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From quark model additivity applied in the impact parameter plane to the inelastic
overlap function we obtain a kind of scale invariant factorizable Pomeron. Quarks them-
selves are seen as behaving asymptotically like extended objects (quark pancakes), cross-
-sections and multiplicities being related to their overlap in a high energy collision. Predic-
tions, which can be tested soon at NAL, are given for overlap functions, cross-sections, the
ratio 6®!/o'° in the case of various reactions. Universality features of multiplicity distributions
are explained in a natural way and an attempt is made to compute the modifications coming
from the leading particle effect.

1. Introduction

High energy experiments at the CERN-ISR and at NAL will, hopefully, provide
useful information concerning the mechanism responsible for the high energy behaviour
of strong interactions, leading to some understanding of the nature of the Pomeron.
The ISR experiments have already shown that, at least in the 102—10% GeV/c region,
the Pomeron seems to be a scale invariant Pomeron in the sense that it satisfies geometrical
scaling [1,2]. The NAL experiments using various different beam particles will now
allow the study of the internal symmetry properties of this Pomeron. In particular the
predictions of the (most) naive quark model [3] may perhaps be tested at NAL.

It is far from being obvious that geometrical scaling is not just an accident happening
in pp scattering only and only in a restricted energy region. At higher energies no one
knows if the scaling will remain valid. For other elastic processes, Kp and np scattering
for instance, its validity was not yet checked. However very soon new data from NAL
probably will allow such tests to be carried out and it would then be interesting to see
if scaling is really a general feature of strong interactions at high energy and, if so, how
the various distributions (in the impact parameter and in ¢) for various processes are related.
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In this paper we take the point of view of considering geometrical scaling as a stable
property of the Pomeron. If this is the case it must be present not only in pp but in all
the other elastic processes and our main purpose is then to relate the scale invariant distribu-
tions of different processes. We thus try to answer questions like: how are the shapes
of differential cross-sections or overlap functions related; where is the diffractive dip,
which cccurs in pp, to be expected in np and Kp scattering; what is the value of the in-
elastic overlap function G'(b) at b = 0 in np and Kp scattering (this value is 0.94 in pp).

In this paper we make an attempt to incorporate quarks in the framework of geometri-
cal models in order to obtain scme desirable universality properties of hadron distributions.
Our arguments will be mostly intuitive and phenomenologically oriented and no claims
of rigour are made. An interpretation of the results is given in terms of the scattering of
what we would like to call quark-pancakes. This interpretation is however somewhat
independent of the testable predictions we make.

The paper is organised as follows. In Section 2 we briefly review the geometrical
models and the connection to KNO scaling. In Section 3 we discuss the impact parameter
structures of the Pomeron and the non-Pomeron (Reggeon) exchanges and relate them
to the way hadrons interact. In Section 4 we introduce additivity for extended quarks
(quark pancakes) and obtain predictions for overlap functions, elastic differential cross-
-sections and cross-section ratios for np and Kp scattering using the pp data as input.
Applications of quark additivity to multiplicity distributions including the leading particle
effect and the modified improved KNO scaling are presented in Section 5. We finally
draw some conclusions in Section 6.

2. Geometrical models and multiparticle production

In geometrical models the emphasis is put on the impact parameter plane and statements
are made about matter distributions. The best known model of this kind is the Chou-Yang
model [4]. Their rather intuitive ideas about hadrons as extended objects (pancakes)
interacting in a semi-classical way, the impact parameter cross-sections being related
to the matter overlap are usually accepted as basic ingredients in constructing geometrical
models. It is a model of this type that we have in mind in the present paper where quarks
are supposed to interact as extended objects (pancakes) in Chou-Yang sense.

Let us, however, first review the geometrical scaling ideas. Geometrical scaling is.
essentially a statement of scale invariance of the transverse (impact parameter) distribution
of hadronic matter in hadron collisions. More precisely, it states that in a AB collision the
inelastic overlap function G',z(b?, s),

—doly

EpTE R nGup(b®, s) n

is asymptotically only a function of the scaling variable f {1]:

. . b?
G,;B(bz’ s) . Glyp (ﬁ = ‘k‘z‘(s_)) > (2)
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R(s) being the effective radius in the collision, R? ~ (b*). From (2), neglecting spin and
the real part of the amplitude, t-scaling [2] is derived:

1 ' ‘-
do(s) — P57 = — (R?(s)). )

(’DAB(ts 5) = 52(5) dt s o

Consequences of 7-scaling are the following:
(i) The ratio of the elastic cross-section 6°(s) over the total cross-section o'(s) becomes
constant

= Tape 4)

(ii) The slope parameter becomes proportional to 6'(s):

do

, do .
B ,g(s) = m \ln o . ~ G 44(5). (5)

(iiiy Dips on the differential cross-section occur at fixed t,; (not at fixed ¢).

Concerning particle production, in geometrical models the produced particle multiplic-
ity is assumed to be, at a given energy, a sharp distribution, function of the matter overlap
(see, for instance, Ref. [5]). As, from (2), the matter overlap is a function of f, the number n
of produced particles in a collision at impact parameter b is also a function of §. The
available centre of mass energy /s is further supposed to appear via an overall multi-
plicative factor s(s) in such a way that we can write

nb?, sy = n(s)$(p). (6
We note that a relation with the structure of Eq. (6) also occurs in Mueller’s Regge approach.
The meaning of the functions R(s) and 5(s) is the following:

a'(s) ~ R*(s)
and {n(s)> ~ nls).
Using (1), (2) and (6) KNO multiplicity scaling [6] follows:

il

n . 0,(s) ,
Yisl = Rl {ny - N T ¥ 45(2). N
{n) o'(s) -«

Experimentally KNO scaling for charged produced particles is well satisfied — see however
the discussions in Section 5 -— the functions ¥(z) and {n(s)) being, to a good approximation,
universal (for a recent analysis see [7]). The z-scaling (geometrical scaling) is also well

satisfled in pp scatiering at NAL-ISR energies (see Refs {2] and [8)).

3. Impact parameter structures of the Pomeron and non-Pomeron contributions to inelastic
scattering

Phenomenological analysis of intermediate and high energy data has led to the idea
that the imaginary part of the Pomeron amplitude in the impact parameter plane is central
(grey disc of radius around 0.9 fermi at present energies) while the non-Pomeron (Reggeon)
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amplitudes are peripheral (say a é-function at b = 1 fermi) [9]. The fact that these two distri-
butions are non-overlapping has the consequence that the elastic cross-section does not
receive an appreciable contribution from the secondary trajectories with the result that
particle and anti-particle elastic cross-sections are practically equal even at relatively
low energies [9].

To make this point clear let us write the unitarity equation for the overlap functions
(neglecting imaginary parts):

2G(b%, 5) = G(b?, )+ G'(D?, 5), (8)
where G°(b%, s) is the impact parameter elastic amplitude,
a*(s) = n [ G(b?, s)db>. )

The normalisation in (8) is such that 0 <X G>* < 1. We consider now the two contributions
in the inelastic overlap function: the dominant one P(b?, s) (central Pomeron) and secondary
one R(b?, s) (peripheral Reggeon).

Gi(b2, 5) = P(b?, 5)+ R(b?, 5). (10)

Assuming now that G(b?,5) < Gy(b?, s) (which is not a very good approximation at
b ~ 0) and that R*(?,s) < P?(b?,s) we obtain

G(b%, 5) = + P(b%, 5) {P(b%, 5)+2R(b?, 5)}. (1D

However the second term, P x R in (11), because P and R do not overlap in the b plane
approximately vanishes. So in a first approximation we have:

G(b?, s) = 1 PX (b, 5). (12)

Comparing (12) to (10) we observe that ¢° is less sensitive to the secondary contributions
than ¢! or ¢'. In other words, the Pomeranchuk theorem should be satisfied earlier for
the elastic cross-sections (655 = 653)-

This simple situation for the overlap functions in the impact parameter, with the
Pomeron central region well separated from the Reggeon peripheral one, is lost when
going to the z-plane. In fact at each value of 7, the elastic amplitude 7(s, ) receives contri-
butions from all values of b (Fourier-Bessel transform) and thus the Pomeron and Reggeon
contribute together. The Reggeon contributions are particularly strong at small ¢, due
to their impact parameter peripheral nature, causing the observed appreciable differences
in the r =~ O slopes of the particle and anti-particle differential cross-sections.

If we try to give a realistic interpretation to these impact parameter distributions
and to treat the hadrons as extended objects we see that to produce the Pomeron term
the hadron must ‘act like some kind of disc of diameter around 0.9 fermi (actually this
diameter grows with the energy) and to produce the Reggeon term the hadron must act
like a ring of radius r (no overlap except at b ~ 2r). We note that in the string model
we have this second kind of situation: “matter” concentrated at the ends and peripheral
interaction. Our ring could be generated by a rotating string.

In the present paper we concentrate mostly in the dominant Pomeron term, i.e. in
the central interactions.
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4. The additive quark model in the impact parameter plane and factorization

We use now the basic ideas of the naive quark model regarding high energy strong
interactions in the near forward direction [3] and try to incorporate them in the frame-
work of geometrical models. Quark additivity is formulated for the inelastic overlap
function (impact parameter cross-section) in the following way:

G;B(b29 S) == Z % g;;(bzs 5)+ Z ; gk(bza S)(sal_” (13)

where the sums are over the quarks of 4 and B, the first term giving the Pomeron and
the second one (involving quark-antiquark aa annihilations as in the usual quark duality
diagrams) gives the Reggeons, and gh o(b* s) are SU(3) invariant quark-quark overlap
functions,

A way of interpreting (13) is by considering the hadron as behaving not just like one
pancake surrounded by a ring (as discussed before) but as & collection of independent

ey V'S = 21Gev
[
~ PP —— —

8t N\ MTP ———
KP ———-

b {fermi)

Fig. 1. Inelastic overlap functions at 4/s = 21 GeV. The pp overlap function is from Ref. [10). The 7p
and Kp ones are predictions. Indicated in the figurc are also the values of Gi(3 = 0)

quark pancakes each one surrounded by a quark ring carrying the appropriate quark
quantum numbers (charge, strangeness, spin etc.). From now on we just keep the first
term in (13) and write the asymptotic additivity relation (dropping the index P) as:

Gup(b?, 5) =~ nanpg'(f = b*/R(s)), (14)
where 1, () is the number of quarks in A4 (B) and g'(B) the basic scale invariant quark-
-quark overlap function. The quantity R(s) i1s assumed to be the only relevant length in
high energy hadronic interactions and can be interpreted as a universal parameter measuring
the basic quark-quark radius of interaction.
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When detailed NAL data will be available Eq. (14) may be directly tested. In Fig. 1,
using as input the pp overlap function [10], we show our predictions for the np and Kp
overlap functions at /s = 21 GeV. For Kp we used the usual A-quark coupling reduced
factor such that ng >~ 1.7. Clearly our overlap functions satisfy factorisation:

Gip(b’, )" = Giuu(b®, 5) - Gpa(b’, 5). (15)

In the shadow scattering limit and in the same approximation as before (see Eq. (12))
we derive:

e
_dGAB

ia .
‘EF”‘ = TEG;B(bZo 5)2 x> Z("A"B)zgl(ﬁ)z- (16)

In these limits all cross-sections (elastic, inelastic, total) for all reactions will have asymptot-
ically the same s dependence:

G;B(S)s ols(s) ~ nmgR(s), (17
Gap(s) ~ (nA'lB)2R2(5)~ (18)
For the t-scaling asymptotic predictions indicated in the Introduction we obtain:
; 045(5)
) Fup = —f—— ~ N4Ng, (19)
o45(5)

(ii) a universal slope parameter: B, 4(s) ~ R*(s),
(#i7) universal dip positions 14;,.

We turn now to comparison with experiment. First we want to compare the energy
behaviour of cross-sections. Because of the difference in the impact parameter structures
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Fig. 2. Elastic cross-sections. The pp curve is used as input the zp and Kp ones are the same curve multi-
plied by quark model factors: (6/9)* and (5/9)* respectively. Data from Ref. [16]; a) pp, b) ztp, ¢) Kp

of the Pomeron and the other Reggeons, discussed before in Section 3, the convenient
cross-section to check 1is the elastic cross-section, as there the Pomeron alone,
(ImP)? +(ReP)?, and perhaps some residual Pxf, interference, dominates even at low
energies. In Fig. 2 we check relation (18). The pp curve is used as input and the np and Kp
curves are just the pp one multiplied by the quark model factors (6/9)%, and ~ (5/9)%,
respectively. The agreement is good, starting from P s ~ 2 GeV/c and it should be
interesting to check it at much higher energies. Similar checks for total cross-sections,
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Eq. (17), can only be carried out at higher energies, where approximate equality of
particle and antiparticle cross-sections may be observed.

In Fig. 3 we use Eq. (19) and the pp ISR data as “asymptotic” input to predict the
“asymptotic” values of the ratio ¢%/¢": 0.116 in np and 0.099 in Kp scattering. The low
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Fig. 3. Ratios o%/o%. The asymptotic (constant) value for pp is used as input to derive the asymptotic values
for ap and Kp. The low energy curves are just guides 1o the eye. Data From Ref. [16]; 2) pp, b) 71p, ¢) Kp

energy strong s dependence of these ratios and their variation in going from particle to
antiparticle reflects the non asymptotic character, in general, of ¢' at such energies.

For the predictions concerning the slope parameter and the dip position no detailed
high energy data are at the moment available in the np and Kp cases. The tests are here
more delicate because, as mentioned before, the slope and the position of the dip may
be affected appreciably by the secondary trajectories. Also small changes in the impact
parameter overlap functions may strongly affect the slope and the dip position. Even if
Eqgs (14) and (16) are approximately valid the universality of @(tr = —¢R*(s)) may be
appreciably violated. We note that the asymptotic universality of the slope parameter
is equivalent to the universality of the Pomeron trajectory slope. Such universality is not
observed experimentally at least at present energies [8].

We come now back to Egs (17) and (18). They suggest a Pomeron behaving as a renor-
malised, single Pomeron exchange where factorisation is preserved. A “good” asymptotic
forward amplitude, from a theoretical and experimental point of view, could be:

v u
Tus(E, 1) ~ Cin ny(iE) (ln E-i g) exp {Cz (ln E—i g) t} , (20)

where £ =~ 52m,, 0 < v <2, v=<u <2, and C, and C, are constants. Geometrical
scaling requires v = u. The Reggeon field theoretical approach using renormalisation
group techniques {11] produces a renormalised Pomeron of the form (20) but not satisfying,
so far, the geometrical scaling condition. The dipole model of Phillips [12]has v = g =1
and so scaling is there satisfied.
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5. Quarks and multiplicity distributions

In the spirit of the quark model quarks are supposed to scatter independently. The
probability of an inelastic collision of pancakes g'(8) is so small that simultaneous double
scattering and rescattering are negligible. When two hadrons are observed to collide
inelastically what takes place is an inelastic collision of two quark pancakes. The produced
particles are originated in such single collision of two quark pancakes. The Eq. (6) in Sec-
tion 2 relating the number of produced particles to the impact parameter distribution thus
applies to such collision. The functions g'(8) and n(s) are now universal quark functions.
From (2), (6) and (14) then naturally follows the universality of ¥(z) and {a(s)):

¥ 4p(s) = ¥(s), (21
<n(s)y 4p = <n(s)). (22)

The universality expressed by relations (21) and (22) being in a first approximation
correct does not take however into account the presence of leading particles (as opposed
to really produced ones). The improved versions of (21) and (22) include the leading particle
effects (diffractive dissociation, non-diffractive dissociation, leading particle associated
with pionization) through the parameter » measuring the average number of leading
particles. The improved versions of (21) and (22) read:

¥.p(z') = ¥(2), (23)
<n(s)Y550 = <n()> ap—0tap = {n(s)HT™, 24

where z' = (n—a)/({n) —a). Both Eqs (23) and (24) are in good agreement with experiment.

In order to derive expressions (23) and (24) we follow N-P Chang’s idea of independent,
factorisable fragmentation [13} applied to the quark pancakes. In an inelastic collision
either one or both pancakes fragment. In the first case while one of them gets excited
emitting particles the other pancake joins again its original hadron set to form a leading
particle in the final state. Let us then rewrite (14) in the form:

do' de**  do*
avt =\t ) @)

where do®°/db* stands for the single excitation cross-section and do?**/db? for the double
excitation one. Essentially repeating the calculation of Ref. [13] we get

955 - ey d £CB) (26)
db?
and
G55(s) = 3 6lg(s). @7

The number « of leading particles, given by the relation:

zos.e(s)

X TR
a'(s)

(28)
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is then, from (27)
o~ 1. 29

As (29) is true also at each b, Eq. (6) for the bulk of the produced particles should then
be modified to

n(b?, s)—a = n(s) - ¢(f). (30)

From (30), and (1) and (2) again, now follows (23) and (24). Independent estimates of
« [14, 15, 7], in the case of various reactions also give values close to 1.

6. Conclusions

The main purpose of this paper was to include quark additivity in the framework
of geometrical models. Applying additivity to the impact parameter inelastic cross-sections
and geometrical scaling to the basic quark-quark overlap function, Eq. (14), we obtained
the following predictions:

(i) Inelastic overlap function, scaling variable f = b% R*(s),

G,iw(bz, s) — G;B(ﬁ) = nA"Bgi(ﬂ)a

50
with g'(B) universal;
(ii) Inelastic, Total and Elastic cross-sections,

in(s), 5;3(5) ~ nA”BRz(S)s 65p(s) ~ ("A"B)sz(S)

with R(s) universal and in particular

o45(s)
L = nahg- const.;
o45(5)
(iii) Differential elastic cross-section, scaling variable T = —rR*(s),
Boolts ) = = 2 0o
, )= — — = Dz
4B o dt

implying asymptotically the same shrinkage and the same dip position for all elastic
processes.

Making the usual geometrical models connections between the impact parameter
and the number of produced particles, Eq. (6), we further obtained:

(iv) Multiplicity distributions, scaling variable Z = n/{n),

%MLQs«»%»W@L

with ¥(Z) universal:
(v) Average multiplicity

<n(s)) ap = <n(s))

with <n(s)> universal.
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The results (¢), (#7) and (iii) can probably be tested soon at NAL. The results (/) and (v)
are in good experimental agreement when the leading particle effect is taken into account [7].

Pictorically our results for the impact parameter distributions mean that at high
energy all hadrons behave as if having the same interaction radius R but an overlap G(0)
proportional to the quark content. This is an extreme picture to be contrasted with the
other extreme position of assuming the same overlap G(0) but different radius R in different
reactions [1]. The present picture, which is obviously an idealised limit, seems to be in
better agreement with data than the one proposed in Ref. [1].

Finally we should like to mention that recently several other authors have tried to
generalize and extend the observed pp geometrical scaling to other reactions [17]. In
particular Barger, Luthe and Phillips emphasize the importance of the higher order terms
in the expansion of G (or of the eikonal y) which we completely neglected in our approach.

I would like to thank Andrzej Buras, Gerald Canning, Poul Olesen and Chia Tze
from the Niels Bohr Institute and Roger Phillips from the Rutherford Laboratory for
stimulating discussions and criticism.
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