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The expansion of the Papapetrou pseudotensor in the Riemann normal coordinates
is obtained in the zeroth, first, and second orders in the coordinates. Pure gravitational terms
appear only in the second order and the corresponding coefficient of the expansion is a tensor
of the fourth rank. Being symmetrized, this tensor exactly coincides with the Bel-Robinson
superenergy tensor which can be hence interpreted as the relative energy-momentum density
of the gravitational field.

It is characteristic for the gravitational field described in a general covariant form,
irrelative to frames of reference, to act purely geometrically upon test masses, without
involving any 4-vector forces. However, the analysis of the geodesic deviation equation
shows that the curvature tensor plays the role of the relative field intensity (see e.g. [1]),
and it makes it natural to take the Bel-Robinson superenergy tensor quadratic in curvature
for the relative energy-momentum density of the gravitational field. This approach
is confirmed by the result obtained by Garecki [3], who showed that some components
of the Bel-Robinson superenergy temsor essentially enter the expansion of the Einstein
pseudotensor.

We are going to examine the Papapetrou energy-momentum symmetric pseudotensor
which was introduced already in 1948 with the help of the well known Belinfante-Rosenfeld
method. The symmetry of the pseudotensor suggests its closer connection with the Bel-
-Robinson tensor, symmetric in its all four indices. On the other hand, it is possible to
derive the Papapetrou pseudotensor not only by the ordinary way (see e.g. [1], here the
Einsteinian Lagrangian can be used as well as the density of the scalar curvature), but
also as Burlankov showed in 1963 [5], by a new one based on the ideas of the bimetric
formalism [6] (see also [1]), considered by Papapetrou, too. The method reveals the physical
sense of the Papapetrou pseudotensor as the energy-momentum density, and links its
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symmetry with that of the second metric. According to the idea of Rosen, Burlankov
used the covariant derivative relative to the second metric (denoted by 4,,), defined with
the help of the second connection

A, 2
'))uv - = —% e" (ekv,u + epm,v - euv.x) (1)

(e, is the second metric associated with a certain background flat space-time). Then,
according to the Noether theorem, the tensor density
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(2
satisfies the weak conservation law
e =0, (3)

written in Cartesian second metric coordinates, with the help of partial divergence. In
these coordinates the very pseudotensor (genuine tensor from the viewpoint of the bimetric
formalism) is equal to
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(Gothic letters are used for densities: g”*: = \/ :Eg‘") which is equivalent to the ex-
pression for the Einstein equations when the wave part (right-hand side) and the sources,
including nonlinear part of the gravitational field (left-hand side), are separated. The
instructive analysis of the Einstein equations structure, carried out by Gupta and Halpern
on the base of the Papapetrou pseudotensor [7, 8] is worth mentioning. Note also that
it is possible to rewrite identically the Einstein equations to obtain the relation
a8+ 8 20008 = 26 F 7+ =g [ gl — g + &g g
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which is useful in the applications of the Papapetrou pseudotensor (e.g. in calculations
of the energy flux density of weak gravitational waves).
In order to analyse the Papapetrou pseudotensor in the Riemann normal coordinates,

we need the expansion of the metric in the coordinates up to the 4-th order (see [9], p. 45
and [10]):
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Since we are interested in the derivatives of the covariant components of the metric
density, we take its Taylor series

(Zeo = 8 = 8, = diag (1, —1, —1, —1)),

art, gt 1 OUT ax 1 OUT ax
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and correspondingly
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(the symbol “0” over a quantity indicates that it is taken in the Riemann normal coordinates
at the initial point, and the number in round brackets signifies the order of the approxima-
tion). It is not difficult to compute that the following equalities are identically satisfied
in the Riemann normal coordinates:
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On the other hand it is known that

0 [1]
gaa),u,v = %Re(uv)w’ (12)
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0
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(all quantities should be expressed through the Cartesian metric and the curvature tensor).
Round brackets mean symmetrization over all underlined indices involved.

From the expansion (8) follows that (9) corresponds to the zero approximation of
the second partial derivative of the metric density, (10) corresponds to the first and (11)
to the second approximation. We construct for each approximation the expression for
n°° with the help of (8) and express the coefficients of the expansion from (12)-(14). We
present here the detailed computation only for the comparatively simple zeroth
approximation:
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Thus we have
(0) 0
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During the calculation of the first approximation, as it is clear from (13), the covariant

derivatives of the Riemann-Christoffel tensor appear in the expression for(;z)"“ With
the help of the Bianchi identities they are reduced to the derivatives of the Ricci tensor
and we have

(0
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(n [} ;
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The computation of the second approximation turns out to be particularly cumber-
some. In order to simplify it we considered here empty space, i.e. put R,, = 0 (precisely
for this case the Bel-Robinson tensor is defined with all its properties). In this approxi-
mation the second covariant derivatives of the curvature tensor appear as the expansion
coefficients. Here also they are reduced with the help of the Bianchi identities (with the
preceding alternation of the covariant derivatives which brings additional terms, quadratic
in the curvature tensor) to the derivatives of the Ricci tensor. Here, in computations we
used the identities of the Lanczos type [11] in empty space (see [1]):

RaﬂyaRapya = 4R¢M;_R“M . (19)
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We omit here all the cumbersome detailes and give the final result for the second approxi-
mation of the Papapetrou pseudotensor density in empty space in the Riemann normal
coordinates

)
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So we see here that only in this approximation the tensor construction emerges
gatio: = R‘i":‘;R”)‘”"FR‘;T}:{,R”Q”“‘% RaﬂyéR - g(a-rg,le) (22)
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and it is included in ¢ as
@) \/
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(the indices of the Riemann coordinates y, are lowered by the pseudo-Cartesian metric d,,,).
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The definition of the tensor #°**¢ shows that the symmetry
yeth — g;tcﬂ,a — glqat — glew (24)

exists. Also it is not difficult to verify that 27*%¢, when contracted in any pair of indices,
vanishes in vacuum. However, the divergence of the tensor, in general, differs from zero.
Being symmetrized in all its four indices the tensor #°"*¢ becomes

PO = L[RIGRMT+ RIVIRIT + RITGRA + RUTIRAY 4 R IGRYT™

+R‘;):¢f;Ruqtv__;_ RdﬂyaRaﬂyé(aalam+5caét).+5oté).g) (25)
which with the help of identities (20) can be written in the form
g(crrlg) = R;:‘T\;R”a;.v"' Ru.filv.Ruagv_% Rzﬂ?aRaﬂyééatéig’ (26)

i.e. the quantity 2" up to a constant factor (if the Gauss units are chosen equal to 87)
compiletely coincides with the Bel-Robinson superenergy tensor

. i T.0.
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So the Papapetrou pseudotensor posesses a number of properties distinguishing it
among other pseudotensors: 1) It is a genuine tensor from the view point of the bimetric
formalism. 2) It follows from the Noether theorem according to the rule (2), perfectly
analogous to the definition of the ordinary symmetric energy-momentum tensor [5]. 3) It
permits to give a constructive interpretation of the nonlinearity of the gravitational field
as a specific feature of its sources [7,8]. 4) The symmetrization of the specific gravitatinal
part of its expansion coefficient in the Riemann normal coordinates gives exactly the
expression for the Bel-Robinson superenergy tensor (in vacuum) in contrast to the more
complex similar connection in the case of the Einstein pseudotensor [3]. This, in its turn,
could clarify the physical interpretation of the Bel-Robinson tensor.

The author wishes to thank Professor N. V. Mitskiévi¢ for suggesting this problem
and for numerous discussions.
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