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The Einstein-Cartan equations (general relativity plus spin in a manifold with curvature
and torsion) are written explicitly for the case of spherical symmetry. In this case there
may exist, at most, eight non-vanishing independent components of the torsion tensor when
one does not assume the “classical description” of spin. It is shown explicitly, by giving
various non-equivalent ways to do it, how exact solutions of spherical symmetry for matter-
-filled regions may be generalized from general relativity into the Einstein-Cartan theory.
A classification of cosmological models with the Robertson-Walker metric in the Einstein-
-Cartan theory is given.

1. The Einstein-Cartan equations

Recently an extension of original Einstein’s theory of gravitation which has been
proposed first by Cartan (1922, 1923) more than half a century ago, has been revived
and reformulated. At the present observational level, it appears to be practically indistin-
guishable in its predictions from general relativity, because the field equations in empty
space (i.e. filled with no other than the gravitational field) are the same in both theories,
and the tests for general relativity are based mostly on equations for empty space. Now,
the predictions of the ECT (as the Einstein-Cartan theory will be called briefly from now
on) may differ from those of general relativity for regions of space fliled with matter.
(This is due to the algebraic relation between the physical quantity of spin density and the
geometric quantity — the torsion of the underlying manifold.) The three obvious areas
of a possible study to be made are: (a) cosmology, (b) static stellar configurations, and
(¢) collapse. A physically new feature of the ECT, which makes the theory highly attractive,
is the characteristic spin-spin repulsive interaction which dominates the behaviour of matter
at extremely high densities (above, say, 10°* g cm~3) and is able to prevent the occurrence
of singularities both in cosmology and in collapse.
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The occurrence of singularities in general relativity was shown (the famous Hawking-
Penrose theorems!) to be general and unavoidable feature of this theory. Even the pressure
of matter, though obviously it is being regarded as a characteristic of the mutual repulsion,
is unable to prevent singularity. In the standard theory of general relativity only the in-
troduction of a positive cosmological constant A may provide in some cases. regular
models of the Universe, but this does not help us in the case of local collapse. Some other
sophisticated ways to cope with the singularity are based on the introduction of the bulk
viscosity terms into the frame of the Friedmannian cosmology (Heller et al. 1973) or on
a modification of the gravitational Lagrangian (Nariai and Tomita 1971). We do not go
into details of these treatments, since we are interested only in presenting the application
of the ECT to the avertion of singularities. While the two other approaches may appear
too phenomenological, as based on certain ad hoc assumptions, we have in the case of
the ECT a firm theory which is a most natural and simplest modification of general rela-
tivity, not rival to it, but following only an extension of the previous theory to the utter-
most frontiers. Einstein’s concept of the energy-momentum tensor, as a source of the
geometry, is extended to the spin density tensor as another physical quantity that influ-
ences the structure of the space-time (necessarily extending it beyond the Riemannian
limit). The resulting spin-spin interaction, which is a straightforward consequence of the
geometrization of the angular momentum in the ECT, is able to occur only within the
underlying mathematical structure of the ECT. One is unable to introduce it by some kind
of phenomenological approach into general relativity, it may appear only in the somehow
richer geometry of the manifold that is used in the ECT (not only curvature but also tor-
sion exists, in general). It is the torsion of the geometric structure which prevents, for
a series of the ECT models, the singularity. It is evident that for general relativity,
based on a geometry without torsion, this mechanism cannot work. On the other
hand, in general relativity the spin of matter influenced the geometry only very
indirectly, through its contribution to the energy-momentum tensor. Now, in the ECT,
it influences the geometric structure in a direct mode, through its algebraic relation
to the torsion.

Cosmological models of an expanding universe without any initial singularity have
been constructed explicitly by this author and others (Kopczynski 1972, 1973; Kuchowicz
1975 a, b; Tafel 1973; Trautman 1973 a). We are going now to present some new cosmologi-
cal (and also other) models in the series of papers with which we start. For established details
of the ECT theory, the reader is referred to the fundamental papers of Trautman (1972 a,b,¢;
1973b) and Hehl (1973, 1974); an abridged introduction into the ECT is given by this
author (Kuchowicz 1975¢). We use Trautman’s formulation with the help of the calculus
of tensor-valued exterior forms, when all geometric objects are described by their com-
ponents with respect to the field of frames 6’ (i, 1, ... 4) in the cotangent spaces of the
4-dimensional differentiable manifold. The linear connection is given by a set of 1-forms
w! defining the covariant derivative. The curvature form @} and the torsion from @' are
given by the two formulae

0 = doj+ol A of, O = dbi+i A 0, @
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and the associated torsion tensor Q% and curvature tensor R, are
O ' =10500 A 0%, Q) =31 R,0°A 6. (1.2)

Following Trautman, we use the forms #, ', etc. as the duals of 1, ¢, 6° A 6, etc. In the
following, the formula for the covariant exterior derivative will be needed;

Dy, = Qln. (1.3)

The symbol “D” is used to denote a covariant exterior derivative which, when applied
to a tensor-valued O- form (usual tensor), reduces to the usual covariant derivative 6*V,.
Now the system of the Einstein-Cartan equations has the following simple form:

e = Y A Q% = —8rG1, (1.4)
¢ = —Mip A OF = —8rGsy;. (1.5)
It may be written also in terms of the components:
Ri—1 8/R = —8rGtl, (1.6)
0f;— 8101, — 850 = 8nGsij. a7

The vector-valued 3-form ¢, is related to the “canonical”, asymmetric energy-momentum
tensor ¢4:

t: = nytl, (1.8)
while the antisymmetric tensor-valued 3-form s;; is related to the tensor of spin sfj:
S = ’7.&5?;'- (1.9)

Rj- is the Ricci tensor, R — the curvature scalar (both for our general manifold with
torsion). G is the gravitational constant, and we assume the light velocity in vacuum
c=1

The canonical 3-form f; of energy-momentum is related to the symmetric 4-form
T{ by Trautman’s identity:!

T/ = 6/ A t;—1% Dsl. (1.10)

2. The general case of spherical symmetry

In the systematic search for exact solutions of the Einstein-Cartan equations, it might
be useful to start with the most simple case of spherical symmetry. Now, this would lead
to the unphysical assumption of a spherically symmetric spin distribution, but it is possible
to argue that this may constitute a minor trouble when compared with the standard singu-
larities in general relativity. Already in this oversimplified case we may get an insight
into the role of torsion and spin in overcoming the singularities, just as it was with the first

! Thanks to this identity we are able to replace the system (1.4), (1.5) by another with T{, and the
dilemma of the symmetric vs. canonical energy-momentum tensors finds an interesting solution in the ECT.
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exact cosmological solution of the ECT (Kopczynski 1972). In our previous study of this
problem (Kuchowicz 1975b) we have already emphasized that the cosmological models
given there may be regarded only as an introduction to more complicated, especially axially
symmetric models.

Before we go over to a study of axial symmetry, it may be appropriate to ook for
a possible generalization of the results of the previous study, still within the framework
of spherical symmetry. All our previous results have been obtained within a simplified
treatment in which the validity of the so-cailed “classical description” of spin is assumed.
This assumption is based on the extension of the properties of intrinsic angular momentum
from special relativity. The spin angular momentum density tensor sj-k is factorized into the
antisymmetric spin tensor S; and the 4-velocity vector «'

st = S;u*  with s =0. (2.1

In the case of spherical symmetry, this leads to the existence of only one component of § ik
and hence to only one nonvanishing component of sj«k (the quantity s3,, defined with
respect to the basis set of 1-forms given by Eq. (2.2)). Also for other symmetries we have
a very limited number of components of the spin angular momentum tensor, and of
torsion.

We are using throughout this paper the most general metric of spherical symmetry,
corresponding to the following set of orthogonal basis 1-forms

0' = 2dr, 07 = re”’?d0, 0 = re”*sinOdg, 6* = &%t 2.2

where 4, 6 and v may depend on r and on 7. The most general form of the torsion tensor
for such a space-time is derived in Appendix I. In the following, we apply large Roman
letters to denote the independent non-vanishing components of the torsion tensor

A =01, E =03, = Qi

B = 03, F =03, = -0,

C = Qi: = 0%, G = Qfs,

D=0Qi3=-0,, H=0j (2.3)

Equation (1.7) may be used to express the independent, non-vanishing components of the
spin angular momentum density tensor s in terms of the geometric quantities

8nGsi, = —2E,
8rGsi, = B,
81Gs}, = 8nGs3, = —C—G,
8nGs?, = —8nGs>, = D,
8nGsi, = 8nGs3y = —A—E,

875‘6554 = —-8:‘:(?524 = F,
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87Gst, = —2C,
8nGs3, = H. (2.4)

Thanks to the simple algebraic relation between torsion and spin tensors, we may
use alternatively either of these two tensors. In the following, as in our preceding study
(Kuchowicz 1975b), we prefer to use the torsion components A4...H. Formulae for the
connection 1-forms ) and curvature 2-forms @j in the manifold under study are given
in Appendix II. These-formulae constitute a generalization of the respective formulae
from the preceding study (Kuchowicz 1975b), where there appeared only one torsion
component 0%;. We do not give separately the components of the curvature tensor Rj-k,,
as these may be read off directly from the resulting expressions with-the use of the second
formula of Eq. (1.2). We use the signature (—, —,—,+), and the following definition of
the Ricci tensor: R/, = R%, and Einstein’s geometric tensor G’; = R/,—§/,R,. Trautman’s
identity (1.10) is used to express the “canonical” energy-momentum tensor t/; which
appears in Eq. (1.6) in terms of the symmetric energy-momentum tensor J{, and which
is related to the symmetric 4-form: TV = nJ /. For the aims of this paper we assume that
T !/ is the energy-momentum tensor of a perfect fluid

T1 = (p+ouu’ —pdl, (2.5)
where p denotes pressure, 9 — energy density, and we use co-moving co-ordinates for
matter, so that u* is the only non-vanishing component of the 4-velocity of matter.

We find that the Ricci tensor, in general, beside its diagonal components, has the
following non-vanishing components: R,3; = —Rj,, R4 and R,;. In general relativity
we have R, = R4, and R,; = 0. Now, we get a set of 6 equations generalizing equa-

tions (3.6) ... (3.9) of the preceding paper (Kuchowicz 1975b). We write down immediately
the three diagonal equations

~ o~y . . .o+ I
—81GT, = 8nGp = |3 0(0'+2 )+ —— + 5 e

. Sy e ° 1 ’
+]—o=26+ Z|e= S — | ov+@C+26) (= + Z ) e
2 r ro 2

2 2

> s, V2 B 2 2 H HF
—2(E+Ed)e + 7 +C°—E°+ T +2CG+ —2- , (2.6)
- - - 0'”+V” (0")2+(V')2 VIO', A/o_l
—81GT % = —81GT 3 = 87Gp = e = e
T 2 s 3 nGp [ 5 + 4 + 7 4
Ay N V=X N o iy o+l  *+4? N V6 N v e .,
- — — e -— - — 4+ ——— e
4 2r r 2 4 4 4 4

C/+G1+C V’ +6,+1 +G 1+‘G'I -2
2 2 r r 2 ¢

E+A+(A+E) d+'1 ‘”’2+H2 B ae- 22 1oy HE 2.7)
' 272)|° Ta T 2 0 @
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- ~ Ao A =3¢ 1
8nGT 5 = 8nGo = [—'0'”—72‘(0’)2'*' N + p r{l e

i. 2 -a 1 ’
| e S w20 vac( + D) e M2 1 A6+ EG + A)]e
2 4 r ro 2
>, ., H HF
+—4T—C +E +7 +2AE+BD+ “—2— (28)

cclos

The' equation for the “;” component is as follows

6v’ 1 o'\] -2 ‘1 o —V 1
g—"—#- =D+ = 2+ |E+E(-+ — | =4[~ + =}|e ¥
LG 2 T@E=4 r * 2)]° r 2 r * 2)1°

. A6 61 BF BH DH
+ —C+C§— +G§e“+3AC+—+——+——EG=0, (2.9)

2 2 2 2

while the equation for the *“4” component has the following form

év’ 1 o\] - 1 o=V 1 o
5'— — +(6-N-+=])]e 2 +|FE E(— —A(=-+ =)
[o 3 +(¢ )(r+ 2>:|e +E{ + 2 T3] |e

EaC p) G +G ¢ VI2_AC+ BF + BH + bH +3EG 0 2.10
B A0 il DS _ - o R = (. .

Finally, the equations for the “3” and “3” components yield the following algebraic rela-
tion

BQC+G) = HRE+A). @2.11)

It is natural to impose pressure isotropy upon a spherically symmetric configuration of
matter. This leads to an equality of the two expressions for pressure given by Eq. (2.6)
and (2.7). This leads to the following equation which must be fulfilled for all 4, v, o,
A, B, C, D, E and G (it imposes only no conditions upon the torsion components F and H)

gor+ grc = 0, where gpc & 81+8:+2s3 (2.12)

and the expressions appearing in this equation are defined as follows

O_Il+vll (vl)2 l'a' v/o_r llvl il_l_vlv 1 -2
Sor = +— e

2 4 4 4 4 2r r?
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1 o+ R .
g2=[—c'~G’+C<—+ )+G<~+—)]e"‘/2-C2—CG,
r 2 r 2

B
g3 = — E(B'*‘D)-

In all our equations a dot denotes differentiation with respect to ¢, while a prime de-
notes differentiation with respect to r. We have introduced the indexes “GR” and “EC”
in Eq. (2.12) in order to characterize a typical expression in general relativity, and the
characteristic term arising in the Einstein-Cartan theory, respectively. The pressure iso-
tropy condition (2.12) reduces to the well-known constraint gqg = 0 in general relativity.

It is possible to apply the same kind of reasoning (and notation) to two equations
(2.9) and (2.11); they may be replaced, after some algebraic manipulations, by the equiv-
alent set

AC = EG, (2.13)
and

fortfec = 0, With frc & fi+12+/5 2.14)
The fuactions f; are defined as follows

év’ 1 o _ Aty
- e —j. > s 2 ,
for [0’ 2 +{o )<r + 2)]9
1 l‘_ 7 1 ! N
hi =[E’+E(—+G v)—A(-+i)]e""2,
r 2 r 2
f c+cC L_e +Gd vz
= -— — — b B4 N
2 2 2 2

fs = 24C+1 BF+} BH+} DH.

Now the whole set of the Einstein-Cartan equations which is to be used for our aims of
deriving exact solutions of the ECT, consists of two expressions (2.6) and (2.8) (or (2.7)
and (2.8)) for pressure and energy density, the pressure isotropy condition (2.12), and
relation (2.14). All these conditions remain, though in a reduced form, without the torsion
terms, in general relativity. In addition, we have two algebraic conditions (2.11) and (2.13)
which are characteristic features of the Einstein-Cartan theory.

There are more degrees of freedom to deal with solutions in a space-time with curva-
ture and torsion than in a space-time with curvature only. It is therefore not astonishing
that the increase in the number of functions introduced into our treatment is faster than
the increase in the number of conditions imposed thereupon. Let us consider, e. g. the
geometric structure of the manifold as being given a priori, and the physical quantities
as being defined by the geometric quantities. Thus, while dealing with a perfect fluid of
spinning particles, we use three equations: (2.6), (2.8), and (1.7) as the expressions
yielding pressure, energy density and spin angular momentum density of the fluid, in
terms of 2, o, v, Qi-k and their derivatives. These expressions should give us, of course,
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such matter configurations in which p and ¢ should be positively defined, the corresponding
equation of state of matter should be physically admissible, etc. These physical conditions
are to be imposed upon any set of geometric quantities which fulfils differential condi-
tions (2.12) and (2.14), and algebraic conditions (2.11) and (2.13). In general relativity,
the algebraic conditions do not enter, and the differential conditions simplify, thus, e. g.
in considering static spheres there remains actually a single differential condition which
may be regarded as the constraint upon the form of one of the metric functions provided
the other two are given. This apprcach was exploited in a previous series of papers by this
author (see e. g. Kuchowicz 1968, 1973) for a systematic derivation of new exact solutions
of the Einstein equations. This concept, which can be traced back to an old paper of
Tolman (1939) and possibly earlier, may be applied directly to the ECT. While in general
relativity we had, for spherical symmetry, two differential conditions imposed upon three
functions of two variables (r, and t), we have now to fulfil four conditions while the number
of available geometric quantities has increased to eleven. We can admit that certain physi-
cally reasonable assumptions, added to the theory, may reduce the number of independent
non-vanishing torsion components, but our freedom of choice of the underlying ge-
ometry is always greater than in general relativity, provided we do not introduce too restric-
tive assumptions (cf. the discussion on the so-called spin-conservation in the preceding
paper (Kuchowicz 1975b)).

3. A generalization of the correspondence theorem

We have enough solutions of the Einstein equations at our disposal, and it would
appear most appropriate to generalize them to solutions of the Einstein-Cartan equations.
In the preceding paper (Kuchowicz 1975b) we have presented the so-called correspon-
dence theorem between general relativity and the Einstein-Cartan theory, according to
which it is possible to apply every spherically symmetric exact solution of general rela-
tivity in the Einstein-Cartan theory. This correspondence was proved for the simple case
of a perfect fluid with the “‘classical description” of spin, when only the torsion com-
ponent Q%, = —Q3, does not vanish. Now this may be extended upon the general situ-
ation we are studying here, with the eight non-zero independent components of the torsion
tensor.

The generalized correspondence theorem may be formulated in the following way:

Every spherically symmetric metric of a Riemannian space-time of general relativity
may be regarded at the same time as the metric of a family of space-times with torsion,
where the torsion tensor components have to fulfil two algebraic conditions (2.11) and
(2.13), and the two differential conditions:

Jee =0, and ggc = 0. 3.1

Also the set of boundary or asymptotic conditions of general relativity has to be replaced
by the corresponding set for the Einstein-Cartan theory. General relativistic formulae for
the pressure and energy density expressed in terms of the metric tensor components and
their derivatives have to be replaced, finally, by our formulae (2.6) (or (2.7)) and (2.8)
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from the preceding section of this paper. The four conditions (2.11), (2.13) and (3.1) for
the eight independent components of the torsion tensor can be fulfilled in many different
ways. We are thus able to generate various non-equivalent solutions of the Einstein-
-Cartan equations with the same metric tensor. When we go-back from the Riemann-Cartan
geometry to the standard Riemanian geometry, all these solutions reduce to the same
solution of the general theory of relativity.

This applies to all kinds of spherically symmetric solutions. In some situations it is
necessary to take into account also the effect of boundary conditions; such situations
arise, e. g. in the treatment of spheres of perfect fluid, or of spherical layers of such fluid.
Now, at the sphere boundary r = r, the pressure should be zero. We see that formulae
(2.6) and (2.7) for pressure in the ECT involve a general relativistic part pgg which is zero
at the boundary when we take some metric from general relativity to a generalization
in the ECT. Now we demand that also the other term p,,, which is characteristic for the
ECT should vanish at the boundary

]
©

Pada(Tn) (3.2)

We may decompose
padd = hl+h2+h3 = k1+k2+k3, (3,3)
where
h, = —2E+Eé)e "?—E?,

’

1 o iis
hy, = — [Cv'+2(C+G) (— + 5)] e *? 4 C*+2CG,
r

. BZ+H2+FH
T4 4 2

g " 0 )‘ —-v/2

’ ’ V’ 0" 1 G', 1 —-A/2
ky= —|C+G+C{=+ =+ -} +G|= + -] |e ¥ +CG,
2 2 r 2 r

. B> H* BD FH
S
Eq. (3.3) is significantly less restrictive than the conditions discussed in the preceding
section, nevertheless it may bring additional difficulties in adapting a general relativistic
solution to the ECT.

Let us illustrate the role of the boundary conditions by considering the case when
we have s;; = 0, i. e. the characteristic “trace” of the spin 3-index tensor should be zero.
This is half the way toward the “‘classical description” of spin (without the factorization
of s%). This leads to the conditions

2E4A4=0,2C+G =0 (3.4
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thanks to which two algebraic conditions (2.11) and (2.13) are automatically satisfied.
Now we can distinguish two cases according to whether B is zero or not. With B + 0,

the four torsion components B, C, E, H are completely arbitrary, and D and F are com-
pletely determined by them and by the metric

2 ) . A A A |
D= —S|3E+E{2 — 2y el = -2 =2 ~a2
B{[ " (20+2>]e * 2 2 r ¢
E*
4= 42— —} B,
raf 125 -}

1 2 (T. . A
F = 7 [8BCE-2C*H—-4E*H]+ —E{[C+C(—§~ a— 5)] eV

, 3 , v _ 2H , vV—d 1 -
- [E +E(—; +3 0"~ 7)}: “2}+ ?{[c +c( T ;)]e A2

With B = 0, the situation is more complicated, as Eq. (3.1) gives two conditions upon
four functions C, D, E, H, and we cannot give a general solution of these equations

. . - A 2 , V-0 1 i 5 5
3BE+E{Fo+ - le " +1C+C — - Jle " +2E°-C° =0,
2 2 r
, 3., v —2 ; 2 3 —v2
E'+E —+'2'O'——2“ e +}1~-C+C —2-—70 e "“—4CE+31 DH = 0.
r

Now the torsion component F is completely free. In addition, the two equations
above are fulfilled when the three torsion components (E, C, and either D or H) are iden-
tically zero. Thus we have the following simple result: Any spherically symmetric metric
of general relativity describes at the same time the Riemenn-Cartan geometry in which:
(a) either the two torsion components D and F are arbitrary, while all the other ones have
to be zero, or (b) the two torsion components H and F may be arbitrary while all other
ones have to vanish.

In case (a), the expressions for density and pressure in the ECT are the same as in
general relativity. In case (b), the expressions for these physical quantities in the ECT
are related to the corresponding expressions in the general relativistic theory with the same
metric

. - FH H? ~ . FH H?
SnGpgc = SﬁGPGR"l‘ —_— -, SRGQEC = STCGQGR+ —_— + —

. 3.5
2 4 2 4 (3:3)

The additional terms on the right-hand side are able to exert a significant influence on the
behaviour of matter under such circumstances when they are comparable with the other
terms. Thus, e. g. the H? term is just the repulsive spin-spin interaction term which makes
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it impossible in cosmology to approach the point singularity (Kopczynski 1972; Kucho-
wicz 1975b).

With a boundary condition for pressure, we may insert either directly our solution
into Eq. (3.2) to get some restrictions upon the hitherto arbitrary torsion components,
or we may start with this condition from the beginning. Especially simple cases arise when
some of the torsion components are zero:

I.LA=E=0, C= —}G and H— are completely arbitrary, and B has to fulfil
only a boundary condition. Then D and F are determined by them and by the metric.

II. With C = G = 0, the situation is similar to the preceding case, only C has to be
replaced by E = —} A. Thus A4 and H are now arbitrary, etc.

III. With 4 = C =E = G = 0 we have, at most, two independent non-vanishing
torsion components B = — D, and H. They both should be such as to vanish at the sur-
face of the sphere.

IV. A = E = B = 0, leads to the general condition DH + 0. C is the solution of the
equation: g,(C) = 0, Either D or H may be chosen arbitrary, and F has to satisfy a boundary
condition.

V. C = G = B = 0. This is quite analogous to the preceding case, with the torsion
component E in the role of C.

VI. With 4 = B=C = E = G = 0 we have only the constraint DH = 0, and the
boundary condition: H(H+2F)|,_,, = 0. Generally, two torsion components may be
non-zero, but if these two are F and H, then one of the alternative boundary conditions
must be filfilled: either H(r,) = 0, or H(r,) = —2F(r,).

TABLE I
Simple choices of the Einstein-Cartan geometry for a given spherically symmetric metric of general
relativity
Arbitrary Other
Starting conditions
components of the torsion tensor
B #0 B # 0 and 3 out of the four D, F, H, and one of the
4,C,E, G) four to the left
2C+G #0 "
B =0 D, F, and one of the four A, C, E, G — related to
2E+LA£0 components listed in the right- | each other by 4 equations,
-hand side column H=20
C=G=0| B#0 B#0, A E D, F, H=0
B=0 D, F E, A, H=0
E=A4=0,2C+G#0,B=0 F, and two out of the four Two of the four compo-
(C, D, G, H, but not C and nents listed to the left
G simultaneously ) are determined by the
other ones
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The situation in the case when at least one of the algebraic conditions (3.4) does not
hold is illustrated in Table I (without the restriction by Eq. (3.2). It is important to mention
here that in Table I we pointed only to the simplest assignment, and our identification
proposals do not exhaust the possibilities of various assumptions of torsion components
corresponding to the same spherically symmetric metric. In the situation with the highest
number of non-vanishing torsion components (the first line from top in Table I) we get,
e. g. the following form of those torsion components which are not arbitrary

2C+D 2(g,+g») 44C 2 H
=—-— B D=—"""""«wB F=— 4+ — 4 fy— — s
JE+A B B B Si+/fs B(81+g2)
AC
G="0.
E

Similar expressions (or constraints to be solved) may be given in the other cases. In ge-
neral, due to the interpretation in the framework of the “classical description™ of spin,
the most important cases are those with nen-zero H. Though they are not numerous in
the Table, it is necessary to mention that we got H #+ 0 while considering earlier the case
with si; = 0, which is not covered by Table I.

4. Cosmological models with the Robertson-Walker metric
In general relativity, the Robertson-Walker metric:

R
T (141 k)

2 o

=1 e =e k=0, +1 4.1)

corresponds to homogeneous and isotropic cosmological models. These models have, of
course, spherical symmetry though they have no distinguished central point. One might
look for their possible generalization into the framework of the Einstein-Cartan theory.
The first model of Kopczynski (1972) belongs to this general class. It is not spatially homo-
geneous though the metric tensor fulfils the homogeneity postulate; this is due to the
torsion which distinguishes a point in space. This kind of violation of the cosmological
principle is a general feature of cosmological models of spherical symmetry within the
framework of the ECT. To get rid of this feature; one needs to go over to axially symmetric
models of the Universe; this has been done by some authors (Kopczynski 1973, Tafel
1973), and will also be studied systematically in the subsequent parts of this paper. Let us
start, however, with simple extensions of the standard Friedman models, as this may give
us a first insight into the question of avoiding the cosmological singularity which motiv-
ates the work in this area. In order not to repeat the arguments, we are referring to com-
ments on this problem in two other papers (Kuchowicz 1975a, b). A lot of cosmological
models has been derived with the ““classical description” of spin. We do not attempt here
to derive some more particular models of the Universe. Our aim is only to look for a gene-
ralization of the equations which were derived in the preceding paper (Kuchowicz 1975b).
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~ With the substitution of the metric (4.1) into the pressure isotropy condition (2.12)
and the differential condition (2.14), these two are reduced to the following form

1—} kr? 14} kr? .
e (C+ G)~ - C'+G)+E-A
rR(t) ( ) R(1) ( )
2R(1) ) 2
+ - (E—~A)—AE-{B*~{BD-C*-CG =0 4.2)
R(n)
1—1 kr? 141 kr? R(t
i, r (E—A)+ I+3 ke, ()
rR(1) R(t) R(1)
+2AC+4+BF+3BH+4{DH =0 (4.3)

Now the group of motions is extended by a fourth generator X, = 0/0r which gives
the independence of the torsion components from the radial coordinate r. The expressions
given by the left-hand sides of Eq. (4.2) and (4.3) should vanish independently of r. Hence,
the following conditions should be satisfied

E=4, C=-0G.

With these conditions, algebraic equations (2.11) and (2.13) reduce to

AG =0, —BG = 34H, 4.5)
and we get only five following different possibilities to fulfil at the same time all equations
@4.2) ... (4.5):

I.A=B=C=D=E=GG =0, no constraints upon F and H.
[I. A=B=C=FE=G = H =0, no constraints on D and F.
HM.A=C=E=F=G=0, D= —B % 0, no constraint on H.
2
IVV=F=G=H=0,E=4+%0, B0, D= — —-B(#+ 0).
V.A=B=E=0, C= —G %+ 0, no constraint on F. A single constraint involving
R

G, D and H: G +G+4DH = 0.

With all these conditions listed above, we are able to enter the expressions for
matter density and pressure which have the following form for the Riemann-Cartan
space-time with the Robertson-Walker metric

N 3 . N
8nGo = = (R*+ k) +87G 0,44,

2R R2+k
87Gp = — R

+87Gpoag- (4.6)

The additional terms 87Go,,, and 87Gp,4, on the right-hand sides are characteristic of the
ECT. Upon inspection of the additional density term for the possibility V, we find that ¢
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(which should be non-zero) is multiplied by a term involving explicitly r. Now a depend-
ence of such physical quantities as density — on r is inadmissible, otherwise the cosmo-
logical model under study ceases to be at least “metrically” homogeneous. We must thus
discard the fifth possibility, and we are left with the four classes of extensions of the Robert-
son-Walker models in the Einstein-Cartan theory which are listed in Table I. The standard
Robertson-Walker models from general relativity (with all torsion components equal to
zero) may be considered as the limiting case of models of classes I and II. Actually, the
expressions for energy density and pressure for models of class II, even if both torsion
components D and F do not vanish, are the same as in general relativity. It is thus easy to
see that a singularity cannot be averted in the models of class II. In models belonging to
class 1, a singularity may be averted thanks to the new terms; it is necessary that H %+ 0
in order that a singularity disapears. Models of classes III and IV are very specific models,
going beyond the “‘classical description” of spin in which only the H component of torsion
may remain. Models of the first three classes fall within the generalized concept of a clas-
sical spin description, when we assume the validity of the condition: s = 0, while model IV
does not allow this condition to be fulfilled. The introduction of the torsion components
with the upper index differing from ““4” is, in our co-moving system, equivalent to introduc-
ing some new components of the spin angular momentum density tensor in addition to the
spin density. These may be called the spin flux densities and can be conceived as the
4-dimensional generalizations of the moment stresses (Hehl 1973, 1974).

Let us discuss briefly some peculiarities of the four classes of the extended Robertson-
Walker models.

Models of class I include all the models with a *classical description” of spin we
presented in the previous paper (Kuchowicz 1975b). With F % 0, we introduce the spin
stresses s2, and s2,. But since the term involving F appears in the same combination
with 2H? in the expressions for density and for pressure, the linear equations of state of
the type p = (y—1)p are the same as in the case of the classical description of spin,
and all conclusions with respect to the behaviour of the radius function R(¢) which were
derived in the previous study (Kuchowicz 1975b) remain valid.

The two possibly non-vanishing spin stresses 575 (= 53,) and s3, (= s3,) for type 11
models do not introduce any difference with respect to the standard general relativistic
behaviour of the radius function R(¢), energy density and pressure.

We may compare universe models filled with dust, with radiative models possessing
the same scale factor R(z). Let the indexes “‘4” and “r”’ denote dust and radiation, respec-
tively. Then it is possible to generalize a result which was derived in the preceding paper
for the “‘classical description” of spin only. From the straightforward calculations we der-
ive a remarkable results, comparing energy densities of dust and radiation universes at

the same instant of cosmic time:
o, 3 for type I and type III models,
0a 1% for type IV models.

This means that provided we have at a given time a certain scale factor R(¢) corresponding
to a certain energy density g4 in a dust universe, the corresponding energy density g, for
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TABLE 11
Four classes of the extended Robertson-Walker models in the Einstein-Cartan theory
Class ‘ Sxagadd { 87GPagd Non-zero torsion components
|
’ H?* FH H? FH .
1 ' —_— — — — Possibly F, H
: 4 2 4 2
! !
11 1 0 0 ! Possibly D, F
» |
i H* 3 B2 B* H? | Necessarily
I ‘ 4 4 4 + 4 = —B, possibly H
! Necessarily:
: . R . A4 =E, B, and
R 3 B . R
v ' 242464 — — —B? — — A2 A+24 — 9 42
, R 4 4 R D=-"—-B
| B

a universe filled with radiation?, is by 50 percent higher or by 50 percent lower (depending
on the model type) for the same expansion stage characterized by the same value of R(¢).
The peculiar behaviour of type 1V models is exhibited by the fact that we have g, < g4
for it. Our result remains valid as long as the additional terms from Table I are not zero.
It allows us to consider only one type of the dust or radiation models, and then to for-
mulate the physical implications for the other type. This is a specific feature of the ECT
which has no analogue in general relativity.

Finally, let us briefly state that in type III models both of a dust and of a radiative
type, singularity can be averted in spite of the negative contribution from B in the expres-
sion for energy density. It may be shown that with the two assumptions of energy
conservation (87GoR?® = M for dust, and 8nGoR* = M for radiation models) and spin
conservation (H = HyR3) we get from the first integral of the respective equation of
state for dust matter

2

(BR*—O)R+ TE =M, “@.7
for radiative matter
. H?
G R*-C)R*+ 4—R°2 =M. 4.8)

The appearance of the repulsive spin-spin interaction term with H, makes, in each case,
the region around r = 0 inaccessible, just as in the first model of Kopczynski (1972).
We see thus that also among expanding models of type III there may exist such which
exhibit no singularity.

2 Matter with the equation of state p = J ¢ is defined as radiation.
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5. Conclusions

Though spherical symmetry may appear irreconcilable with the presence of torsion,
it constitutes the most simple case which can be investigated within the framework of the
Einstein-Cartan theory. It was our aim to point to the possibilities which arise for astro-
physical and cosmological applications of the Einstein-Cartan theory. The spherically
symmetric case enables us to take over numerous exact solutions of general relativity into
the new theory. Various inequivalent ways to perform such a generalization have been
indicated here. Such generalized solutions may be now generated for the most general
case, with eight non-vanishing components of the torsion tensor, and some of their fe-
atures may be treated as an indication of the properties of more general and physically
reasonable solutions lacking spherical symmetry.

It would be therefore useful to go over to the case of axial symmetry, at least for
cosmological models. This will be done in the next paper of this series, dealing with those
models described by the 4-parametric Lie group, possessing a subgroup of the Bianchi.
types VII, VIIT or IX. Also further generalizations of the physical assumptions (e. g.
a transition to viscous fluids) will follow.

APPENDIX 1

General form of the torsion tensor in the case of spherical symmetry

It is well known that a geometric object is spherically symmetric when its Lie deriva-
tive, with respect to any of the three Killing vectors £ for spherical symmetry, is equal
)

to zero. We give here these vectors in terms of components with respect to the spherical
coordinates (r, 8, @, t) we are using

¢ =(0,0,1,0), ¢ = (0, sin ¢, cotg 0 cos ¢, 0),
1) (2)

¢ = (0, cos p, —cotg 8 sin ¢, 0). (AL1D)
3)

Alternatively we can give the three generators of the group of motion in this case

-~ -~

é 0
X, =—, X, =sing— +cotgBcos ¢ —,
a0 dg

Sl

-~

7 0
X3 = cos ¢ — ~coig 0 si — AL2
3 ¢ og ~Colg Osing o9 (AL2)
with the commutation relations
[Xla Xz] =X3, [Xz, X3] = Xl! [X3,X1] = X2 (AI.3)

corresponding to the Bianchi type [X.
The Lie derivative of the torsion tensor Q;k with respect to any of the three vectors



571

& has the form
0]

£§ Qi = &'Quut Qilli+ Qiuél— Qi (AL4)

where comma denotes ordinary differentiation. As we insert (t;’:) into Eq. (Al.4) and equate
the latter to zero, we get

dg

which means that the Qijk do not depend on ¢. By inserti,ngé) into Eq. (Al.4) and equa-

ting it to zero we obtain the following set of equations:

=0, (ALS5)

20! oS . cos
g{;z + 2(2 03, —cos pQ3,85 + (511 7 01, +cotg 0 sin ‘PQ12> 3% =0,

sin ¢

i

. Qi3 . i o i 3 i
sin ¢ 0 —cos g5 +cotg 0 sin Q% —cos pO730,

cos ¢ ;
+ ( Qi3+cotg 0sin ¢Qf; | 65 = 0,

i

0014 i Cos @ . i
sin ¢ —% —cos ch1452+ (—8;1—12—0 Qf4+cotg 0 sin qu?“) o5 = 0,

20" . . cos ;
sin ¢ % +cotg 8 sin Q%,—cos ¢Q§35’2 + (gnz_g(’; 03, +cotg 0 sin <pQ§3> o5 =0,

6Qi24 cos ¢
o0 sin? @

sin ¢

cos @ . )
Q34 COsS (pQ245 (m Q§4+C0tg 0 S ¢Q24) 53 = 0,

i

- 0034 i . , i 3 i
sin @ 20 +cos ¢Q%,—sin g cotg 0Q5,—cos Q3,405

cos ¢ ;
+ P Q34+cotg 0 sin pQ3, )05 = 0. (AL6)

This set is easily changed into a set for (é)by the substitution of cos ¢ for sin ¢, and
(—sin ¢) for cos @. Then, by some algebraic manipulations, we obtain
0%+ 03,04 —sin’ 607,8, = 0
07,65 —sin® 0(Q%; +Q330%) = 0,
Q1485 —sin® 60,5, = 0
Q3303 —sin” 60335, = 0



Qi34 - Q§45§ +sin’ 9Q§45i2 =0,
Q§45i3 +sin® B(Qiu - Qg45i2) =0,
80},

A = "'COtg 0Q325i33
00

9013
a0

= —cotg 0[Q%; + 03,51,

Q14

= —cotg 001,35,

00" . .
%3 _ _ cotg 0104, +0%55],
ol
005,
¢

0054

o5 = cotg {054~ 03.3%]. (ALT)

= —cotg 003,35,

From an analysis of this system of equations, we arrive at the following interesting result
which may be formulated best in terms of the components with respect to the set of 1-forms
6': There may exist no more than 8§ independent nonvanishing components of the torsion
tensor: Q;m 033> Q%s 033, 01, = 03s, 03, = 034, 01, = — Q%2 Q34 = — Q34 The
1-forms 6' are defined as in Chapter 1 of the paper. The Q' depend on r and on ¢.

As for the components with respect to the coordinates (such components appear
actually in Eq. (A1.7)), the result appears to be slightly more complicated. Now, we have
to write: Q33 = F, sin 0, Q%, = F, sin 0, 0%, = — 0}, sin?0 = F;sin 0, 02, = —Q3,
sin? § = F, sin 6, and to demand that the F; and the remaining non-zero Q-components
(Qi4, O%4, Q%,, 02,) are functions of r and of ¢.

The same result applies to the existence of independent components of the spin
angular momentum density tensor si-k.

APPENDIX II

The connection 1-forms wi, curvature 2—forms Qj}, and curvature scalar R

A.Components of the connection 1-forms with respect to the basis 1-forms 6

1 !
o'y = -0 = [C— (; + %) e‘m] 6?—1 BO®,
1 o
o'y = -0’ = $ BO*+ [c— (; + 5)e‘m] 6%,
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-a/2

w0y, = —w®, = (D+1B)9' - cotg 00° —(F +} H)0*%,

r

i ) ’
0, = = (A+ ie““) 8! + (-—G+ v?e'm) 0%,

I

6042

e
£
I

(E+ ;e"“z) 6> 3 HO’,

It

¢
o’y = 0*, = 1 HP* + (E+ 5e‘””’) 6.

Here, as in all the following formulae, we get the expressions corresponding to the case
with the classical description of spin (Kuchowicz 1975b) when we put all the torsion
components equal to zero with the exception of H.

B. Frame components of the curvature 2-forms

+ 1 B +B 3+i e 241 H A+%e_”’2
2 r 2 z 2
1 ¢ ., ¢ 6-if1 o L AL
—@GB+D)|C— |-+ = )e 0" AP+ - | =+ — -+ =)+ — 2
aseoc- (e g)efoao [543 ( )+ 5]

+(C+3 C6—-3Go)e ™ +1 Eve "~} BF—1 BH—EG} 0% A 6*
1 7
+ {—%(B+% Bé)e "% — [% Hv' +(F+1 H) (— + %)] e M2
r
—-CF-1CH+1} GH} 6* A 6%

_ 5 | Lo
Q) =-0= {“‘%tB'-&-B(— +o')] e'*‘z—D(- + ?2—) e 2
r r

(0_1)2 G, }‘r AIG,) -2
e

—3Hle™?—1 AH+1BC+CDb 0! A 02+ (T
¥ } 2 B0+ TNt r 2r 4

A6 1 o ,
- Zae"’— [C’+C<—r + ”5)] e -3 (A6 +ENe " ~AE-} B>~} BD} ' A @
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. L THY H\/l o
+ {% (B+1 Bé)e ™ + [—43 - <F+ 5) (« + %)J e 24 CF+3 CH-} GH} 6% A 6*
r

i-—— . 1 ’ .t F; _Xj.;: . )
22 DY T 4 (CL Co—1 Goe P43 Eve
2 r 2 2 4

-3 BF—%BH—-EG} 6> A 6%
. B ] B H ¥ H
3 — _QZ — D - - D - ~v/2 Fr o o F - -2/2 81
@, 3{[+2+2(+2)}e +|F+ o+ 5 (F+5)|e
4 e’ 1 o —4/2 : g -v/2 ’ 2 2 g2 3
AN+~ — +|C— ;+Ee‘ -E+§e +3B°—1H* 6" A 0.
’
Wi A2 viYA )
Ql =Q4 o= el — -V e 7 -2
=50 {[4 2 4]"’ +(2 i 4>e
.4
—Gle H2— <A+ QA) e"“/z} o' A 6*

1 o
+ {L + 5) He *? 41 86e“”2+BE—CH} 0% A 62
\I’

¢ & e—Af1 o\] -2&
QZ — Q4 — o + _ P 2
+ 2 {[2 s T2 <r+ 2>]e

’

1
+ [E’+(E—A) (— + %)]e““+% Cle™?+AC+} BH+} DH} 6" A 6
r

+ {[(DH B)g —B'ﬂ e"“—%[(% + -(;—/)H+H’] e -3 AB+1 BE+DE} o' A 0

/AL VA COA W E+} Ed)e™™?
274 T % s\t ) TEFTEDe

1 !
- [g Cv'+G(— + %)] e ML CG+I H? 43 HF} N

;
+{3(H+H6+Fdé)e "*+} Bve *—~1 BG+EF+3 EH}0® A 6*.

Q=04 = {JI [H (lr + %) +H'] e 2 +1[4 B(A~6)—Dé]e”*?

¢ v o—-Af1 o'\] -2
+3AB—1 BE—-DE} 0" A 6* ——— e — =+ = 2
% 3 } A +{[2 4 + > (r+ 2)]9
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1 !
+ I:E’+(E-A)(-— + %ﬂ e” "2 41 Cle™? + AC+1 BH +} DH} 6" A 6°
.

+{—4$(H+H6+Fé)e™*~4 Bv'e™"?*+} BG-EF—4 EH}0" A 6*
v o 6\ _, V(1 o\ _, . v
tWNT 2T 7)) —(E+} Ed)e

1 ’
_ [% cV'+G(— + %)]e'*/2+CG+%H2+%HF} 0% A 0%
r

C. Tensor components and the curvature scalar

The tensor components of Rij” may be read off from the set of expressions for Q;
with the help of Eq. (1.2). Then we may calculate the Ricci tensor components with the
simple rule: R, = R¥ j&> we do not give them here because they are used directly in the
formulae of Section 2. Here, we give only the curvature scalar R = R; which appears
directly nowhere in the formulae

24 =v)—66" 2
R = [—20”~v”—%(0’)2—% (V) +40 +1 AV Ve + ‘(——7) ,.2] e

-a

. . . .o e
+[20+i+3 0’ +3 A2 +io—% lv—vole " + pe)

2 . . . A
+2[2C’+G’+(2C+G) (— +o')+ cw] e““2+2[A+2E+(A+2E) (0'+ 5)} e™?
-
+4AE+% B> +2BD—-2C*-4CG+2E*~FH -4 H.
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