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Multi-loop tour-point amplitudes constructed from iteration of non-planar or planar
orientable self-energy operators are studied in the asymptotic limit of large s. We find ex-
pected factorization properties to sum up the leading contributions of multi-loop graphs
of arbitrary order, This leads to the definition of renormalized Pomeron and Regge trajec-
tories,

1. Introduction

A large progress in the attempt of implanting unitarity perturbatively into the dual
resonance model has been achieved by the construction of multiloop amplitudes in terms
of the Abelian integrals on closed Riemann surfaces [1]. Another useful and equivalent
representation can be obtained by iteration of primitive loop operators [2, 3]. Although
explicitly known, the practical handling of multiloop amplitudes is a widely unsolved
problem. This concerns, in particular, the high energy behaviour. Internal consistency
requires, e. g. for the four-point N-loop function with a (N+1)-fold iterated Regge tra-
jectory () in the r-channel an asymptotic behaviour like s*”(In s)¥ (Z(¢))", where Z(¢)
is some trajectory correction function. For N = 1 the asymptotic investigations had been
carried out some time ago [4-5]. Using a domain variational technique Karpf and Liehl
[6] proved recently that planar multiloop amplitudes have the necessary factorization
properties to obtain the expected asymptotic behaviour. Then the sum of all the leading
contributions defines a renormalized Regge trajectory.

The aim of the work presented here is mainly to study the related question of the
asymptotic behaviour of non-planar orientable multiloop diagrams which can be con-
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sidered as iterations of the Pomeron-loop investigated in Ref. {5]. Some work in this direc-
tion has been already done by two of us [7] by computing the first correction to the asymp-
totic behaviour ~ 5*p® of the bare Pomeron. There we used the formulation of the two-
loop non-planar orientable amplitude in terms of the Abelian integrals. We obtained the
asymptotic behaviour by expansion of the Jacobi-transformed functions near the para-
bolic point being connected with the vanishing of the handles of the associated Riemann
surface. A generalization of this approach to arbitrary N loops seems to be rather involved
as it is difficult to find the right parametrization of the Riemann surface suited for the
expansion around the adequate parabolic point. Instead, we found that it is convenient
to start from an expression of the muitiloop amplitude generated iteratively by one-loop
self-energy operators [2-3].

As our main result we have proved the necessary factorization properties of the non-
-planar N-loop amplitude, and obtained the renormalized Pomeron singularity ap(¢) = ap(¢)
+g2II(t, ap(t)). Moreover, we have shown factorization with respect to the ordinary
Regge trajectory so that the same class of non-planar diagrams leads to a renormalized
trajectory o' (¢) = a(t)+g22(t, a’(¢)) for a Reggeon coupling directly to the Pomeron.
For completeness we have investigated closely parallel the corresponding iterations of the
planar loop reproducing very quickly the results of Ref. [6]. All the calculations have been
performed for simplicity in the conventional dual model, though we believe that the ex-
tension to more recent ghost-free dual models [8] should not be difficult.

This paper is organized as follows. In Chapter 2 we present the iterated N-loop non-
-planar and planar self-energy operators and the four-point functions with these chains
of self-energy diagrams exchanged in the r-channel. Chapter 3 contains the derivation
of the Pomeron dominated s-asymptotic behaviour. In Chapter 4 we give the results
for the asymptotic behaviour due to Reggeon exchange calculated from both the non-
-planar and planar orientable diagrams.

2. The N-loop dual amplitudes

The four-point function with a chain of N non-planar orientable or planar self-energy
loops exchanged in the r-channel (see Fig. la—c) is obtained easily if one constructs first
the corresponding N-loop self-energy operators Zy(af, b; p) or Zy(at, b; p), respectively.
(The symbols af, b stand for two independent sets of oscillator operators, and we
define p = p,+p, = —(p3+ps), t = p*, s = (p,+p;)*. Conventions and notations are
the same as in Ref. {2].) To do this we connect the well-known one-loop operators
27 [2] or X, [9] by projected twisted propagators Dy [2], treating exponentials of quad-
ratic operators by complex Gaussian functional integration ([1, 3], compare Ref. [9)).

The N-loop operators represented by the diagrams shown in Fig. 2 have the following
structure

Z§(a", b; p) = [ dun<0,| exp {<p|FRibY —{piF5la’y

+3 Ca'|Exla®) +4 <bEN|bY +<at| Xx|b>}O,). 2.1
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Fig. 1. Non-planar and planar muitiloop four-point amplitudes considered in the text
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Fig. 2. Non-planar and planar N-loop self-energy operators

The matrices in the exponent are given by the following iteration scheme
(s
z-1
Efyi = Efﬁ‘f'XNMzNElf‘pNM'zN N
Enyy = ET+ XM, ExM, @3 X,
Xyt = XNMz,.- §VX1a
Fiir = Fr—(0)Xy+[Fy+{(z0) = (FN +Z0)ENM, JEY]ONM 5 Xy,
Fii1 = Fi—(@)X +[Fy+{(zn) —(F1+(z))ENDM, JERIM,, 03X |, (2:2)
@y = (1M, ExM, ED™". (2.3)
From the non-planar self-energy operator £][2] we know the one-loop matrices.
E = E} = 2(1-0) [E(@)] (1 ~w),
X, =({1-0) [Efx, 0)] (1 —w),
Fy = F{ = [Fy(x, 0)] (1-w), (2.4)
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while in the corresponding planar case one has [9]

EY = 2(1—-x) [E(w)] (1 —x),

s o)
x=a-o[a(2.1)](1-2).
F = [F (x, %ﬂ(l—x‘),
P

For explicit representations of the matrices E(w), E{x, ), Fr(x, @) and F(x, y), G(x, y)
we refer the reader again to the works [2] and [9].

The integration measure is given by the iteration formula (a(f) = oo +11)

f_4(wN ) .
duy iy = duydwy 4 dxy . dzy 47t282 “f‘i‘— M
In" oy

XN+1
X h(Xx+ 1, Oy sy D2y O = 2)? 7 7O det (05 )] 2
xexp {1C1] [{FY+4 Z0EN+Fr 43 (20EY) (z0)+ (Fy+(zq)ES}M, Exy
X M, {(F8)'+ ERz0)} + b (FY + (20 EY) Oy M. ESM.y{(FY)' + EX(z0))
— {(Fi+(zy) EN @y M, {(FY) + EXzn)}] 11D}, (26)

where
dw N gy A%y
dpy = 4n*g® ot [ M@)o — [hx, @) 2.7

The functions / in the measure are different for the non-planar and planar cases ({2, 9))

W(x, 05t = [ﬁw}

l—w

t
w(x, w)? 7 -

(l—x)(l—- 3) (1—x) (1— 3)
X X

The functions y, y, are the elliptic functions as defined in Ref. [2].

In Eqgs (2.2), (2.3) and (2.6) all the one-loop matrices have to be taken with the argu-
menis ¥ = xy,, and w= wy,,. As preliminary integration region we take 0 < w; < 1,
o; <x;<1 and 0 < z; < 1. Later on we shall see that there is a further limitation in

h(x, w; t) =

(2.8)
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the z-integrations for the non-planar case. Questions of necessary regularizations will be
touched on later.

The four-point function can now easily be written down by attaching vertices and
propagators to Z4 (at, b; p), and by taking the vacuum expectation value corresponding
to four external (scalar) ground state particles. We obtain

Ta(s, t) = g* jl' du } do(uo) O (L—u) (A=) ]° 7" | dun(x;, oy 255 1)
o o
X exp {% A @)X y(v) i1 = é [<HFR(u) [1)+ U FR(@) 1]

+ 200 [ 1] (X () 11> =4 T (ENu) [1> =4 <1} ()EMD) I1>]} . (2.9)

The sewing procedure performed here, connecting the one-loop non-planar or planar
self-energy operators by twisted projected propagators, originally leads to a diagram with
twisted intermediate lines in the non-planar case and with one twisted intermediate line
(u-t-term) in the planar case (Fig. 1c). Due to the fact that the spurious states of the model
are projectéd out, operatorial duality works for any part of a diagram [10]. One easily
sees that the non-planar four-point amplitude is unchanged by a twist operation on any
of the internal lines corresponding to u, v- or z;-integrations. In the planar case the
diagrams of Fig. 1b and Ic have to be added by hand to get signaturized trajectories.

3. Contribution of the Pomeron singularity to the asymptotic behaviour of the orientable
non-planar N-loop amplitude

For the further asymptotic computations we introduce Jacobi transformed variables
g;, 0; instead of w;, x;

li’fj 2 ln x;
g =", o=t (3.1)
In w;

We have to investigate now the behaviour of the integrand in Eq. (2.9) near the critical
points of the function (1](¥) Xy(v)|1> which multiplies the asymptotic variable 5 in the
exponent!, For simplicity we restrict ourselves to the most leading Pomeron contribution
connected with the critical point ¢; = 0 (i = 1...N). This corresponds to the simultaneous
factorization of all the N Pomeron singularities contained in the diagram under consider-
ation. Then, we have to expand the integrand around this point and to perform the
integrations over all g,.

! The limit |s| — o0 will be performed parallel to the imaginary axis. Questions of analytic continua-
tion into the whole s-plane and of possible saddle points inside the region of integration have not been
considered here (see Ref. [S]).
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The relevant one-loop matrices (Eq. (2.4)) behave for ¢ —» 0 as follows [11]

KUF}, = {(1{ [~ Z (i)]}”+0(q) = {K1{F},+0(g),

k+0

E—Z}M })}02'—}73 0(¢*
Edee =1 ()M (=)} 400 = B,

#0

mn _ . : ~
(XDwn =4 :—7/;@- [e"ri)" "+ e” (= 2n)"* "]+ 0(¢") = ¢X,u(0)+0(@®).  (3.2)

Using the iteration equations (2.2) one can easily determine the respective lowest powers
in the g;-variables of the N-loop matrices (0(g;) here means a quantity vanishing at least
as one of the g;’s)

Fy ~ Fy = F+0(g),
Ey ~ Ey = E+0(g)), (3.3)

N-1t

Xy ~ (@102 - q) (I] X@M(1=EM))HXON) = (@10 - 40X ()

The measure duy in Eq. (2.9) factorizes as we take the lowest powers in the g; only (o, —
integrations run from 0 to 27; ap(t) = 1 +1/4)

N
dq; —ap(t) — -

dpty ~(| l g d ple) 1) (2m)~'(—2n°g?)
n- q;

i=1

N-1
3 2 dzilz,(1 *Zj)]_a(t)_l(l‘zj)ho ¢
X <H (—-27°g? [det (1- (M1, BT [F(z)] d"j) doy. (3.5)

The function F(z) originates from the exponent in Eq. (2.6) and reads

2n 1+M.E

F(z) = i(Sir; Z”z) exp{—-(l! (F+(DE) ——— M(F+E(2) 11>}. (3.6)

We have used here the relations

sin nz

AE@) 1) = 3 AU @E@ 1) = n

. 3.7
nz
The logarithmic factors In—2 g; in Eq. (3.5) make the Pomeron a unitarity violating
cut in the model considered here. Since they are absent in the more satisfactory model
with a ghost-free spectrum (x, = 1), and with space-time dimensions D = 26, where one
obtains ap(?) = 2+/4 [12], we do suppress them in the following. (If we take it for granted
that the projection upon physical, i. e. “transverse” intermediate states only deminishes
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the power of the total multiloop partition function from D to D-2, as it is suggested by
the string formalism and one-loop results [18], then our way of calculation is directly trans-
ferable to that vetsion of the dual model.)

Taking into account Eqs (2.9), (3.3-3.5) we now perform the g-integrations

1 1 s ~
= (4192 ... gN) = (=1} XN () | 1)) —a (-1
{dq, ... Jdqye 2 (9192 - qn) "
0 [¢]

1 a N~-1 s v , - l ,
e (N=D)1 (5,) [(5) I(=v) (=<1 (W)X y(v) !D)] (3.8)

}v=:P(l)

The essential problem to be solved now is to show how to factorize the function
{11(4) X 5(v)|1). Let us first rewrite the one-loop matrix X(o) given by Eq. (3.2) as a dyadic
product

X(0) = 2Re (|kye'"<k]) = {{kye' "<k}, (3.9

where
kD, = (kD) = *n—” @iy (3.10)

and }{M} is a shorthand notation for the real part of a matrix M. Using the abbrevia-
tion

H, = M,(1-(EM,)")™! (3.1D

we obtain with Eq. (3.4) the following form for the quantity in question.

A @)X p@) 11 = {1 @) ke (ki) (T;Il H{{kye™* Cki})

x Hy_ {Ikye' <k} (v) 1)} (3.12)

Due to the identity
) () k> = 2 sin rue™®* 1) (3.13)

and the redefinitions
a(u+3)+o; = 0,, 7w+ +oy oy, (3.14)

we see that we have to deal with a u- and v- independent quantity R:

] (W)X 5() 11> = 4 sin 7u sin 7R,
R = (e Ckl} (TT H,{kye <KD Hy- 1 {ik5e™) (3.15)

We factorize R successively, using the following identity valid for real matrices H,

(kI H (ke (kY = {[e°ChIH (k) +e"“CRHKY)e"Ckl).  (3.16)
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Defining
gdo, z) = arg (e (kIH k> + e "CkiH, k),
C(o, z;) = €A H, k> +e ¥ (kiH k)], 3.17
we obtain for the right hand side of Eq. (3.16)
C(o,, z,) {02 T et (3.18)

Continuation of this procedure rightwards leads to

N -

{
R = 2¢( H C(o), 2;)) cos (uy), (3.19)
i=1
where (¢, = 0)

0j = 0;+q;-1(0j-1, Zj-1)- (3.20)

The Jacobian of the variable transformation o; — ; is one, and due to the periodicity of
the integrand we can integrate over ¢; again between 0 and 2n The integration over gy
leads to the Pomeron signature factor times a B,-function

2r
v iny V+1
dos(—C0S 0x)wngir = (1+€™)By [ ==, 4 : (3.21)
pd 2 v = 2p(t)

Collecting all the w-dependent factors in Eq. (2.9) and taking into account Egs (3.3},
(3.7), (3.8) and (3.15) we find as the result of the w-integration the usual Pomeron form-
-factor (v corresponds to ap(r), see Eq. (3.8)) [7]

1
Selt, v) = 2720Q2r) %7 | dulu(l —u)]~ Y(sin ru)’ "~ 7%, (3.22)
(4]
The r-integral provides the same expression once more.
Gathering up all the results, the asymptotic behaviour for s — « produced by the

most leading Pomeron singularity of the N-loop amplitude (Eq. (2.9) N > 1) is given by

TE(s, 1) ~ const g’

1o\
s} (IV—I)‘ (a)

A Qmseemord,
{v=ap(t)

The function II(r, v) is defined by a two-fold integral:

2n
Hl—=2 ~afty—1 1—2 2a0
H(t,v) = —27° fdg sz L ([det z]l—(EM()z)]z) [FJ[Clo, )T, (3.24)
o s =

where the functions F(z) and C(g, z) are defined by Eqs (3.6) and (3.17). The z-integration
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region will be specified later. In Eq. (3.23) we introduced

P(v) = 2’B, (E , 1) I{—v). (3.25)
2 "2

Eq. (3.23) exhibits the factorization properties conjectured in Ref. [7]. In that work
we started from the two-loop amplitude formulated in terms of automorphic functions
on closed Riemann surfaces as given in Ref. [1]. The asymptotic behaviour was obtained
there after doing the Jacobi transformation of the whole two-loop expression. The function
IT(t, v) presented there is analogous in structure to the right hand side of Eq. (3.24), though
a direct identification of the constituents of the integrands in both representations is

difficult due to the different variables used.
As discussed in Ref. [7] the factorization property allows for summing up the Mellin
transforms of the asymptotic contributions of all the N-loop diagrams (¥ > 1). We obtain

g*P(g* fE(t, D+0(g%)
T (o) + 711, )+ O(gy) +reBular terms (3.26)

This defines a renormalized Pomeron trajectory
op(t) = op(t) + g 11(1, (1)) + O(g*) (3.27)

by the vanishing of the denominator. Accordingly, g?fI(r, ap(1)) is the first order correc-
tion in g2 to the Pomeron trajectory. If we want to compute higher order corrections, too,
we have to iterate, e. g. the exchange of two-loop aggregates as shown in Fig. 3 with only
one of the variables w; near the parabolic point 1, but with the “marginal” variables w,
and wy near 1 in any case. (; or wy % 1 contribute to form-factor renormalizations not
considered here. The factorization of these iterated higher order contributions could
then be performed along the same lines as shown here.

® [} . »
=T v
wy w3 = "'2‘

Fig. 3. Operator identity for non-planar two-loop graphs

Finally, let us say a few words about the singularities in the integrand of II(z, v) that
make it a divergent quantity. Closely related with this is also the decision about the correct
z-integration interval. Due to Ref. [3] we can write the determinant in Eq. (3.24) as an
infinite product of common partition functions [f(w)]*

[det (1—(EM))]7* = ﬂ [AKN],
J(w) = [Il(l-—w"), (3.28)

where the product runs over all multiplicative combinations P}, of Mobius transforma-
tion generators (P,)" and (P,)” (in|, lm| > 1) with a different multiplier K,. The two ge-
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nerators P,, P, are given in our case by (w; = w, = 1)
P, =TPIl and P, = M;'PM, (3.29)

with ' = M. M_ and P = M_(—1). To avoid multiple counting one has to limit the
integration in z in such a way that K, <1 for all P{, in Eq. (3.28). Obviously, we have
a divergence of the two-loop partition function, if a parabolic point K, = 1 is reached
somewhere. As stated in Ref. [13] it is sufficient to consider P, - P, and P; - P; ' and check
whether the multiplier can surpass one or not. In our case only P, - P, leads to restrictions
and one finds for the corresponding multiplier the following solutions

/ 2 _ 2
KO(P, - P,) = (1 z ) , K9P, P, = (I z) . (3.30)
—z z

A

Thus there is a divergence of the integrand at z = 1 (“third divergence phenomenon®;
see Ref. [14], where also some regularization schemes are given), and we are led to a re-
striction of the z-integration region, either 0 << z << 1 or 4 < z < 1, depending on which
solution was chosen in Eq. (3.30). Analogously to a very similar problem studied by
Cremmer {3] we choose the first solution (K‘") and have to integrate z in Eq. (3.24) between
0 and }. We remark that in the case of the planar (unprojected) propagator beeing used
for sewing single Pomeron loops, we have generally to omit all the matrices containing
the diagonal matrix (z), and have to replace M_ by (2) there-after. The upper limit of the
z-integration comes out then as }.

4. Reggeon asymptotic behaviour of non-planar and planar multiloop diagrams

Besides the critical point ¢; = 0 contributing to the leading Pomeron behaviour
5™ In""'s considered above, one can easily see that the function {1|(u)Xy(v)|1)> mul-
tiplying s in the exponent of Eq. (2.9) becomes zero, too, if one of the variables (v, v, z;)
(1 <j < N-1) vanishes or if u or v is equal to one. (The points z; = 1 are excluded
by the argument given at the end of the last chapter, though the upper limit of the z-inte-
grations depend now on the *“neighbouring” variables ; and ;. ; .) We shall see that these
critical points are connected with Reggeon asymptotic behaviour. Similarly to the Po-
meron case we limit ourselves to the leading s-behaviour for every N-loop amplitude.
This is equivalent to a restriction to the contribution of the four corners given by (v, v,
z;)=1(0,0,0), (1,1,0), (0, 1, 0), (1, 0, 0). Expanding the integrand in Eq. (2.9) around
the first corner we obtain

1

N
dx, DY
oo ([ [ooe e [4(22))

i

x _[ du j du( H fdz) (uvzyz, ... zy. )" O

xexp{— —; (uvzyz;y ... zy_4) (H —(X (o, x,-))“)}. 4.1
i=1
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Obviously, the product of variables («-v [] z,) technically plays here an analogous role as
i
the product ([] q;) for the Pomeron case (Eq. (3.8)) ((X;)'! is the (11)-matrix element of

the matrix X, introduced in Eq. (2.4)).
The point (1, 1, 0) gives the identical contribution. Let us now consider the corner
(0, 1, 0). We find

, 1—v
A W)Xp() 1) ~ —u (
w -l

N

(=z) (X (o, x;))! ’) Xy(on x ), (42)

1_ .
CHFR@) (1) ~ <L [ (xy, @y)] (0) (1) ~ In (f)

N

3K ERD) 11 ~ 1 () [E(on)] (@) i) ~ 111(

—U
) (4.3)

\/G’N

This leads to a similiar integral as that in Eq. (4.1), where v has to be replaced by (1 —v)/wy
and we have —s/2 instead of 5/2 due to the minus sign in front of the right-hand side of
Eq. (4.2). The fourth corner gives the same contribution so that we obtain altogether

TR, 1) ~ 2g2/1\zz(i) {[(— i)v+(i)v] r(—v) [25¢, v)}N} . (44)
fs|~> e 4 2 2 Jy=ra(t)

where
51, v) = 4n? oo f ("’T(")) At 4.5
x\l—-w
0 )
and
aZ
X" = -(1-w)? 5idn [In pr(xAp)] sz =1 (4.6)

For N = 1 Eq. (4.4) contains the one-loop result of Ref. [5]. By taking the Mellin trans-
form of the sum of the multiloop contributions, we find the expected renormalized Regge
trajectory

a(t) = at)+g2 £, £'(2))+O(g*). @.7)

In particular, we see that we have a renormalization of the leading trajectory of positive
signature. Obviously, the renormalization correction I contributes only to trajectories
with vacuum quantum numbers coupling to the Pomeron directly (e. g. /~f”). Similiar to
the argument following Eq. (3.27) we could calculate along the same lines higher order
corrections to Eq. (4.7) by iterating only partially *“contracted” (z; & 0) multiloop sub-
diagrams.

The corresponding corrections to the Regge-trajectory originating from the exchange
of a chain of planar loops (Fig. 1c) is obtained analogously. The critical point of the
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s-multiplying function of the planar multiloop (1(w) X\(v) 1) is now (u, v, z}) = (0,0, 0)
alone, as can easily be checked by Eqgs (2.2) and (2.5). Around this corner of the inte-
gration region we have again a factorized expression

N-1 N

@)X y©) 1) ~ —ue([] Z;)(H -(xXH'h, (4.8)
ji=1 i=

where according to Eq. (2.5) the (11)-matrix element is given by

[vel

2 2m
(X" = (1-,\-)(1—y)<é> [—sin_z<g> +8 Z~1"iqq2m cos ma] .9

m=1
(X" <o)

We obtain for the leading asymptotical behaviour of the planar amplitude shown in Fig. Ic
an integral of the type of the right-hand sides of Eqgs (3.8) and (4.1). Therefore the leading
contribution is again given by the (N)™ derivative of the Regge factor times the (N)"® power
of a planar self-energy correction Z(t, v)?

N 1 1
[ do; dx; 2(x,)? L
Ty(s, 1) ~ &° 4n*g? | -~ f " Hwhw; ! aatd B GO ¢
o lﬂ a); xi wi
i=1 o @ (l=-x){l— —
X;
1 1 N-1 1
11—, [ r
G N— N Y 17 J‘dv( ! I dzl) (Urz,zy .. zy_ ) 071
@i\ | J
(1—x) (1“‘ ‘—> 0 0 j=1 0

N

XCXP[" %(“1‘2122 e Zy-) ( 1 - (X (o, xi))”>]

i=1

gZ 0 N s\ -2 N
~ 21— — ) I'(— 2(1, . 4.10
R Nf(f"v) {<2) ()l 2] }lmm “io
Re(s) > 0

The planar self-energy correction Z(f, v), which has been already computed by Neveu
and Scherk [4] on the basis of the investigation of the one-loop diagram, reads
1 1

- " 2 ¢
Y U O L

In®w X -

0 ” (l—x)(l—- _.)

\ X

_,“ij) ) [X:'(Cz), X). @10
1-x){ 1— f_o.:)
( x

2 Due to the configuration of dots of the self-energy operators used, we have to do with a u—s-diagram
effectively. Hence, the integral is convergent in the right half-plane of s.
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Summing up, we obtain again a renormalized Regge trajectory

a(t) = a(t)+g2 5(t, a'(1)) + O(g?). 4.12)

This is just equivalent to the result of Karpf and Liehl [6].

A slight difference to the renormalization corrections originating in non-planar
(Pomeron) loops concerns the emergency of the signature factor. It does not arise here
automatically but has to be produced by adding u~¢ and s—#-diagrams (Fig. 1b, c).

As it is well known [4)], the divergence of the partition-function /~* (w) for w — 1
requires the introduction of a regularizing counterterm in any planar amplitude. This
regularization prccedure is not unique in general [15]. In the final result for the asymptotic
behaviour of multiloop planar diagrams only the one-loop self-energy correction (Eq. (4.11)
appears. Thus, any choice for the one-loop counterterm, e. g. the one given by Neveu
and Scherk, solves the divergence problem of the multiloop asymptotic behaviour, too.

As was stated by Scherk [15], the counterterm can be generated by a corresponding
operator. Thus, the regularization can be already performed on the one-loop operator
level. We could start from the very beginning with regularized one-loop planar operators
and end up with a finite unitarity correction in Eq. (4.12). Of course, such a procedure
would not succeed in making the planar amplitudes T finite, as the multiloop diver-
gences [16] connected with the infinities of higher partition functions (Eq. (3.28)) are not
extinguished.

5. Conclusion and discussion

In this paper we have shown, on the basis of the operator formalism of the dual
model, the factorization of the asymptotically leading contributions of both iterated Po-
meron exchange and Reggeon exchange in orientable non-planar and planar diagrams.
The results have the expected structures of manifold Pomeron or ordinary Regge poles
in the complex angular momentum plane. Here we have dealt only with trajectory renor-
malization, and have not discussed the renormalization of residua. The latter could be done
relatively easy using the same methods for the investigation of other *‘critical” corners
of the integration region.

As stated above, a direct generalization of the iteration scheme for multiloop sub-
diagrams would allow for the calculation of higher renormalization corrections to the
trajectories op(¢) and a(r). But of course, a satisfactory solution of the regularization prob-
tem, for all the relevant divergencies apparent in the partition functions, should be
found ealier. Especially we can expect “mixed” corrections to the Regge trajectory a(t)
of the type g* Z(¢) Z(t), corresponding to the right-hand configuration, in Fig. 3. Such
a term could be obtained by sewing planar and non-planar self-energy operators or by
using the operator identity illustrated in Fig. 3, and then finding out the respective duality
transformation for the integration variables in the 4-point function. One is led then to
the contributions of additional critical points to the Regge-asymptotic behaviour of the
non-planar N-loop amplitudes (Fig. 1a) not considered in our paper.

As can be seen, by inclusion of isospin factors 4 la Chan-Paton, the non-planar renor-
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malization correction X contributes only to I = 0 trajectories (i. e. the f-trajectory) cou-
pling to the Pomeron directly, while planar (regularized) corrections X are present for all
trajectories. Thus £ leads to a breaking of the fow 4,-degeneracy to order g2 [5).
Similiar factorization properties, as those discussed here for the conventional dual
model, should be expected also for the more recent types of dual models with a ghost-
-killing Virasoro algebra and additional spin-mode creation and annihilation operators.
Working with ghost-free models, a better understanding of the reflection mechanism of
gauges extending recent one-loop results [17] in multiloop amplitudes is desirable.

We thank Professor F. Kaschluhn for his interest in this work, and all members of
our theory group for useful discussions.
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