Vol. B6 (1975) ACTA- PHYSICA POLONICA No 4

WAVE EQUATIONS FOR UNSTABLE PARTICLES AND
RESONANCES: GENERAL CONSIDERATIONS AND SOLUBLE
MODELS

By A. BrzEeski AND J. LUKIERSKI
Institute of Theoretical Physics, University of Wroctaw*
( Received August 8, 1974)

We propose a quantum-mechanical description of an unstable object, which is character-
ized by an equation of motion with complex energy (mass) parameter. In order to satisfy
conventional axioms of QM, we introduce the source term which is proportional to the
root of the imaginary part of the complex energy, and in the stable limit disappears. The
decay properties are therefore characterized by a complex energy (mass) parameter and the
source term which describes the deviation from “nonunitary” space-time development.
We consider models with space variables, nonrelativistic and relativistic ones. The explicit
formulas for simple models of wave functions are given. Finally, we present within our
framework the description of an unstable F-particle in NG@-sector of the Lee model.

1. Introduction

Wigner’s success in describing the states of stable particles as vectors in irreducible
unitary representation of the Poincaré group led several authors to efforts relating the
description of unstable particles with nonunitary representations of the Poincaré group
[1-5] or the Poincaré semigroup [6]. The idea of having a wave function of an unstable
object, characterized only by complex mass, is very appealing because the decay is de-
scribed by beautifully exact exponential decay law. Besides, the parametrization is very
simple, and unifies the description of .stable and unstable particles.

One introduces such nonunitary wave functions by looking for the solutions of the
Schrédinger equation [7]

d .
i M5 1 = HY|M; ), (1.1)

where M = mo—iy denotes a complex mass, and the nonhermitean Hamiltonian HY
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is obtained from the free Hamiltonian HI for stable particle by analytic continuation
m-o M.

Unfortunately, if y # 0 the introduction of states |M; 1), leads to a violation of the
conventional axiom of QM, which states that the energy spectrum should be real
and positive. Besides, in relativistic QM, the space-time propagation of nonunitary states
violates causality {8-9]. One has the following two choices:

a) To enlarge the space of states by considering also complex eigenvalues of energy.
In this way we have, in theory, unstable elementary states, but we are facing many diffi-
culties such as asymptotic expansions of the wave functions, troubles with unitarity, analyti-
city and causality [10].

b) To preserve the conventional energy spectrum, and all remaining axioms [11].
It follows from such an approach that the nonunitary state be only an approximation
of the state describing physical unstable particles [18].

In this paper we shall follow second possibility. We shall assume that the Hilbert
space # of states is spanned by the eigenvectors of a total Hamiltonian H. In further
discussion it is sufficient to consider only the continuous part of the spectrum of H, i.e.
we shall assume the following spectral decomposition

H = [ EdPg, 1.2)
0

and the following definition of #
#{{f>eH f(E)y=Elf>eL,}. 1.3
The space # can be decomposed as follows
H = Hy@Hp, (1.4)

where #, describes unstable states, and 4, its decay products.

Our aim is to introduce the unstable state which is characterized by complex mass,
but does not lead to the violation of the spectral condition (1.2). We propose the following
modification of equation (1.1)

0 AN
(lé‘- _Ho) Mt = (-—) 1S5 1), (L.5)
t n

where the state vector |S; t)> describes the deviation from the nonunitary time development
and can be treated as the source term in the equation for unstable object. Equation (1.5)
due to the presence factor y*/? on the right-hand side, gives in the limit y — 0 the conven-
tional equation for the wave function of the stable object

~

]
lat [m; £y, = HE|m; . (1.6)

The source term in (1.5) is responsible for the introduction of threshold and back-
ground effects. It is interesting to mention that if we derive Eq. (1.5) from dynamical
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equations (e.g. the Lee model), it follows that the parameter y is proportional to the coupling
constant. We see, therefore, that equation (1.5) incorporates the basic property of unstable

particles — it appears only in the presence of interactions.
In this paper we discuss only the following wave functions
Yul(t) = MMty (1.6a)

which describes the projection of |M;t) on the space #, (see (1.4)).
Sometimes the function (1.6a) is called the nondecay probability amplitude [24].
Such time development leads to the decay property

Py(t) = [Zu(H> < L.

Introducing the complete set of states {D); in #,, and the projections
KDIM; 1) = 1 (D),

one can write

Pu(t) = 1=jxu(I%.
It should be also mentioned, that in the case of unstable object it is possible to-define the
internal time variable t, and the state |t> is defined as follows:
o0
J e "EEYdE.

0

, 1
=5
One can characterize the state |U) by means of the wave function @,(1) = (z|U> defining
the “‘Schrddinger representation”. The function ¢,(r) defines the “time shape™ of the
unstable process. The discussion of such a Schrédinger representation for the state vector,
satisfying the unhomogeneous equation (1.5) leads to the formalism with two time variables:
the internal time 7 and “‘historical time” ¢, unitarily implemented in the Hilbert space (1.4)
by the operator [25]

exp [—iHt]

The plan of our paper is as follows:
In Sect. 2 we consider the simplest one-dimensional case of QM with only one time variable.
Firstly we discuss model (1.5) without specification of the source term. Further, we consider
an example describing a wide class of unstable wave functions. In Sect. 3 we present
similar considerations for three-dimensional nonrelativistic QM. The relativistic case is
considered in Sect. 4. In accordance with the spirit of Eq. (1.5), we calculate the space-time
development of the wave function of an unstable particle satisfying the following equation

((D—mé)2+ %) Pu(x) = y9.4(x), 1.7

where
5.(x) = | d*pe™™. (1.7a)
Vs
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In Sect. 2-4 the source term. is introduced a priori, without giving any dynamical
justification. In Sect. 5 we discuss the physical meaning of the source term by considering
an NO sector of the Lee model. It appears that in dynamical models the real and imaginary
parts of the mass occuring in (1.5) become opertors, i.e. we have

M — M(E) = M(E)—il(E). (1.8a)

The choice of constant complex mass M corresponds to a generalized mass renormalization
procedure, which is defined by means of one complex equation (i.e. two real equations):

M = M(M)—il((M). (1.8b)

It can be shown that the solution of (1.8b) describes the position of a complex pole of
the resolvent (z—H)~!, continued analytically on the second sheet.

In Sect. 1-5 we discuss only the one-channel Hamiltonian H with its eigenstates
describing elastic scattering. In such a framework we are able to describe only a “free”
unstable particle [19] which has been formed and subsequently decayed in the course
of the resonant elastic scattering process. In order to discuss interacting unstable particles,
one should introduce the Hamiltonian describing at least two coupled channels. The
definition of the wave function for an unstable particle in the presence of other stable
or unstable particles will be given in the forth-coming paper by one of the present authors.

2. One-dimensional QM
a) General considerations

We shall assume that the geometric group of motion is represented only by one-
-parameter group of time translations. In such a case the free Hamiltonian is reduced to
a number (ﬁ{," = m; mass is equal to energy (and equation (1.6)) has a form:

d
i——m])im;t), =0, 2.1
( a ) ! Y0 2.1)
or (Im; 03 = |m)o)

Im; £y = e”™[mD,. (2.2)
In order to discuss the state describing unstable particles let us introduce the source
vector |S; ¢> which for # = 0 can be decomposed in the continuous energy basis of the

total Hamiltonian as follows:

iS;0) = |S) = | dES(E)|E). 2.3)

Ot §

Using the formulae

IM: 6> = e M = ;[DdEe"iE‘M(E)iE), 2.4)
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we obtain from (1.5) that

2\"? S(E
M(E) =(£) EE——; 2.5)

From (2.5) we can calculate the wave function for an unstable particle

o(t) = (Mie™ 80
5 [ISE) exp [~IEdE IiS(E)IZ exp (—iEY)

n) (E-MY(E-M*) 1) (E—mg’+y
0 O

dE. (2.6)

The wave function (2.6) satisfies the following equation
d 2 y 1/2 -
{(i - “""o) +7’2} Pult) = (—> S(0), 2.7
dt 7

$(t) = <Sle sy = Ojo IS(E)|?e EtdE (2.8)

0

where

characterizes the time development of the source.

Equation (2.7) is determined if we know the source function S(t). In connection with
this problem we would like to make the following remarks:

Remark 1. The source function §(r) can not vanish for any finite time interval, This
result follows from the fact that S(¢) is a boundary value of an analytic function holo-
morphic in a lower complex ¢ halfplane.

Remark 2. The Breit-Wigner formula for the description of wave function of an
unstable particle is obtained if we assume that S®¥(¢) = 5(¢). In such a case the spectral
condition for the unstable system is violated. The wave function has the form

YIN(1) = e ™MO(t)+e MM O(—1) (2.9)

which differs from the nonunitary wave functions only at ¢ = 0.

Remark 3. The role of S(¢) is to introduce the threshold and proper asymptotic
behaviour of the energy spectrum if E — o0. A resonable choice of the source function
should not complicate, however, the analytic structure of the spectral function. We shall
assume that S(E) is holomorphic for Re E > 0. In such a way the Laplace transform G,,(z)
of the propagation function

@0

B 1 7 |S(E)|*dE
Gu(z) = {M| raap M) = i E—my = (2.10)

analytically continued to the second sheet by means of the formula (Im z < 0)

GL(2) = Gy(e)—2mi | — 1)

. [———(Z—mo){—‘i‘)’z] 5 (2.11)
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has in the whole quadrant (Re z > 0, Im z < 0) of the second Riemann sheet only one
pole at E = M = my—iy.
Remark 4. We shall use the normalization condition

K

P = Mty = L | ISENE 2.12)
MR SO J(E—mg4y? (2.
0
Another normalization condition
CMIAIMD 7 [ _IS(E)*EdE 2.13)
=nmy =} -——: .
R T x J (E—mg)*+92 ¢
0
is a self-consistency equation, which is not easily solvable.
Remark 5. In general case, due to interaction, we obtain instead of (2.6)
1 IS(E)j2[(E)e™ "B'dE
w(1) = (2.14)

n J [E-M(B)] [E-M*D)]’

or instead of (1.5)

(1 o\
/(1 7)
'i._M ii M; 1) = _l_i iS: 2.15)
Lt i) n IS5 0.

The choice of our unstable particle state corresponds to the replacement of the mass-
-operator M by a complex constant, describing positions of poles of the integrand in (2.14).
The replacement of W(¢) by ¥,(¢)is therefore a simplification of the formula (2.14) satis-
fying the following conditions:

a) The residual contributions from the points £ = M, E = M* are the same.

b) The threshold (E =& 0) and asymptotic (E — oo) behaviours of spectral function are
preserved.

It should be mentioned that the wave function ¥ () is not equal to the contribution,
obtained by deforming of the integration contour in (2.14) through the pole at E = M.
It is easy to see that such a contribution describes purely exponential nonunitary wave
function with renormalized value of complex mass parameter.

b} Model

Let us assume that
! 12 v —BE L

It should be mentioned that the power v determines the threshold behaviour, and
leads to the exponential damping at infinite energies.
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The wave function of our unstable object is given by the formula

e

poD(r) = L S dE 2.17
ot (E —me)? @17)

where N is chosen in order to satisfy the condition (2.12).
b1) General case (v > —1, p >0

The integral (2.17) (and value of N) can be calculated if we use the following formula
(see for instance [21])

A v —pE
J dE = T(Mp~*d(1, 1 —v; bp)+ T (v+ DI'(—v)be,
0

where @(«, f§; z) denotes the hypergeometric series [22]. We obtain finally

)

Grir [&(1, 1 —v; — M*(B+it))

GB(p) = p0)
V(1) = Wy (t—if) = NW{

—@(1, 1=v; —M@B+it)]+(—1)" Sn”

1 TV

[Mve—M(ﬁHt)_M*ve—M*(th)]} (2.18)
and the normalization factor N = 4{,%(0). The asymptotic behaviour at 7 & 01is as follows

Y (t—ip) = CLB+in™" Z o (BE+ itk T+ CH(1 — i)+ O0(1?), (2.19)
where

ot _ F()I(1-v)

Niy
k)
C2 = (=1) ——— (Me M ppxre™ M),
sin vy

M* — M*
I(1—vtk)’

The asymptotic behaviour for ¢ — oo is the following

A = (—1)f

1 [(1+v)

?’Yu(t*iﬂ) ~ N|M|2 (/3+it)v+1 :

(2.20)

We are able to calculate the limit v—>#n,# = 0,1, 2, ... in formula (2.18), and then
we obtain the following form of the wave function

m(t—iB) = lim Wy, (1 —if) = — {Fau(t—if)— Fr(1—iB)}, (2.21)

vy—2n
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where
Fu(t—ip) = (=" '(=M)"exp [ - iM(t—iB)]

x Ei[iM(t—iB)]+ Z (k=DIM" 5B +it)
k=1

b2) The limit S—0,

(2.21a)

Let us assume that there is no damping in our formulas (i.e. § = 0), The wave function

of an unstable object, in this case, has the form

e 1—i0,) = - ITD gy iM*1)
- =-—d— s l—v; —i
wt=104) = o Gy
s . .
—d(1, 1—v; —iMD)]+(—=1)" ~ [M”e"‘M'—l\/I*”e"M“]} ,
sin vy
and
i
iNy = (—=1)° —— [M*~M*],
Sin v

where v+1,2, ...
The asymptotic behaviours are correspondingly:
1) Small times (r= 0)

Yut = 0) ~ —

1 ¥ ronra—y)
Niy{

i I'2-v)
2) The wave function for ¢ — oo is given by formula (2.20).

b3) Special cases

L(p=0,v=0)
The normalization factor has the following form in this case

M

i
N=—log—,
s O A

and the wave function is as follows
0 1 — Mty ~iM* s
Yol = N [e ™™ Ei(iMty—e Ei(iM*1)],
Ly

where the function Ei is defined as follows

0

(_ 1)n2n (_ l)nn2n+ 1
Ei(in) = 1 C .
i(in) = logn+C+ E et T/ @nt D) @nr)!
=0

n=1 n

— (i) T (=) - i) [M*¥ - M"].

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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The asymptotic behaviour for ¢ ~ 0 is given by

POt ~ 0) ~ 1 —imgt— —J;t[log It —in+C—1], (2.27)
and for a large ¢
1(1 1
PO) ——> —{— — . :
(D) —== Ny {Mt M*t} (2.28)

2) (B=0,v=1/2)

The wave function of the unstable objects has the following asymptotic behaviours:
(YN = mi( (/M — M%)
a) Small time

1 2/ i
YA ~ - = —— P g .
WO~ -t (2.29)
b) Large time
wi/2(; . — Jmi =302, .
M () 52 SNIM? (2.30)

It should be mentioned that the value v = 1/2 corresponds to the physical S-wave
threshold behaviour (see also Sect. 3).

3. Nonrelativistic QM (three space dimensions)

a) General considerations

In ordinary QM, Eq. (1.6) is as follows

(ia% —~ 5) lm; > = 0. (3.1)

2m
Expanding the solution of 3.1 in the complete set of three-momentum eigenvectors
Im) = [ d°p&(p)|p; m), (3.2)
we get the following time development
im, 1y = § dpe@)e” 5 m. (33)
The usual formula for the wave function is as follows:

,(x, 1) = {m| exp [ipx—iHgt]im)

= JaplEpyze™ " (34)
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For an unstable state |[M; > we introduce the following equation
~ ~2 1/2 |0
0P Yy = (1) 2

ot 2M n

LIS 0,
v; IS;
where

1Sy = OJ dE { dpS(E, p) |E, p), (3.6)

(3.5)

and |E, p) describes scattering states with a continuous energy spectrum,

HIE, py = EIE, ), E=0 3.7)
is normalized as follows:
{E, PiE’, p'> = S(E—E")o(p—p'). (3.72)
Thus we have
iS;t) = ¢Sy = [ dE | dpe”*'S(E, p) |E, p). (3.8)
0]
Introducing the spectral representation
M, ty = | dE | dpe” "®'M(E, p) |E, B (3.9)
0
one obtains (we recall M = my—iy)
1/2 = P
_ Y S(E, p) 1p|
M(E, p) = — _ 3.10
(E, p) (27‘5) 132 M ( )
2M
The wave function for our unstable object is given by the formula
Yo%, 1) = (M e H M
R {PIS(E, P,
= 0 | aE (dpermer  PSED (3.11)
27|M| p . P
0 E—- —WWE- —
2M 2M*
Function (3.11) satisfies the following equation:
O ANGE D A e =2 A se (3.12)
i——— i - x, 1) = ~— —— 8(x, 1), .
a 2M)\a 2m*) M 2n |M?
where
(3.15)

$(x, 1) = [ dEe™"® | dpe'™|S(E, p)|®
4]

describes the four-dimensional source function.
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Formulae (3.11) and (3.12) describe the general wave function of unstable particle
in QM. The factor, occuring in the front of the source function, is chosen in such a way
because

1 =2 “A/I 2 =2
lm WIME 5<E— %) (3.14)
- T
=0 E-— P E— L 0
2M 2M*
i.e. we obtain
lim Yy(x, 1) = ¥, (x, D), (3.15)
?~0
where ¥, is defined by (3.4) and
1_72
¢(p) = S(—, 13)- (3.15a)
2my

In nonrelativistic QM, one can localize the source function in space, i.e. one ¢tan
assume that

S(x, 1) = §(1)93x) (3.16)
which corresponds to the assumption in (3.13) that
IS(E, p)I> = IS(E)I%.

Remark 1. The integration in (3.11) over dE can be replaced by the integration over dm>
in accordance with the formulae:

2

2
p p

= —, E= — —dm. 3.17
2m 2m? " (.17

One obtains (compare with (3.11))

W, 1) = [ dm d'S(l_’2 ‘)
(x, ) = ) (m—M) (m—M¥*) Py 2m’ P
0

We see, therefore, that the normalization of the source function becomes the same as in
one dimensional model. The “mass representation” (3.19) leads in a transparent way to
the result of (3.15).

Remark 2. If we assume (3.16), the wave function is rotationally invariant.

2 72
exp [iﬁ—i — t] . (3.18)
2m

b) Model

In this model we are using the same form of damping as at Sect. 2. It is given by the
factor exp (—pE), f > 0. We shall discuss the space-time behaviour of the following
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function

WK, (+if) = 2AmP* jdEE" "EJ < (3.19
X, .
u N PF—a ()’ )

0
where

o= f+it, a=2ME.
b1) General case (f =0, v > 0)
We can easily calculate the value of the integrals

exp (— 2n”
fd xp(ZPY) 2 o (=i VIME ),
r

p—a

ex ipx) 2n*

j dp i( af: ) _ _exp (i V2ZM*E 7). (3.192)

Putting k% = E we obtain from (3.19) and (3.19a) the following formula [21] (r = |x|)
2 i2

[M]|

Plr, t+if) = TR~ B+in™"?

x{exp(— M*r? >D (-irv’M_‘-“) e [_ Mr? ]D ir\/ﬁ)}
4p+in) T\ Jp+it PL™ ag+in —v(\/m '

3.20)
Let us write (3.20) for t =0
v 8’| M| . M*r? ir v M*\
Yilr) = = 10 (2 {exp[— _4/T] D_v(- o )
—exp [-— M—rz] b_, (ir ‘/—M)} (3.21)
4 JB
If B > 0 we can choose the constant N in the following way
[ @r¥y(n* = N7, (3.21a)

which is consistent with the probability interpretation of function (3.19).
The asymptotic behaviour at r?/f+it] ~ 0-is as follows:

2

Wiy(r, 14f) ~ CU(B+i) "V Cl— T + € Vi3>
(B+ir) 2 (B+ir) 2
ol = 8n¥M|*Ir(v)2™" |/2n

Y N
y (E)
2

WM+ M*),
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o 8n’M|’r(v2™> /=

v
v N (v+1)2’
F I
2

o - 8n*|MIZr(m2™ (1-v) /27

Y N
4 6-1’(2)
2

I’2

(M /M +M* /M%), (3.22)

The asymptotic behaviour for ey
it|

Yy(r, t+if) ~ Cr~" 71,
c, = BCIME (] ) LY 3.23
ST RR NER) R

It is not difficult to get a respective formulae for the wave function and its asymptotic
behaviour from formulae (3.21-3.23). The limit S — 0, implies, however, difficulties
with the normalization constant. If one assumes § = ¢ = 0 and calculates the wave function
at r = 0, one obtains

b2) B - 0,

P0) = A .;!i}; , (3.242)

A= M2 ( 1 1
oy {ﬁﬂ - JZM—*}'

It is easy to see that N is divergent. It appears that only if v = 1 one can regain the
physical normalization of the wave function by the following procedure:
Let us introduce the modified function ¥ (r) as follows

where

¥ofr) = \/ rzg) ¥y 2-or) (3.24b)
and let us introduce the modified norm
N = Yo )f! 1y2-fN*dr = I‘ZIS( )é) ;;)3 dr. (3.25)
It is easy to see, using the formula [23]
" 0

im —
,1-»—,,1_,(14'”)
2
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and putting in (3.25)

that the integral exists if ¢ — 0, and

lim N(¢) = 1.
[ad V]

4. Four-dimensional relativistic QM

a) General considerations

In relativistic theory the wave packet of stable particles is described by the equation

(‘} SRSy
(i 5 —v‘pz—M6> IMo; 1) =0, 4.1

or by the positive energy solutions of the equation

& ~2 2
[72 -(p +Mo):| Mg 1> = 0. (4.1a)
[%
Assuming that
- flp -
Moy = J\dp éw)lﬂ ‘p; My> 4.2)

we obtain the foliowing formula for the wave function

iP,xH dp TN PX~ @ poX
Ppo(X) = (Mol My) = sz [ f(p)] €' P*™@ro™
Po

= [ dx'dx"fHx=X)AUX = X"; %03 MOF(R), (4.3)
where the two-point Wightman function 4'*)(x, M3) describes the space-time propagation

of the excitations obtained by putting f(x) = 83(x). The unstable relativistic particle is
obtained by means of the formula:

62 . y 1/2
[W -(p2+MZ)] iM;ty = (;) 1S5 . 4.9

We assume that
IS; ) = | di® | dp/(2w)"*S(p; k*) |k, PD, (4.5)
(4]

where the scattering states p?, p) are the eigenfunctions of the total four-momentum
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operator P,

Fipza ;) = E:PZa _p>9

Poip®, 7> = (0> + 09" 0%, b (4.62)
and are normalized as follows
P pIp? Py = o(p*—p' ) (p—p). (4.6b)

Using for |M, t)> analogous formula to (4.5) one obtains
1‘{(;, KZ) = (; —“2“:“““ . (4.7)

Introducing the wave function for an unstable object (4.4), one obtains

dp IS(p, k%)%
20 (k2 —=M?) (k2 = M*?)

Pr(x) = (MePIM) = %dezf (4.8)
]

which satisfies the field equation
(O-M) (@ M¥u) = [([O=m)*+7 () = L 5(x), 49)

where M2 = mé—iy. Assuming that M = M,—iI", we have the following relation

n102 = M02—‘F2, Y= 2M0r,
If one writes
IS(p; k»)12 = | f(p)21S(x)}?, (4.10)

the wave function (4.8) is determined by formula (4.3) with 4“Y(x; MZ) replaced by

o

S(xH)|*A* (x; M)
2500 = 2 | ax? ! > 20 4.11
W)= Y M - M) @10
In particular we see that

lim A (x) = 47 )(x; M?), (4.12)

band '
provided that [S(M2)}2 = 1.
The space-time propagation of relativistic unstable objects is therefore determined
by the class of the Wightman functions (4.11).
b) Model

We shall calculate the wave function (4.8) with IS(p, k?)| = 1 which satisfies the
following equation

(EI—MZ)(D-M“)‘I’M(X)=VJ' d*pe'™™. (4.13)



592

At first we shall solve the following equation
(O-M)u(x) = | d*pe™. (4.14)

Vs
One can continue analytically this equation in a complex positive plane
x, =z, = x,+iy,, x*-z2%=rzz"
We shall assume this solution in a covariant form f,,(z%). Then, the solution of
equation (4.14) is a boundary value of fy,(z%) when y, —» 0,. It is easy to check this in
the course of analytic continuation.

o 2 d 2 2 d 2
O — O.f(z) = ~42° (@) f(z)-8 Ez—zf(z )

and Eq. (4.14) takes a simple form

2 ¢ a 2 -1
—_ + - = B .
U 2 Z(u) +u Z(u) (u l)Z(u) u (4 15)

where

u = Mz, fM(zz)— z7'Z(Mz2), z = ().

The solution of Inhomogeneous Bessel Equation (4.15) are Lommel’s functions [22]

(S-2,1)):

B o o s ( l)m(_% u)2m+v
Z(u) = S—2,—1(“) = vlerl Sv-—l,v(“) = vl—lvlzll {2 F( )Z m!r(v.*.m-}-l)

x[2log(3 u)—P(v+m+1)—P(m+1)] —n2”'2I’(v)Yv(u)} ,

where I'(z) is Euler’s function, ¥(z) is the logarithmic derivative of the function I'(z), i.e.

d r
Y(z) = &;log['(z) = —1:((72)):

and J(2),Y (2) are Bessel’s functions.
We obtain finally

2m+1
cor)
_ a=3 2 U
S-2,-4(w) =2 z m!I'(m+2) [210g (2)
0]

m=

—3log< )qf(m+2) — 1%+ YA +2)+ P(m+2)P(m+1) — ‘I‘(m+2)]

u 2m—-1
y ® (=D" (E) w1
tog(5) D ey Ho+ 2o (5) @10

m=
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The asymptotic behaviour of the wave function f,(z%) for large |z|(larg z| < =) is
given by the formula

1
fu@®) ~ Minist 4.17)

and for small z (jz] ~ 0),

M

] Zlos (f) w(1) M

X MZ
fM(Zz) a4 8—7zi - 22 +2 22 +% M2 log (—5‘)

2 ; M? 2.2 Mz
+[‘I’(m+2)+‘[’(m+2)‘1’(m+1)—‘I’(m+2)—7t]7 +M? log - )t (4.17a)

The solution of (4.13) is given by the following formula
1
Yu(z®) = P {Fu(2®) —fu(2P)}. (4.18)

The asymptotic behaviours for total wave function are given correspondingly:
1. Large z (|z{ = o)

1
Yz ~ — M (4.18a)
2. Small z(|z] ~0)
1
Yy(z®) ~ a, — +a,logz+a;log® z+a,, (4.18b)
VA
where
12 | M 1
e Y A
1 M
a, = —5 {% iy+M*2 log(M"‘/2)—M2 log(ﬁ)},
4niy 2

1 M* M M*
ay = —5— %(M"‘2 log —) —M?log (—- + M*? Iogz(_
8n”iy 2 z 2

— M? log? (A-;) +[PQ)+ PPN - P -} cy} .

The integral on the right hand side of (4.13) can be also written in the form the Kallen-
-Lehman representation

SHNz2) = | d*pe™ = [ dPA.(z; %), (4.19)
Vs 0
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where (H{"(u) is the first Hankel Function)

k? H{"(xz)

44(2); k%) =

8ni Kz
One can generalize (4.19) by assuming that
SU2) = [ (k)4 (z; k),
o
which corresponds to the power-like threshold behaviour ¢(E) ~ E" in Sect. 2 and Sect. 3.

If one takes v = 0 one obtains equation (4. 13). In generalized case (see [23] for
instance)

—i v v 1
Sy = 21+ ) r {24 =} —=5+5. .
(Z) T[Z 2 + 2 (22)2+v,’2 (4 193)
Now (4.15) turns into the following

dzl’(u)
u? e +u

dzf{u) +(u2_1)2'(u) = u""_l_ (420)

The solution of (4.20) can be expressed by means of the function S_, _;(z). The function
fu(z?) analogous to the f,,(z*) has the form

iz = — ;’3 2”1‘<1+ g)r(u g) M**1271Z/(M2). (.21)

In this case the total wave function, which is the solution of Eq. (4.13) with the right-hand
side, replaced by (4.19) (or (4.19a)) is given by means of the formula analogous to (4.18), i.e.

1
Ph(z?) = P {2~ (=)} (4.22)

Remark. 1t should be mentioned that the solutions of equation (4.13) are given by
the covariant formula (4.21) and (4.22) and describe improper wave functions of the unstable
system, obtained by the assumption that | f(p)|> = const., in (4.10). In order to obtain
Hormalizable wave functions one has to break the relativistic covariance by assuming that
in our model

S(p; k*) = 1 - S(p; k) = f(p),

where f(p) is chosen in such a way that the wave function (4.8) is normalizable at 7 = 0.
Such physical wave functions can be obtained only if we assume some noncovariant source
term in equation (4.9).
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In order to calculate an unstable V-particle state one should express the eigenstate
of the free Hamiltonian in terms of the states NO E, which are the S-wave physical N@

scattering states. Using the result of [20] one can write

V>0 fd3kﬁ(k)|N@; k>,

= (271,)3/2
where (0 = (k2 +p?)'?),
gof(w) . 1

V20 (my —ny—o—~G(w+i0))

B(k) =

and (4 = my)

g_é fHYkdw'
4n? w-z
"

&(z) =

The scattering states |N@; k> are normalized as follows

(NO@; kINO; k"> = 3k-K).

(5.1)

(5.1a)

(5.1b)

(5.1¢)

Introducing the total energy variable E = my+(k*+u?)'? and using wdE = kdk, d*k

= k?dQ, one obtains the S-wave state

kY*(E)w'*(E)

NO;E) = ——————
‘ > (271:)1/2

de|N@; k)
normalized to 3(E—E’). One can write (5.1) as follows
1
V3o =5 JdEﬁ(E)tNe; E>,

where

 fE-my) ()
= 8O DWET? my—E—E—my+i0)°

B(E)

The mass operator is given by the formula

M(E) = my— ®(E—my+i0).

(5.2)

(5.3)

(5.3a)

(5-4)

We obtain the following equation for the complex mass renormalization term omrn,

= My—my
om, = —d"(6my),
where the analytic function ®"(z) is defined for Re z > u as follows

. 2
() = B(2)— 22 kK()f*(2).
2n

(5.5)

(5.6)
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Formula (5.3) describes exact unstable V-particle state.

One can, however, introduce a model of a wave function, preserving the basic pro-
perties of (5.3), i.e. having the same position of complex pole, the same residuum, and an
identical threshold (E = my +u) as well as asymptotic behaviours (E » o0). We modify
(5.3) as follows

S(E)
E) = , .
PulB) = g0 g~y 5.7)
where S(E) satisfies the condition
f(omy) k*(M,)
S(M,) = - s .
(My) [20(M,)]'? s de'(z) (-72)
dZ z=dmy
and it is chosen in such a way that
Bu(E) E-my+pu
M\ if i
BEy " E-ow. (3.70)

The main difference between (5.3) and (5.7) consists in the replacement of the mass operator
(5.4) appropriately chosen constant renormalized complex mass.

We see that (5.7) describes an example of the wave function (2.5), where y is propor-
tional to gg.
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