doubled scalar of shear, i.e.

i > 0. (10.7)

Conditions (10.6), (10.7) prevent the solution from ever approaching zero. If
moreover

Pl <e (10.8)

then R(?) is regular for any ¢ and R — oo, F— const. + for 1 - +oo.

The types I, VII,, V models, satisfying conditions (10.6), (10.7), (10.8), are non-
-singular and tend asymptotically to the soluticns with the isotropic metric.

This latter results from the representations of metric and spin in terms of R and F,
and the freedom of transformations conserving the structure constants. The asymptotic
behaviours of solutions do not depend on the assumption (10.7).

Estimations of the minimum average length R, and other quantities for the non-
-singular type I models with the vanishing pressure and shear may be found in [4]. One
can show that these models give the best estimations amongst the types I, VII,, V models
satisfying 0 << p <C ¢, 8(fy) = &9, S(to) = So where 1y, &5, So are fixed. With a suitable
choice of R, such that R(z,) is fixed, we obtain the following inequalities:

R, (I, 0, 0)

- <
R,(V, p,0) < R, (I, p, 0) {Rm(l’ p.0)

} < R, (I, 0, 0). (10.9)

The expressions in brackets indicate the type of the group, the equation of state, and the
value of shear®. The energy and spin densities are maximum for R = R,, and they obey
the opposite inequalities to R,. We are not able to show the occurrence of the non-singular
solutions of other types. If they exist and R* > 0 then

R (R* > 0, p,o) <R,({, p, 0). (10.10)

Let v* denote the normalized vector (v"v, = 1), which is tangent to time geodetic.
In the frame (#*%) the geodetic equation for the type I models reads

v+ (0+3 S =0 (10.11)
and gives
[v'] = R7TTAE; '[«'] (10.12)

where o are arbitrary constants.

It seems that the motion of a particle with spin is described by an equation more
complex than (10.11), while particles without spin move along Riemannian geodetics [10].
In the latter case we must replace (10.11) by the equation

o+ (0 -1 S’ =0 (10.13)

5> The estimations for type I and VII, are the same.
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which yields
[v] = RT'A™TE;T[]. (10.14)

Eqs (10.12) and (10.14) together with (3.12) and Table II imply that geodetics may twist
in the non-rotating rest frame of matter defined by @' = 0. There exist such universes
where the global change of direction of ' may exceed a multiple of 27. Such behaviour
is impossible when the spin vanishes.

Properties of geodetics for type VII, and V are similar to those for type I, however,
their physical interpretation is not clear.

I would like to thank Professor A. Trautman and Dr. W. Kopczynski for many
helpful discussions and valuable advice while writting this paper.

APPENDIX I
With respect to the frame (€X) the Jacobi identities read as follows:
d—0,,a=0,
a0, +183—-25) = 0, 18))
a0, —15,+Q,) =0,
ny+(0y,—0,,—0s3)n, =0,
ny+(—0;1+60,,—053)n, =0, 1.2)
ny+ (=0, —0,,+033)n5 =0,
(ny —ny)(3S3—Q3)—(n, +n,)0,, = 0,
(n3—n )38, ~2,)—(n +n3)8,3 = 0, (L.3)
(ny—n3)(ES, — Q) —(n, +n3)0,; = 0,

and the field equations except the Friedmann equations are

a(20,,—0,,—033)+(ny—n3)0,3—1n, S, = 0, (1)
3a0,,+(n;—n)03+1aSs— —1n,S; = 0, 02) (14

3a0,5+(ny —ny)0,, —3aS; —3n3S; = 0, (03)

—0,,—00,,+(0,,—0,)Q3+0,3,2,~0,,Q, =0, (12)

—013—00,3+(011—053)2;— 0,292, +0,32; = 0, a3 (@s)
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—033—00,3+(033—0,,)Q, +0,,2, 0,325 +a(n,—n3) = 0, (23)
O11—05,+0(0,, —0,5)—40,,Q25+20,32, +20,,Q, +(n, —n,)(n, +n,—n3) =0, (1.6)
Oy1—03340(0,, —033)—20,,Q,+40,30,—20,,Q, +(ns—n)n —n,+n3) =0, (L7)

S;+0S;+¢,;Q'S* = 0. (1.8)

APPENDIX II

In the type VII, or VI, case the Jacobi identities (I.2) yield the principal expansions
in the form

0, = -3 RT'R—4ni' ny, 0= —3R'R—%n3'n,y,
033 =1 n;'ny+3n;'n,. (L1)
Egs (1.3) and (I1.4) allow us to express 0,;(i # j) and €, in terms of n; and S,
012=0, 0;3=-% nani 'Sy, 0y =% nyng 'Sy,
Q= —%(”1""2)"2_151’ Q, =% (n—nni'S,, Q3=13S; (fn # ny) (1.2

We assume n,; # |n,| on an open neighbourhood, since the cases n, = +n, are considered
in Sections 5, 6. Eq. (12) gives the first integral

20,1 -0,2)S3+(ny—ny)’ny 'n;'S;S, = 0. (IL3)
The comparison of (I.5) with (1.9) by using (I1I.1), (IL.2) leads to other first integrals:
ny(—f +20,,—260,)S,+n,8,8; = 0,
ny f Sy +n:8,5; = 0, (I1.4)
where
S =In[n(n, —n;)?R3). (11.5)
Egs (11.3) and (i1.4) show that S5, = O since if not, they yield the inconsistency
n3S7285+nS5 2834+ (n —n,)* = 0.

We may assume S, = 0 without the loss of generality. Eqs (I1.3), (I1.4) have two kinds
of solutions with non-vanishing spin, but one of them: S, = S, = 0, 8;; = 0,,, is inconsis-
tent with Eq. (1.6). So the proper solution is

S, =8; =0, (IL.6)
R3? = const. ny '(n, —ny) "t (IL.7)

Eqgs (1.8) imply that
S; = 2bR-3, b = const. (11.8)

Thus all quantities ;;, 2,5, can be expressed analytically by the variables n,, n;.



The substitution of (IL.7) in (II.1) gives
033011 = —(ny+ny)(ny =121 (052—041y). (I11.9)
Comparison of (I.6) with (I.7) by using (I1.9) leads to the integral
405, -0, ) (ny—ny) 2+ Sing P +2n 7 "+ npny T 41 = 0. (11.10)

If n,, n; > 0 then the left-hand side of the integral is positive, so there are no type VII
models with n; % n,. Eq. (I11.10) is the first order differential equation with respect to n,, n,.
The second independent equation of this type is obtained by substitution of 8,,—6,,,
calculated from (II.10), in Eq. (1.6).

Among the type VI, models with n, # —n, there exist such solutions where p, ¢, §
are constant. They satisfy the equation of state p = —3e.
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