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Corrections to the Glauber model for hadron-deuteron scattering in the realm of non-
relativistic eikonal expansion are expressed through two-body scattering amplitudes. Nu-
merical calculations including off-shell effects are carried out and the comparison with ex-
perimental data is given for elastic #~d scattering at 9 GeV/c. Dependence of the relative
values of corrections on parameters of input amplitudes is checked. It turns out that this
type of corrections does not exceed 22%; at the largest momentum transfer measured,
tx —2(GeV/e)3.

1. Introduction

In the last few years a growing interest in calculation of different corrections to the
simple Glauber model [1] for hadron-deuteron scattering has developed. The Glauber
model is known to be valid for high energies and small scattering angles only. Nevertheless,
it has been quite extensively and not without success applied outside the region in which
it is supposed to work. The two alternative explanations of this fact are that either the
values of different corrections to the Glauber model are still negligible at medium mo-
mentum transfers or that there exists some mechanism of cancellation one against the
other. On the other hand, cases are known [2] where the simple Glauber model is reported
to be incompatible with experimental data. In any case, only a quantitative numerical anal-
ysis may give us some insight into the real physical situation. However, although the litera-
ture on this problem is quite extensive (see e. g. [3-29]), it consists mostly of theoretical
considerations and due to the mathematical complications the direct comparison with
experiment is rather rare.

One popular generalisation of the Glauber model is the nonrelativistic eikonal ex-

* Address: Instytut Badan Jadrowych, Hoza 69, 00-681 Warszawa, Poland.
(689)



690

pansion (NEE), introduced by Sugar and Blankenbecler [9]. The corrections it involves
are of a very fundamental character since they are connected with abandoning the assump-
tions about small scattering angles. In this paper we shall present the calculation of the
hadron-deuteron elastic scattering amplitude in the second approximation in NEE. This
amplitude differs from the Glauber amplitude by two terms which we shall call the eikonal
and the Saxon-Schiff [9, 4] corrections, respectively. Our formalism will be based in gen-
eral on that of Sugar and Blankenbecler but with a different choice of eikonal momentum.
The reasons and implications of this choice are briefly discussed in Section 2.

Apart from building up a formalism for expressing the correction terms through
the two-body amplitudes known from experiment, we also give the method for taking
off-shell effects into account. This we are basing on a previous paper [30] by Bartnik to-
gether with the present author, where the shapes of the two-body off-shell elastic scattering
amplitudes were numerically analysed. In what follows we shall refer to this paper as (I).

For the comparison with experiment we have chosen the case of n—d elastic scattering
at 9 GeV/c [2], where the authors find a disagreement between the simple Glauber model
and experimental data of the order of 509 for the largest momentum transfer measured,
i.e. for t &® —2(GeV/c)?. It turns out that only about half of this discrepancy is due to
corrections of the type considered here. The rest must be connected with other cor-
rections (spin, Fermi momentum, recoil etc.). This is discussed in Sections 4 and 5.

This paper is organized as follows. In Section 2 we introduce the NEE for elastic
hadron-deuteron scattering and derive the formula for the amplitude which is then written
in terms of two-body amplitudes and discussed in Section 3. The numerical results and
comparison with experiment is presented in Section 4. In Section 5 we give some conclu-
sions and discuss possible future improvements of this model. Finally, in Appendix A
we describe the transformation of the two-body off-shell amplitudes from cms to laboratory
frame and the effect this has on their shape.

2. Three-body nonrelativistic eikonal expansion

Throughout this paper we shall use the same notation as in (I) except that in the three-
-body case the amplitudes and Greens functions will be denoted by capital letters. The
sign *“” on any side of ¢ or T-matrices means that the corresponding bra (ket) sandwiching
this matrix is off energy shell. The symbol “~* is reserved for amplitudes and Greens
functions in the eikonal approximation.

Our considerations will be valid in general in any reference frame, although fot simplic-
ity we shall assume that the centre of mass motion has already been factorized out and
the numerical calculation will be done in the laboratory frame. The three-body state is
fully described by two relative momenta

ds = Mﬁlﬁ , eR))
my+m,
_ (my+my)k;— ma(ky +k5)

my+m,+my

3

(2.2)
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where I?i and m; are the momenta and masses of particles respectively, and the subscript 3
is reserved for the incoming particle!, whereas 1 and 2 refer to the nucleons of the deu-
teron. Clearly, g5 is the relative momentum of the nucleons and p; is the relative momen-
tum of the incoming particle and the centre of mass of the two nucleons. Introducing the
two-body interaction potentials ¥;; and denoting

W="Vis+V;, 2.3
we get the full hamiltonian in the form
2 2
Ps UE)
H=_—+ +W+V,, 2.
2053 2my, '2 (2.4)
where
(my+my)my mym,
=" My, =, M =m +m,+m,. 2.5
Hs M 12 m, +m, 1 2 3 (2.5)

We shall use two Greens functions: the full Greens function
G = (E—-H+ig)?, (2.6)

where E is the total energy of the system, and the Greens function with only the deuteron
potential included

Gy = (E—H+ W+ie) . Q.7
The scattering matrix is given by the Lippmann-Schwinger equation [9]
T=W+WGT= W+TG,W. (2.8)

This equation is a starting point for the eikonal expansion.

The eikonal approximation will consist of two steps (see (I) for comparison with
two-body case):

1. Linearization of the hamiltonian in momentum p (from now on we shall drop the
subscripts where it does not lead to misunderstanding)

P> 5 Po(pP—Dpo).
- + —

(2.9)
2 2 u

here pq is the so called eikonal momentum, its choice is not specified so far but obviously
the neglected term (p— p,)* must be small in the physical region. From now on we shall
always assume that the z axis of our frame is parallel to Po.

2. Neglect of all terms describing the bound state

Vs B -0, (2.10)

5
2my,

1 All considerations in Sections 2 and 3 are valid for any elastic scattering xd — xd but the practical
calculations and comparison with experiment will be given only for x = .
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where B is the binding energy. The choice of the second step is somewhat arbitrary. For
instance, one can linearize the hamiltonian in momentum ¢ instead of neglecting it. Our
choice has the advantage of simplifying the calculations. Note that although the Fermi
momentum is neglected here, the deuteron interactions will be taken into account when
averaging the scattering matrix with the deuteron wave function.

Now, denoting

Ey, =E-B 2.11)
we get the eikonal Greens functions in the form
I e e -1
x p (p— :
G = I:EO— Po _ PolP=Po) —W+,s] : (2.12)
2u I
2 -1
< —Po) .
G, = [EG— bo _ polp=po) | (2.13)
2u u
Let us then introduce an operator N defined by the formula [9]
- ”\2 -2
N=G1'-6"1'=G;'-G;' = (Po=P) + 2 +V,,—B. (2.14)
2u 2my,

This operator is in a sense a measure of the validity of the eikonal approximation.? In
terms of it the Lippmann-Schwinger equation takes the two alternative forms

T = T+TG;NG,T,
T = T+TG3;NG5T, (2.15)

where T is the solution of (2.8)in the eikonal approximation. The iteration of these two
equations allows us to expand T in a series of growing powers of the operator N. This is
the so called nonrelativistic eikonal expansion. Up to the first order in N the scattering
matrix is given by the formula

T, = T+ TG3NG,T, (2.16)
where the neglected part is of the second order in N
T—T; = TGiN(G3+G5TG3) NG, T. Q.17

These formulae for NEE were first introduced by Sugar and Blankenbecler [9] and were
fairly extensively used in nonrelativistic and relativistic approaches, though usually without
numerical calculations. The amplitude 7, in Eq. (2.16) consists of two terms. The first
one is the eikonal amplitude which for small scattering angles is equivalent to the Glauber
amplitude. However, to get a model valid for higher momentum transfers we must get rid
of some additional numerical approximations in the Glauber model (like neglecting the
longitudinal momentum transfer) and this, as well as taking into account the off-shell

2 For any reasonable choice of pg (linear combination of initial and final momentum) N vanishes
in the forward direction and is very small for small scattering angles.
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effects, introduces a difference between the Glauber and the eikonal amplitudes which
we shall call the eikonal correction. The second term in Eq. (2.16) is called the Saxon-
-Schiff correction [4, 9].

Our formalism is very similar to that of Sugar and Blankenbecler. However (apart
from working in the relative momentum representation which only gives the more sym-
metric form of the final formulae), there is one important difference, already mentioned
in the introduction. Namely, we choose as the eikonal momentum the average of the
initial and final momenta

Po = 3 (D:i+py) (2.18)

and eikonalize twice in the same direction. There are two reasons for this. Firstly, this
choice leads to important numerical simplifications® and secondly, it has the advantage of
diminishing the Saxon-Schiff correction, as will be seen in Section 4, in agreement with
theoretical predictions of Kujawski [23].

Our aim is to express the amplitude 7, through the two-body amplitudes known
from experiment, and to calculate it explicitly for the case of n~d scattering at laboratory
momentum 9 GeV/c. This will be done in the next two sections.

3. Hadron-deuteron scattering amplitude with eikonal and Saxon-Schiff corrections

Eq. (2.16) is an operator equation, and to calculate the hadron-deuteron scattering
amplitude we must carry out all the integrations over the intermediate states and then
average both sides with the deuteron wave function. This means that the eikonal three-
-body amplitudes T will be at least half off-shell. In (I) we have developed the formalism
for calculating the half off-shell two-body amplitudes. They were of the following
shape [30]

- ick 2 s
f(d) = — ™4~ Cah iy (3.1)
4
i 6k _ 42, —cas,+1d4
fi(4) = —— e ® 70T (3.2
4r

where A , and 4, are the momentum transfer components perpendicular and parallel to
the eikonal direction, respectively. The values of the total cross section g, half the slope
of the differential cross section « and the fitting parameters C and 4 depend on energy.
The amplitudes f differ from the Lippmann-Schwinger amplitudes by a constant factor
and are normalized according to the formula

o2 do
DI = ol 3.3)

3 Note, however, that with this choice of eikonal momentum the physical momenta 171 and ps are
slightly off-shell (see discussion in (I)).
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One should bear in mind that although the formulae (3.1) and (3.2) were derived in the
eikonal approximation under the assumption of spherical symmetry of potential which
allows one to express the potential through the eikonal on-shell amplitude uniquely, for
practical calculation one has to substitute the eikonal amplitude by the experimental one.
This makes the procedure of the off-shell continuation somewhat ambiguous, especially
in large momentum transfer region. However, it should be a good first order approxima-
tion and the corrections are of higher order in the two-body N operator.

The formulae (3.1) and (3.2) were derived in the centre of mass frame and to use them
in our case we must transform them to the laboratory frame (see Appendix A) which has
the effect of changing the values of o, C, and d but does not change their functional
shape.

To express the eikonal three-body amplitudes through the two-body ones we use
the formula given by Karlsson and Namyslowski [25] which is the generalization of the
well known Glauber formula to the full off-shell amplitudes case

Fa1Tpa> = <p'dI'Tilpa>+<p'd" I T51pa>

o] o0

iu , 1 1
- dt dr " - — -
277.'[70 T+§(pz—POz)_le T_%(pz_pOz)'*_w

-0 —w

1 1 2701 337y
X ’ 1 ’ T 1 ’ . d p_j__d q
T "_'f(pz_p()z)'{"l8 T +7(pz-—p0z)—l8

x <P P+ po)—7, @' TP, 3 (P-4 Po)+ 7. @

X (P 3 (DL o) +75 8 TP 4 (P Po) =1, 47, (3.4)

where
p'aiTipgy = PP (B —p)+@ -], (3.5)
a1 Tipg> = <pI'13pyd*[4 (0 —p) =@ — ) (3.6)

Here p,, denotes the on-shell value of the z-component of momentum p*and the amplitudes
't and 't’, are the off-shell scattering amplitudes for the reactions xp — xp and xn — xn.
Using the é functions one may carry out six of the seven integrations in Eq. (3.4) and with
the additional assumption that the full off-shell amplitudes depend like the half off-shell

% Note that po; is not the z component of vector Do (which is equal to |Pol since po is parallel to z axis).

2
It has an extra contribution coming from the fact that in general E, # —;2-:
i

Poz = pPot1,
where
" = H“Eq _ _{J_o
2po 2

(see (1), Eq. (2.6)).
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ones only on the difference of their arguments (which implies here that they are indepen-
dent of the integration variable 1), applying the Cauchy theorem, we finally get

I N et

PITpgy = T1(A)0*G A+8)+'15(A)0%% 4-9)

Au' 1 1 ] 1 N -
+ =75 ‘13 4
Po bz—'f (Pz+Pz)+P0z+13 b + (pz+pz) pOz_lg

3.7
where
d=p-p 6=0-q (3.8)
also for unphysical values of the momenta.
The formula (3.7) which may be symbolically written as
T=T+T,+T,s 3.9)

must be now substituted in Eq. (2.16) which after using the locality of Greens functions
and N operator in momentum space takes the form

Ti( A) Sdsfkdsq 'P*(‘If) {<;}fat’i?§5iai>

2
d3 d ki indiyd T e
j pd q<pegs| 1ch>(p()+’7“_pz+l.8)2

Po
(r—po)® & - .
x Y+ +Vy2,—B | paITIp:a:> t (@), (3.10)
2u 2my,

where y is the deuteron wave function and from the Schrédinger equation

(V12 —B)w@i) =

qi

2my,
In practical calculations we have induced D-wave in sigle scattering terms but for the sake
of simplicity y was parametrized as simple gaussian in double scattering and correction
terms. Although the input amplitudes (3.1) and (3.2) have a very simple form, some of
the integrations must be done numerically. In view of the very complicated shape of the
final formulae (computer input) we shall not present them here, classifying instead sche-
matically the different terms of corrections and giving their general description.

From Egs. (3.9) and (3.10) it is clear that the Saxon-Schiff correction consists of

nine terms. The full amplitude (with normalisation (3.3)) may be schematically written
as the sum

3 3
F(4) = FA)+ ;-21 _21 F.(4). (3.11)
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The first term here, F(4), is the eikonal amplitude. One can see from Eq. (3.7) that it con-
sists of two single scattering terms and a double scattering term which in the forward di-
rection reduces to the Glauber [1] formula but in general differs by the eikonal
correction. For the sake of discussion the amplitudes may be grouped as follows (we omit
single scattering amplitudes since they are exactly the same in our and Glauber models)

1. F;, — double scattering amplitude in the Glauber model. It has slope —z—in the

variable 43 3.

2. F, — double scattering amplitude with eikonal correction — same slope.

3. Fy = F,; +F,, — double scattering on the same particle. According to expectations
they are very small in the forward direction and proportional to the deuteron form
factor, therefore their contribution is negligible everywhere.

4. F, = F,,+F,, — double scattering in Saxon-Schiff correction. It has slope «/2 in Aﬁ_
but for r = 0 is much smaller than F,.

5. Fs = Fy3+F;3+F3, +F,, — triple scattering and Fs = Fy; — quadruple scattering
have slopes less than «/2 and, therefore, one could expect them to dominate for large r.
However, only numerical analysis may tell us whether F; —Fs dominate in some ¢ re-
gion since if such a region exists, 4. and n* effects are there comparable with 4, (see
next section).

4. Numerical results and comparison with experiment

As mentioned in the introduction, for comparison with experiment we have chosen
the case of elastic n~d scattering at laboratory momentum 9 GeV/c [2]. The differential
cross section for this reaction was measured up to 1 = —2.28 (GeV/c)?. From the considera-
tions of Bradamante et al. [2] it follows that the results of calculations of Alberi and Ber-
tocchi [31] in the Glauber model based on the Barger-Phillips [32] parametrization of n-p
and n—n amplitudes disagree with experimental data by about 509, at the highest momen-
tum transfer measured. It should be stressed here that our aim was not to get a better fit
to the data® but to check to what extent the eikonal and Saxon-Schiff corrections may be
responsible for this discrepancy. Therefore, being not interested so much in the absolute
value of the full amplitude as in the relative values of corrections, we have carried out
the calculations for the three sets of parameters o, g and g (slope, total cross section and Re
f(0)/Im f(0); see (I)) describing n~p and 7~n on-shell amplitudes. All values of parameters
are given in Table I. The set A4 is the one quoted in Ref. {2], the set B is based on our own
fit to mp scattering data up to t = —0.7 (GeV/c)? and the set C was taken to reproduce
the Phillips amplitudes [2] but only in the double scattering region.

5 The variable A ﬁ_ gives the main dependernce on ¢ (especially in the laboratory system). However,
one must bear in mind that for large momentum transfers, the factors including 4, and 7* may also
give a substantial contribution.

¢ It is possible that with some reasonable change of two-body amplitudes one can get much better
agreement between the Glauber model predictions and experimental data than the one reported in
Ref. [2] (see [29)).
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TABLE [

Three sets of parameters describing 7-p and 7z—n elastic scattering at 9 GeV/c taken for numerical calculations
of =d amplitude (see Sec. 4). The letters from the first column are used to differentiate between the sets
of curves in Fig. 1 and 2

&-p %n—n On-p Cn—n On- On-n
(GeViey: | (GeV/e)? (mb) {mb) P N
A 4.25 4.25 26.9 25.3 —-0.126 —0.230
B 3.92 3.92 26.9 25.3 —0.126 —0.230
c 3.35 3.35 24.4 24.4 0 0

Our results are presented in Figs 1-3. In Fig. 1a and b there is the n—d differential
cross section for different sets of parameters. In all three sets curve number 1 corresponds
to the Glauber model, curve number 2 is Glauber with eikonal correction and curve
number 3 is the full cross section with the Saxon-Schiff and eikonal corrections. In Fig. 1b
the single scattering contribution is subtracted and the comparison with experiment is
done only for large ¢, since the set C of parameters does not reproduce single scattering
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Fig. 1. The differentia! cross section for the elastic m~d scattering at laboratory momentum 9 GeVjec. The

effect of eikonal and Saxon-Schiff correction is shown explicitly. Letters 4, B, C correspond to different

sets of input parameters presented in Table I. Numbers 1, 2, 3 in each set of curves correspond to Glauber

amplitude, Glauber + eikonal correction and Glauber + eikonal + Saxon-Schiff correction, respectively.

In the set C in Fig. 1b only double and higher order scatterings are taken into account. The experimental
data are from Ref. [2]
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in a reasonable way. We used this set only to reproduce Bradamante’s curves in the most
interesting region’ and to test the dependence of relative values of corrections on the
parameters used.

Fig. 2 shows a comparison of the contributions from subsequent terms of the am-
plitude to the differential cross section. The numbers correspond to F; —Fs from Sec. 3

~ |F,-|2). Fig. 3a and b illustrates the ¢

i

do
and the interference is completely ignored (E

do
gt
mb
Gevicie/h
700 -
70-7
072
073
04 B
07
107

70‘71

107"
70-03

'l 1 I 1 i

0 20 30 40 50 2
-t[GeV/cT

.\, N
i NN
] -

Fig. 2. The contributions from different terms F; (i = 1, ..., 6) to the differential cross section as discussed

do 2
~ |Fil
dt i

in Sec. 3 (without interference: ——

dependence of real and imaginary parts of F;(i = 1, ..., 6). From this figure a mechanism
of cancellations between different terms may be deduced.

From our numerical results the following observations can be made:

1. The effect of eikonal and Saxon-Schiff corrections is rather small in the momentum
transfer region up to - 2(GeV/c)? and does not exceed 22 %, therefore (if the Bradamante-
-Phillips amplitudes are the only proper ones®) these corrections can not be the only ones
responsible for discrepancies between the Glauber model and experiment.®

7 With our simple parametrization of amplitudes we can not reproduce the very complicated amplitudes
of Barger and Phillips in all momentum transfer regions.

8 It is obvious that the other effects neglected here like spin of nucleons, Fermi motion or deuteron
recoil should also give some contribution.
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2. The relative values of the corrections depend rather weakly on the shape parameters
of the two-body amplitudes.

3. The corrections diminish the value of the differential cross section. If one believes
Phillips’ parametrization to be the best one, then the corrections go in the right direction
(see Fig. 1b).

4. The eikonal correction is much bigger than the Saxon-Schiff one. This effect is
probably connected with our choice of eikonal momentum (23] since then some part
of the usual Saxon-Schiff correction is already contained in the eikonal approximation.

5. Even the numerical analysis does not uniquely answer the question, where the
different terms start to dominate (see Figs 2, 3). The slopes of their contributions to the

ReF
[Gev™s
0%k ImF
[Gev™7 - ImEy
LN meem—— e ReE, N e - JmF,
-3 a
o R 0 e
——= = Jmf,
[ i 'l
ool ol
v : 1073 -
13 fi
L W w0k
AN
AN f\
;_ AN Y AN
5 3 { .
0 i i H i N Vi LN
10 20 30 40 50 S 0 20 30 40 50
-t [GeV/e] ~t[Gev/el
a b

Fig. 3. The shape of a) real and b) imaginary parts of subsequent terms in the amplitude. The numbers
correspond to the numbers from Sec. 3. From this figure the mechanism of cancellations may be deduced

differential cross section are changing with ¢, therefore qualitative analysis like the one
sketched in Sec. 3 may give the wrong predictions. On the other hand our model is still

too simple to be valid quantitatively in a much larger momentum transfer domain than the
Glauber model (see next section).

5. Conclusions and remarks

To end our discussion the following remarks should be made:
1. It is not clear which of the two-body amplitude parametrizations is the best one.
Though Phillips’ parametrization works exceptionally well for 7—p up to the highest
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energies measured [33], for 7~d one can get better results with simple gaussian parametri-
zation (see Fig. 1a, b) or some others proposed recently (see [29] and references therein).
Since there is so much freedom in the Glauber model itself, the actual value of corrections
calculated in some formalism and the problem, whether they explain the existing dis-
agreement between the Glauber model and experiment or not, can not be an argument for
or against the formalism used. We can only decide whether the kind of correction considered
is still negligible or should be taken into account.

2. The small value of the Saxon-Schiff correction around ¢t = --2(GeV/c)? is an
argument for using the eikonal approximation (with eikonal correction) in this region.
However, the choice of eikonal momentum 4(p;+ p;) should be recommended if the
approximation is to work well in the medium momentum transfer region.

3. Parametrization of two-body amplitudes in a simple gaussian form in momentum
transfer is a somewhat rough approximation and does not allow us to push the validity
of our formalism into the region of much larger momentum transfers than for the Glauber
model. Unfortunately, for non-gaussian functions our formalism does not work so well
because of serious mathematical complications.

4. Among the different correction terms there are many cancellations as may be
deduced from Fig. 3a, b. They may be the main source of the unexpectedly big success
of the simple Glauber model®.

5. The future improvement of this model should go in three directions:

a) inclusion of the phase of the two-body amplitudes (e.g. via the Regge model);

b) parametrization of the shape of the full off-shell amplitudes and calculation of
further terms in NEE;

¢) relativistic generalization of all this formalism?®®,

All these changes will be rather difficult to introduce, especially if one wants to take
into account also the spin and Fermi motion effects. However, we hope that the relatively
simple formalism presented in this paper may serve as a basis for such future generalizations.

I would like to express my gratitude to Professor J. M. Namyslowski for his guidance
throughout the course of this research and to Doctors E. A. Bartnik and B. R. Karlsson
for many helpful discussions. I would also like to thank Professors H. Schopper,
K. Symanzik and G. Weber for their hospitality during my stay at DESY, where the last
part of this work has been done.

9 Other examples are also known with cancellations among different corrective terms in generalizations
of the Glauber model (see e.g. [10]). Although their mechanism is much different from the one in our case,
the final effect is the same.

18 At first sight it may seem senseless that we use a nonrelativistic formalism for the description of
ultrarelativistic energies. However, it is the characteristic feature of all eikonal theories that the non-relativ-
istic and relativistic approaches lead to the same type of final formula (e.g. Glauber model has been derived
in both approaches). There are hints [18,34] that also in the case of eikonal expression the two formalisms
may be easily translated into each other with the help of some simple prescription. And all kinematics in our
calculations are, of course, fully relativistic. Therefore, our formulae should find application also in rela-

tivistic formalism, though the numerical values of amplitudes may be somewhat changed by relativistic
corrections.
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APPENDIX A

Transformation of the off-shell amplitudes to the laboratory frame

We start from the cms amplitudes (3.1) and (3.2). The relation between laboratory
and cms amplitudes is [35] (subscripts ¢ and 1 refer to cms and laboratory frame respec-
tively)

[sin® 0, + (3. cos 0, + Ay.,)*]**

4 = —Je 4,, Azc Az s .
fl(AL, zl) [7c+i?c1 cos ec]l/Z ( 1 ( ])) (A 1)
where
A=—, (A.2)
ms
. Ell
and | with yo = —
my
Aty
Vo1 = —_.—':‘“.0_.‘—"::2 > (A.3)
J1+22p+ 4
1+4
Yo (A4)

Yo = = .
© V1+2iy, A2

Yo, Y1 and y, are the Lorentz coefficients for the incoming particle in the laboratory frame,
for the incoming particle in the cms frame and for the target particle in the cms frame
respectively. From the transformation of the momentum components we get for the
left off-shell amplitude

~ ik,o - —C' 42, ~i
Ifl(A) —_ E4_‘_ ﬁ(t)e ad?; —C' 42, ;d;dz" (AS)
T
where
. c d
C=—, d=—, (A.6)
Ye Pe

t t ¢ 213/4
el a) [ (v ) o
[ [ t 1/2 < .
['}’c'{"h)cl (1+ Eic_z)] ['Y‘,Jr/l')’d]

Of course, the form (A.5) would be extremely inconvenient in further calculations. Therefore,
we tried a two parameter fit according to the formula

ﬁ(t)e_adz_t..cfdzzl — e—a;AZ.L"C1A2], (A.S)

B = (A

where «, and C, are the new effective values of slopes which already involve the effect
of the § function.
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The fit turned out to be extremely good, with both sides of Eq. (A.8) equal up to the
four first digits from ¢ = 0 to 1 = —2(GeV/c)?. Moreover, it does not change the values
of o very prominently (e.g. starting from o = 4.25 (GeV/c)™? we got «; = 4.31 for np
at 9 GeV/c). This procedure gives us the final shape of the amplitude in exactly the same
form as the initial one, namely in the form (3.1), very convenient for further calculations.
Note that this procedure has nothing to do with the Glauber approximate similarity of
shapes [36] of laboratory and cms amplitudes since in our case the values of parameters
are changed and no assumption of small scattering angles is necessary.
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