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GEOMETRICAL DESCRIPTION OF HADRONIC COLLISIONS*

By H. 1. MIETTINEN**

CERN, Geneva***

(Received March 7, 1975)

We discuss the geometrical picture of hadronic collisions. ISR elastic scattering data
are analyzed. Some features of multiparticle production are studied, emphasizing qualita-
tive ways of discriminating between the geometrical and the multiperipheral models.

1. Introduction

In this talk T shall discuss a simple geometrical model for hadronic collisions!. In this
model, the two incoming particles are pictured as two objects of finite spatial extension
which propagate through each other. During the passage, their constituents may collide,
resulting in the production and emission of secondary particles (see Fig. 1 [5]). Thus,
the incoming hadron wave gets attenuated. This is often expressed by saying that it gets
“absorbed” into the many open inelastic channels. The strength of the absorption, or the
eikonal (s, b), is usuvally assumed to be proportional to the amount of overlap of the two
matter distributions. In a central collision, this overlap is large and, consequently, the
probability that an inelastic interaction occurs is also large. In a peripheral collision,
only the “tails™ of the two hadrons go through each other. In this case, the chance that
an interaction occurs is much smaller than in the previous case.

In the above picture, elastic scattering is regarded as being the shadow of absorption.
The elastic amplitude is predominantly imaginary and is related to the eikonal by the
formula

he(s, b) = 2(1—e~ D)y = 20(s, b)—[Q(s, B)]* + ... 1)
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! This model was first formulated in a clear-cut way by Yang and his collaborators [1]. Geometrical
ideas of hadronic scattering have been studied earlier by many authors, of course. See, for instance,
the works of Heisenberg [2], Bhabha [3] and Krisch [4].
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From this equation we immediately see several important results:

(i) the elastic amplitude at a certain impact parameter is generated by the absorption
into the inelastic channels at the same impact parameter; this very important property
follows from angular momentum conservation?;

(ii) since the eikonal is assumed to be given by the matter overlap, it is a non-negative
quantity; this implies that unitarity is automatically satisfied;

(iii) the first and the second terms of the expansicn on the right-hand side of Eq. (1)
have opposite signs; thus, they interfere destructively. In momentum space, this may
easily give dips in do/dt.
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Fig. 1. The evolution of a hadronic collision. In the third and fourth picture one has a “hit”. The hadrons
move in the directions indicated by the arrows. From Ref. [5]

The above Chou-Yang model works very well phenomenologically. Several authors
have shown that it provides a good description for the ISR elastic scattering data, including
the “break” at small ¢ values and the diffraction minimum around ¢ = —1.4 GeV? [7].
It should be remembered that the existence of this minimum was predicted by Chou and
Yang already back in 1968. Thus, that it was experimentally discovered at the ISR in 1972
should certainly be regarded as a success for Chou and Yang.

The geometrical picture is simple and has much intuitive appeal. This, together with
its phenomenological successes, suggests that it might be useful to develop it further.
What I have in my mind here is, in particular, the application of geometrical ideas to the
study of multiparticle processes. There are many interesting problems to be analyzed.
To mention a few of them: what is the average multiplicity of particles produced in a collision
at a given impact parameter? Are the longitudinal momenta of the secondary particles
correlated with the impact parameter positions at which these particles are born and with
the over-all impact parameter of the collision? Are the leading protons correlated with
each other? I am almost certain that the answer to this last question is affirmative. In
a peripheral collision where the incoming protons only slightly touch each other, they
should emerge from the collision retaining a large fraction of their longitudinal momenta.
In a central collision, on the other hand, the two protons ‘“‘go through” each other. In this

2 For a useful discussion, see Ref. [6].
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case, one would expect them both to lose a sizeable fraction of their longitudinal momenta.
In other words, there should exist a positive long-range correlation between the two
leading protons, around the axis y. = —y,.

A further, very interesting, problem to be analyzed is that of the production of heavy
particles. The production of baryon-antibaryon pairs, say, obviously requires a lot of
energy. In a central collision, the energy available for particle production is probably
much larger than in a peripheral one. Thus, at the present energies, one may expect that
heavy particles are produced piedominantly in central collisions. If true, this would mean
that triggering on antiprotons should provide us with a practical way for selecting small
impact parameter events!

Many of the predictions of the above “‘naive” geometrical picture are in striking
disagreement with those of the multiperipheral model. An example of such a prediction
is provided by that of the correlation between the leading protons. In the geometrical
picture, one expects these protons to feel a positive long-range correlation, as discussed
above. In the multiperipheral model, on the other hand, the leading protons should be
essentially uncorrelated. We shall discuss later also some other quantities, whose measure-
ment should be a particularly good way of distinguishing between the geometrical and the
multiperipheral pictures.

2. Elastic scattering

As already mentioned, the Chou-Yang model provides a very adequate description
for the proton-proton elastic scattering data. The ISR data, together with the model
calculation, are shown in Fig. 2 [8). As seen, their agreement is very good.

It is easy to understand how the two interesting features of the data, the small ¢
“break” (not visible in the figure) and the diffraction minimum, are produced in the model.
In the model the eikonal is calculated by assuming the distribution of the hadronic matter
inside the proton to be similar to that of the charge. From this, it follows that the eikonal
is proportional to the square of the electric form factor

2

4
s, 1) ~ GX(t) = [{‘-—t] ,  p*=0.71GeVx 2)

The contributions of the two leading terms of the eitkonal expansion are sketched in Fig. 3.
The eikonal, given by Eq. (2), shows continuous curvature. In the forward direction, the
contribution of the second term is much smaller than that of the first one. Its slope, however,
is only half of that of the first termi. Thus the contribution of the second term becomes
increasingly important when the momentum transfer increases. The sum of the two terms
shows continuous curvature at small j#| values. Moving out in |#}, this behaviour changes
around J7| = 0.1 —0.2 GeV? into an approximately exponential one; this gives the
appearance of a “break” in this {f| range. At much larger |7| values, the eikonal and the
absorption correction cancel each other out, producing a zero in Im h(s, 7) and a dip
in the differential cross-section.
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The above discussion is obviously a very rough one, but it illustrates the main point
well. In the Chou-Yang approach, both the small || curvature and the ¢t = —1.4 GeV?
dip are caused by a destructive interference between a strongly curving eikonal and the
negative absorption corrections.

The eikonal expansion of Eq. (1) has a simple physical interpretation. The first term,
2Q(s, b), represents the sum of the elementary probabilities for the constituents of the
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Fig. 4 a) Differential cross-section at the second maximum as a function of energy. b) Position of the
minimum near 7 = — 1.4 GeV? as a function of energy (from Ref. [9])

left-moving proton to hit those of the right-moving one. If many hits occur in each collision,
this term may clearly exceed the unitarity limit. Unitarity is then restored by the rest
of the expansion. The physical interpretation of the correction terms is that they represent
the effect of the shielding of the back part of the proton by its front part. This shielding
effects is completely analogous to that of the Glauber model description of proton-nucleus
scattering.

Although the Chou-Yang model provides a good description for the z dependence
of elastic scattering, it does not make any natural predictions for its s dependence. Experi-
mentally, the proton-proton data exhibit clear energy dependence. With increasing
energy, 1) the optical point (i.e., the total cross-section) increases, 2) the differential cross-
-section shrinks, 3) the diffraction minimum moves slowly inwards and 4) the secondary
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maximum rises (see Fig. 4) [9]. Such an energy dependence may well be incorporated
into the model but it is certainly not predicted by it.

There. are (at least) two ways in which one may introduce an s dependence into the
model [10]. Firstly, one may assume that the way in which the constituents of the two
hadrons interact depends on the incoming energy. Thus, one may write

Qs, b) = [ 04(x)es(x2)I(s; b~ +x,)dxdx,. 3

Here, o(x) is the matter distribution and I(s; y) a function describing the interaction of
the constituents of the colliding particles. At very high energies, the interaction is expected
to become a local and contact one, so that I(s; y) should approach a delta function. At
finite energies, however, the interaction may be non-local and this may make the eikonal s
dependent. The second way of making the eikonal s dependent is much more straight-
forward: one simply assumes the matter distribution to be s dependent, i.e., that o(x) —
— o(s; x). It is clear that in this way one may fit an arbitrary s dependence. The problem
of understanding the physical origin of this s dependence, however, still remains.

Let us now look at the b space structure and the s dependence of the ISR elastic
scattering data in more detail. For this purpose, we write the s channel unitarity equation
as follows [11}

Im hel(s, b) = % ékel(sa b)iz +Ginel(5, b) (4)

Here, the first term on the right-hand side corfesponds to the shadow of elastic scattering
and the second one to that of the inelastic channels. They are called the elastic and inelastic
overlap functions, respectively [12]. The unitarity equation is illustrated in Fig. 5.

Fig. 5. lllustration of the s channel unitarity equation

The three terms of Eq. (4) have a simple physical interpretation. They tell us how
the total, elastic and inelastic cross-sections, respectively, are distributed as functions of
the impact parameter. For example,

1 dojpg .
1nel(s b) Z I’T;u(5 b)lz = 7TC dl;nze (S)

Here, T,(s, b) is the amplitude for producing the inelastic state # at the impact parameter 5.

The inelastic overlap function Gy,.(s, b} may be obtained from the elastic scattering
data. The results I shall show are from a recent analysis by Pirild and myself [13, 14],
Similar analyses have been performed also by several other authors [11, 15]. Our results
are in a reasonably good qualitative agreement with those of most of the other analyses,
although important quantitative differences occur.
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The results of our analysis are shown in Figs 6 — 8. They may be summarized as
follows [14]:

a) Tm h,(s, b) is very nearly a Gaussian over the b* range from 0 to 2 (Fermi)?; at
larger impact parameters it levels off; this large b tail is directly related to the sharp break
of the differential cross-section at ¢ = —0.15 GeV?;

b) G,,.(s, b) bends down near b = 0; in ¢ space, this corresponds to a zero of
G5, 1) around ¢ = —0.6 GeV?;

¢) at b = 0, the value of G, (s, b) is (94+1)%, of the maximum value allowed by
unitarity (“‘the black disk limit™); it stays constant through the ISR energy range;

d) the rise of the total cross-section comes from a relatively narrow region around
1 Fermi.

These results obviously provide strong constraints for theoretical models of multiple
production. The observation that the amount of S wave absorption stays constant at
a level of 949 of the black disk limit is particularly intriguing. Why does it stay constant?
And why at the 94 level? One may speculate in (at least) two different directions{14]:
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Fig. 6. Impact structure of proton-proton scattering at /s = 53 GeV. Shown are Im k.i(s, b) and the
inelastic and elastic overlap functions extracted from experimental data. The “black disk limit” indicates
the maximum value of the inelastic overlap function allowed by unitarity (100 % absorption) (from Ref. [13])

Fig. 7. The amplitude, inelastic overlap function and eikonal extracted from experimental data at
v/5 = 53 GeV. Notice the large & tail and the flattening of Gigeils, b) near b = 0 (from Ref. [13]
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Fig. 8 a) Inelastic overlap functions calculated from the A/s =21, 31, 44 and 53 GeV ISR data.
b) Difference of the v/s = 53 and 31 GeV inelastic overlap functions, Gjneifs, &), showing that the cross-
-section increase comes from a rather narrow region around 1 Fermi (from Ref. {13])

(i) there exists an “effective™ unitarity limit at a level of 949, of the real black disk
limit, caused by some unknown mechanism; the overlap function saturates this limit;

(ii) the constancy of G;,.(s, b=0) at the ISR energy range is a “fake-effect”, caused
by this quantity passing through a broad minimum.

It will be very interesting to study the behaviour of G, (s, b) in kaon-nucleon and
pion-nucleon scattering in the FNAL energy range. This is so since both in KN and 7N
scattering, G;,.(s, b) is much below the unitarity limit [the main reason why o, (K*p)
is much smaller than a,,(pp) is nor that the radius of the kaon would be much smaller
than that of the proton but that the opaqueness of the kaon is less than that of the proton].
Thus, unitarity effects are expected to be much less important in KN and #N scattering
than in proton-proton scattering.

3. Multiparticle production

Let us now proceed to the analysis of multiparticle production. Since there exist
no quantitative geometrical models for particle production, we shall be satisfied with
trying to find qualitative ways to discriminate between the geometrical picture and other
approaches.
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Average multiplicity versus impact parameter

To measure experimentally the multiplicity of the particles produced in a collision
at a given impact parameter is a very hard task. In order to do it, one should determine
all the n particle amplitudes, including their phases, and Fourier-Bessel transform them
into the impact parameter representation. With our present knowledge of the many-body
amplitudes, such an analysis is clearly impossible to carry out. Still, something may be
said about the b dependence of the multiplicity. In a recent paper, Biatas and Bialas show
that it is possible to derive upper and lower limits for the average multiplicity at a given
impact parameter [16]. Although these limits are not very stringent, it turns out that
they are stringent enough to rule out some popular models for n(b)!

Let us write the over-all multiplicity distribution P(n) as an integral over the fixed
multiplicity distributions p(n, b)

P(n) = "—]— deGincl(Sa b)P(n, b) (6)

Cinel

This equation is completely general. To derive from it the properties of the function p(n, b)
further assumptions are needed. In their analysis, Bialas and Bialas assume that:
(i) p(n, b) is a very narrow distribution: p(n, b) = d(n—n(b));
(ii) the average multiplicity n(b) is a monotonic function of the impact parameter.
With these assumptions, one may immediately perform the integral in Eq. (6):

i
P(n) = _a_n_ Gine(D) —W ) €)]
inel
l db® |yos,

where b, is the solution of the equation n(b,) = n.

In Eq. (7), only the absolute value of dn(b)/db? appears. Thus, one has a sign ambiguity.
From this it follows that there exist fwo solutions. Choosing the negative sign on the
right-hand side of Eq. (7) gives n(b) decreasing with increasing b. In contrast to this, the
positive sign solution increases with increasing b. The two solutions, as obtained by Biatas
and Bialas, are shown in Fig. 9.

Looking back at the assumptions needed to derive the above results, one may obviously
question the assumption that p(n, b) is a very narrow distribution. How would the above
results be modified in the case of p(n, b) having a finite width? The answer to this question
is that there would still exist two solutions, one decreasing and one increasing with
increasing b, but these solutions would be less rapidly varying that the previous ones.
Thus, varying the assumption about the width of p(n, b) one may obtain an infinite set
of solutions, all of which would be lying in the cone determined by the zero width ones.
From this we conclude that the curves shown in Fig. 9 may be regarded as upper and lower
limits for n(b), and that the experimental function n(b) should lic between them.

In the geometrical picture, n(b) is expected to be a decreasing function of b. A popular
assumption is that n(b) is proportional to the eikonal Q(s, b). Now, one may ask if such
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Fig. 9. Average multiplicity n(#) of negative particles produced in tigh energy proton-proton collisions,
as a function of the impact parameter: a) decreasing solution; b) increasing solution (from Ref. [16])

an assumption is consistent with the results of Bialas and Biatas. Comparing the experi-
mental eikonal shown in Fig. 7, with the solutions of Biatas and Bialas, we see that the
eikonal decreases faster than the limiting solution a). Thus, we conclude that the popular
assumption of n(b) being proportional to the eikonal is indeed ruled out by the experi-
mental data!

The impact parameter structure of the multiperipheral model is easy to analyze in
the weak coupling limit. In simple versions of the MPM, the amplitude is assumed to
factorize into a product of functions of the momentum transfers #; (short-range order):

Tlab—>1...n) =

In the weak coupling limit, the variables conjugate to the momentum transfers are the
impact parameter steps 4b;, i.c., the differences between the impact parameters of the
particles produced next to each other in the chain. The assumption that the ¢,’s factorize
implies that the impact parameter steps are independent. This means that the MPM is
équivalent to a random walk in impact parameter [17].

A basic property of a random walk is that the total length of the walk is proportional

to the square root of the number of steps: b = const. N i{bq) Inverting this, we find that
n(b) ~ b* Thus, n(b) is a rapidly increasing function of b.
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The above discussion is clearly a very simplified one. Its weakest side is that it assumes
the coupling constant to be small. Experimentally, however, the coupling constant (i.e.,
the particle density) is very large. For high particle densities, the above simple relation
between the ¢;’s and the 4b;’s is no longer valid, and the analysis becomes much more
complicated. Also other effects, such as the Reggeization of the particles exchanged,
should be considered. In a recent paper, Jadach and Turnau pointed out that for these
more complicated cases n(b) may even be qualitatively different from the above result
and decrease with increasing b [18]. For a further discussion, we refer to their paper.

Factorization of the two hemispheres

A simple qualitative way to discriminate between the geometrical and the multi-
peripheral pictures is provided by the study of the correlations. Basically, the multiperipheral
model is a short-range correlation model, while the geometrical picture predicts that all
kinds of interesting long-range correlations should be present. Here, we shall discuss
two simple examples of such correlations,

As a first example, let us study the multiplicity correlation between the two hemispheres.
Let ng (1) be the multiplicity of particles in the right (left) hemisphere, p(n) the multi-

MULTIPERIPHERAL NAIVE GEOMETRICAL
MODEL PICTURE

Fig. 10. Ilustration of the left-right multiplicity correlation expected in the muitiperipheral and the
geometrical models. In the shadowed area, correlations due to inelastic diffraction may be present

plicity distribution in one hemisphere and p(ng, n;) the probability distribution for there
being ng particles in the right hemisphere and n; particles in the left one. Define the
multiplicity correlation function C(ng, n,) as follows:

C(ng, n) = p(ng, ny)— p(ng)p(ny). (®)
This correlation function is normalized as follows:

Y. C(ng, ny) =Y. Clng, ny) = 0. )
"R nL,
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The multiperipheral model is a short-range correlation model. In this model, the
multiplicities of the two hemispheres are essentially independent, ie., C(ng, n,) = 0.
In the geometrical model, on the other hand, one expects to find a high (low) multiplicity
in both hemispheres, if the collision has been a central (peripheral) one. Thus, according
to this picture, the correlation should be positive in the neighbourhood of the diagonal
ng = 1. Due to the normalization condition Eq. (9), it should be negative in the other
regions of the ng—n, plot.

The above predictions are illustrated in Fig. 10. To test them, it is best to study
relatively large multiplicities. This is to avoid the complications present at low multiplicities
due to inelastic diffraction.

Our second example is provided by the correlation between the leading protons.
In the multiperipheral model, such a correlation should be very small or zero. What is
the prediction of the geometrical picture? In a “head on™ collision, one expects, clearly,
that both protons should lose a considerable fraction of their longitudinal momenta. In
a peripheral collision, they both are expected to retain most of their momenta. Thus,
one expects a positive correlation along the axis y. = —y, Such a correlation would
clearly be of long-range nature, since it would extend over the whole phase space.

The above proton-proton longitudinal correlation is expected to be a particularly
useful quantity to be studied, since it is only little influenced by the “phase space effects”.

Heavy particle production [19]

Experimentally, the antiproton spectrum is still rising fast at the ISR energies. Since
the available centre-of-mass energy at the ISR is \/E = 20 — 60 GeV, and since the
minimum mass of a NN pair is less than 2 GeV, one may safely conclude that some dynami-
cal mechanism must be delaying the NN production threshold.

In the multiperipheral framework such a delayed threshold for NN production is
caused by a kinematic “#-min effect” [20]. It is fairly easy to see that the strength of such
a r-min effect depends on the masses of the produced particles in such a way that the
spectra of the light particles approach their scaling limits fast, while those of the heavy
particles will scale very slowly.

In the geometrical picture, the delayed threshold of NN production may be understood
as follows (see the illustration in Fig. 11) [19]. Consider a collision process at a fixed
impact parameter b. Assume that different parts of the production volume behave inde-
pendently, i.e., production at a position x in the impact plane is controlled by the local
energy density &(s; b, r)[21]. Now, to produce a NN pair in a collision at an impact param-
eter b at the position r, the local energy density &(s; b, r) must exceed some threshold

value éﬂ,ﬁ. At low and medium energies & is generally smaller than f,‘,ﬁ, and, consequently,

very few NN pairs are produced. As the energy is increased, £(s; b, 7) exceeds Cff". This
occurs first in small-impact-parameter collisions, and NN production sets in. In this transi-
tion energy region, heavy particles are expected to be produced in small-impact-parameter
collisions only. When the energy is further increased, the size of the part of the production
volume “hot” enough to produce NN pairs grows and the difference between the impact
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structures of NN pair and pion production diminishes. The rapid growth of the ratio of
the NN pair to the pion pair production at the NAL-ISR energies indicates that these
energies still belong to the transition energy range.

According to the above arguments, triggering on antiprotons biases one towards
central collisions. Thus, one expects the antiproton events to show many of the character-
istics of the small b collisions previously discussed. Firstly, central collisions should have
larger multiplicity than the peripheral ones. Our preliminary calculations within a simple

GEOMETRICAL PICTURE

‘«;» e T -
. i

Fig. 11. a) Geometrical picture of a peripheral collision; no NN pairs are produced. b) Geometrical
picture of a central collision; the energy density in the checkered region is large enough to allow NN
production (from Ref. [19])

geometrical model indicate that this increase of the multiplicity should be large enough
to overcome the decrease of the multiplicity due to the NN pair taking more energy than
an average pion pair. Hence we expect the associated multiplicity {n~); to be larger than
the over-all (n—). Secondly, in a central collision, the fragments of incident protons are
less likely to carry away a substantial fraction of the incident momentum; so we expect
the associated single particle spectra (o,); and (g,); to be more peaked toward the central
region than the normal single particle spectra ¢, and g,,.

The above predictions are opposite to those of the multiperipheral model. The MPM
predicts that events with heavy particles produced should look essentially similar to those
with only pions produced?.

Some predictions of the multiperipheral and the geometrical pictures are summarized
below.

3 A small difference is to be expected, due to the fact that the NN replaces 34 pions in the chain.
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Quantity Multiperipheral model Naive geometrical picture
left-right multiplicity correlation ot C(ng, np) > 0 along the axis
Cnr, n) no correlation g

Cpp(ye, ya) > 0 along the axis

leading proton correlation no correlation
Y= —Ya
associated multiplicity <{ncn>p {nendp < {Heny {endp > {Hehy
associated pion spectra (gx)p as usual or flatter more central
associated leading proton spectra as usual more central, may even peak at
(Qp); 4 x =0

4. Conclusions

The main points of this talk may be summarized as follows:

A) the geometrical model provides a good description for the ¢ dependence of the
ISR elastic scattering data, including the “break” at small ¢ values and the diffraction
minimum around ¢ = —1.4 GeV?;

B) the model does not make any natural predictions for the s dependence of the data,
although an arbitrary s dependence may easily be incorporated into it;

C) the b and s dependence of the inelastic overlap function G, (s, b) extracted from
the ISR data were discussed; a particularly intriguing feature of this quantity is that at
b = 0 it stays constant at a level of 94 % of the black disk limit over the whole ISR energy
range;

D) the study of G, (s, ) in KN and =N scattering in the FNAL energy range should
provide particularly useful information on the importance of the unitarity effects and
on the origin of the rise of the total cross-sections;

E) upper and lower limits for the average multiplicity of the particles produced in
a collision at 4 given impact parameter may be derived from the experimental data; these
limits exclude the popular hypothesis that n(b) ~ Q(b);

F) neither the multiperipheral nor the geometrical model is ruled out by the existing
data; the study of the left-right multiplicities, leading proton correlations and antiproton
production should be a particularly good way of discriminating between these models;
some predictions are given.

1 should like to thank Professor J. Finkelstein for a critical reading of the manuscript
and for many useful suggestions. I gratefully acknowledge the financial support of the
Herman Rosenberg Foundation and the Science Research Council (Finland).

4 “Leading proton spectra” = difference of the proton and antiproton spectra.
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